CN108918616B - 一种PPy/CDs/PB/Au纳米电极、制备方法及其应用 - Google Patents

一种PPy/CDs/PB/Au纳米电极、制备方法及其应用 Download PDF

Info

Publication number
CN108918616B
CN108918616B CN201810826484.3A CN201810826484A CN108918616B CN 108918616 B CN108918616 B CN 108918616B CN 201810826484 A CN201810826484 A CN 201810826484A CN 108918616 B CN108918616 B CN 108918616B
Authority
CN
China
Prior art keywords
electrode
cds
ppy
nano
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810826484.3A
Other languages
English (en)
Other versions
CN108918616A (zh
Inventor
李永新
陈唯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN201810826484.3A priority Critical patent/CN108918616B/zh
Publication of CN108918616A publication Critical patent/CN108918616A/zh
Application granted granted Critical
Publication of CN108918616B publication Critical patent/CN108918616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00111Tips, pillars, i.e. raised structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明提供了一种PPy/CDs/PB/Au纳米电极、制备方法及其应用,与现有技术相比,本发明基于六氰基铁酸盐配合物普鲁士蓝(PB)由于其成本低,稳定性好以及优异的电化学响应而在肼的传感器方面有很大优势。本发明利用普鲁士蓝修饰纳米电极,外面覆盖聚吡咯和碳点杂化膜,由于碳点好的导电性、大的比表面积和极好的电化学活性,聚吡咯和碳点杂化膜极大地增强了电化学响应,且大幅度提高了传感器的稳定性,且由于纳米电极自身的优势,本发明中的传感器对肼的检测限更低,线性范围宽,这些都是相较于其他方法的明显优势。

Description

一种PPy/CDs/PB/Au纳米电极、制备方法及其应用
技术领域
本发明属于纳米电极制备领域,具体涉及一种PPy/CDs/PB/Au纳米电极、制备方法及其应用。
背景技术
肼(N2H4)又称联氨,是一种重要的精细化工原料,被广泛应用于医药、化工、军事、航天等领域。但同时,肼也被认为是一种致癌物质和神经毒素,给人体的健康造成很大的伤害。肼排放不当,对环境造成严重污染。因此,肼浓度的实时监测也是当务之急。开发新型电化学肼监测电极材料,研究肼的电化学行为,对有效实施环境污染物肼的监测,具有重要的理论意义和实践价值。
目前对溶液中肼的测定方法有紫外-分光光谱法,荧光分光光谱法,流动注射法,气相色谱联用法,化学发光法,化学滴定法和电化学分析法等。其中,水合肼的电化学分析在近几年中得到了迅速发展。电化学分析以其检测灵敏,操作简便而越来越受到人们的青睐。
目前电极材料的选取主要有金、银、铂等金属电极,碳纳米管修饰电极和钯纳米粒子修饰电极等。将纳米材料修饰的玻碳电极用于肼的电催化氧化,对肼的氧化具有良好的电化学催化活性。但仍面临如检测限不够低,线性范围窄,稳定性不好等问题。
近年来,随着科学的发展和更新,纳米电极越来越引起人们的关注。由于纳米电极相较于常规电极具有较高的电子传递速率、易于达到稳定电流、电化学响应迅速以及小的RC常数等诸多优点,使得其在诸多领域得到广泛的研究。
目前,对肼的电化学分析方法中,酶修饰电极检测限低。但是,它们对pH,温度和环境敏感,常出现稳定性问题。贵金属复合材料由于其良好的导电性和高灵敏度而被广泛用于检测肼,而贵金属的高成本和稀缺限制了其发展。
发明内容
本发明的目的在于提供一种PPy/CDs/PB/Au纳米电极的制备方法,通过普鲁士蓝修饰金纳米电极,从而制备一种新型肼电化学传感器,成本低,稳定性好,具有优异的电化学响应。
本发明的另一目的在于提供一种PPy/CDs/PB/Au纳米电极。
本发明还有一个目的在于提供一种PPy/CDs/PB/Au纳米电极的应用,用于检测肼。制备的纳米电极对肼氧化有高电催化活性,抗干扰和稳定性,对肼的电化学检测具有很低的检测限,且检测范围宽的特点。
本发明具体技术方案如下:
本发明提供的一种PPy/CDs/PB/Au纳米电极的制备方法,包括以下步骤:
1)将金丝装入铝硅酸盐毛细管中;
2)用激光拉制仪将毛细管拉制成两个尖端为纳米级的探针;
3)用银导电胶将钨丝与玻璃管中的未拉制的金丝一端连接,将尖端用环氧树脂胶封在玻璃管中;
4)抛光使其尖端露出,制成金纳米圆盘电极;
5)将制备好的金纳米盘电极置于含有FeCl3、K3Fe(CN)6、KCl和HCl的溶液中,电化学沉积普鲁士蓝,制备出PB/Au电极;
6)将步骤5)制备的PB/Au电极置于含吡咯和CDs的溶液中,利用循环伏安法,制备得到PPy/CDs/PB/Au纳米电极。
步骤1)具体为:将直径为25um、长度3-4cm的金丝穿进长度7.5cm的铝硅酸盐玻璃毛细管中,铝硅酸盐玻璃毛细管规格o.d.=1.0mm,i.d.=0.64mm;优选的,将毛细管一端用环氧树脂胶封住其目的是为了在拉制过程中处于真空环境。
步骤2)具体为:在激光拉制仪上拉制出具有超细尖端的两段,拉制的两段玻璃尖端里的金丝要与玻璃很好的熔合且金丝要连续均匀的变化。具体为:用P-2000激光拉制仪拉制,参数设置为:加热温度450-500℃,拉力120-150N,速率225-275m/s,加热四个循环,每个循环加热15-20s,冷却40-45s,始终保持抽真空状态。
步骤3)具体为:使用银导电胶将直径为250μm长7cm的钨丝与玻璃管中的未拉制的金丝一端连接,等银导电胶干了以后,将锥形尖端用环氧树脂胶封装在规格为o.d.=2.0mm;i.d.=1.16mm,长6cm的硼硅酸盐玻璃管中。这样做是为了便于用砂纸打磨出电极的尖端。
步骤4)具体为:等胶晾干之后依次用400,600,800,1000目的金相砂纸抛光打磨,打磨过程中用光学显微镜观测,一旦观测到尖端露出,立即停止抛光,然后依次用去离子水、乙醇超声清洗三次,每次超声2-3min,即制备出金纳米盘电极。
步骤5)中具体为:将步骤4)制备的金纳米盘电极置于含有2.5mM FeCl3、2.5mMK3Fe(CN)6、0.1M KCl和0.1M HCl的溶液中,在0.5~-0.2V电位下,扫描速度为50mV/s,循环伏安扫描20-50圈沉积普鲁士蓝,制备出PB/Au电极。
所述含有2.5mM FeCl3、2.5mM K3Fe(CN)6、0.1M KCl和0.1M HCl的溶液制备方法为:分别取0.0068g六水合三氯化铁、0.0083g K3Fe(CN)6、0.0746gKCl和83μL的浓度36%-38%的HCl,加去离子水配制成10mL的溶液,即得。
步骤6)中具体为:将步骤5)制备的PB/Au电极置于含0.1M吡咯和0.2mg/mLCDs的溶液中,在-0.2~0.8V电位下,扫描速度为50mV/s),循环伏安扫描2-6圈,制备得到PPy/CDs/PB/Au纳米电极。
所述含0.1M吡咯和0.2mg/mLCDs的溶液的制备方法为:将十二烷基硫酸钠SDS加入到碳点水溶液中混合,超声15分钟后得乳浊液,将吡咯加入到以上乳浊液中,室温环境超声搅拌30分钟,即可。制得溶液吡咯浓度0.1M,CDs浓度0.2mg/mL。
本发明提供的一种PPy/CDs/PB/Au纳米电极,采用上述方法制备得到
本发明提供的一种PPy/CDs/PB/Au纳米电极,用于检测肼。
具体检测方法为:
将制备的PPy/CDs/PB/Au纳米电极置于含有不同浓度肼的5mL的0.5M KCl水溶液中,测试计时电流响应曲线,构建线性关系。
进一步的,肼的终浓度分别为0.5μM、1.0μM、1.5μM、2.0μM、4.0μM、6.0μM、8.0μM、12μM、16μM、20μM、30μM、40μM、50μM、60μM、80μM。
具体为,将PPy/CDs/PB/Au电极置于5mL 0.5M KCl水溶液中,用计时电流法,电位设置为0.3V,依次加入一定量的肼,每次加入肼后,待电流信号平稳后,方可再次加入肼进行检测,每次加入肼后,肼的终浓度依次为0.5μM、1.0μM、1.5μM、2.0μM、4.0μM、6.0μM、8.0μM、12μM、16μM、20μM、30μM、40μM、50μM、60μM、80μM。随着肼浓度不断增加,响应电流值逐渐增大,这说明该电极具有检测肼的能力。在浓度区间为0.5μM至80μM时,I(pA)=26.21+10.68C(μM)(R2=0.9927)。检测限为0.18μM。从以上数据中可以看出,该传感器检测限低,检测范围宽。
与现有技术相比,本发明基于六氰基铁酸盐配合物普鲁士蓝(PB)由于其成本低,稳定性好以及优异的电化学响应而在肼的传感器方面有很大优势。本发明利用普鲁士蓝修饰纳米电极,外面覆盖聚吡咯和碳点杂化膜,由于碳点好的导电性、大的比表面积和极好的电化学活性,聚吡咯和碳点杂化膜极大地增强了电化学响应,且大幅度提高了传感器的稳定性,且由于纳米电极自身的优势,本发明中的传感器对肼的检测限更低,线性范围宽,这些都是相较于其他方法的明显优势。
附图说明
图1本发明制备PPy/CDs/PB/Au纳米电极的示意图;
图2A为实施例1制备的不同尺寸的金纳米盘电极在5mM FcACN溶液中的CV图;
图2B为实施例1制备的不同尺寸的金纳米盘电极在含5mM K3Fe(CN)6和0.2M KCl溶液中的CV图;
图2C为实施例1制备的不同尺寸的金纳米盘电极在5mM Ru(NH3)6Cl3+0.2M KCl溶液中的CV图;
图2D为实施例1制备的不同尺寸的金纳米盘电极在FcACN溶液中的COMSOL模拟图。
图3A为实施例1制备的Au、PB/Au、PPy/PB/Au、和PPy/CDs/PB/Au电极在0.5M KCl中的循环伏安图;扫速为50mV/s;Au纳米电极的半径,135nm;
图3B为实施例1制备的PPy/CDs/PB/Au在0.5M KCl无N2H4和有0.1mM N2H4的循环伏安图;扫速为50mV/s;Au纳米电极的半径,135nm;
图4为实施例1制备的电极PPy/CDs/PB/Au在不同电位下(0.25V、0.3V、0.35V)在5mL 0.5M KCl水溶液中连续加入2μM肼;Au纳米电极的半径,135nm;
图5A为电极PPy/CDs/PB/Au在5mL的0.5M KCl水溶液中连续加入不同浓度的肼的I-T曲线(工作电位E=0.3V);
图5B为电极PPy/CDs/PB/Au检测肼的标准曲线,浓度区间为0.5μM to 80μM(R2=0.9927);纳米电极的半径,135nm;
图6为PPy/CDs/PB/Au电极对5μM肼在1天,3天,5天后的计时电流响应;Au纳米电极的半径,135nm;
图7为PPy/CDs/PB/Au电极在5mL的0.5M KCl水溶液中连续加入各种干扰物的I-T曲线;纳米电极的半径,135nm;干扰物是尿酸(1)、谷氨酸(2)、Na+(3)、NH4 +(4)、K+(5)、NO3 -(6)、和Cl-(7)。
具体实施方式
实施例1
一种PPy/CDs/PB/Au纳米电极的制备方法,包括以下步骤:
1)将直径25μm,长度3-4cm的金丝装入7.5cm长的铝硅酸盐毛细管,铝硅酸盐毛细管规格o.d.=1.0mm;i.d.=0.64mm中;
2)将毛细管一端用环氧树脂胶封住其目的是为了在拉制过程中处于真空环境,然后在激光拉制仪上拉制出具有超细尖端的两段,拉制的两段玻璃尖端里的金丝要与玻璃很好的熔合且金丝要连续均匀的变化。用P-2000激光拉制仪拉制,参数设置为:加热温度450-500℃,拉力120-150N,速率225-275m/s,加热四个循环,每个循环加热15-20s,冷却40-45s,始终保持抽真空状态。
3)使用银导电胶将直径为250um长约7cm的钨丝与玻璃管中的未拉制的金丝一端连接,等银导电胶干了以后将锥形尖端用环氧树脂胶封装在规格为规格为o.d.=2.0mm;i.d.=1.16mm,长6cm的硼硅酸盐玻璃管中,这样做是为了便于用砂纸打磨出电极的尖端;
4)等胶晾干之后用不同目数的金相砂纸(400,600,800,1000目)抛光打磨制备出小尺寸的金纳米盘电极,将制备的金纳米盘电极依次用去离子水、乙醇超声清洗三次,每次超声2-3min。将制备好的不同尺寸的金纳米盘电极利用电化学方法进行表征。
配制用于电化学表征的溶液:(1)称取0.0093g的二茂铁用10mL的乙腈溶液配制成10mL5mM的二茂铁乙腈溶液。(2)称取0.0165g的铁氰化钾与0.149g的氯化钾配制10mL5mM的铁氰化钾溶液。(3)称取0.0155g的三氯六氨合钌与0.149g的氯化钾配制成10mL5mM的三氯六氨合钌溶液。上述所配置的3种溶液均放入超声仪中超声4~5min,然后将溶液均放入4℃的冰箱中储存备用。
分别取8mL的上述3种溶液用于金纳米盘电极的电化学表征。图2A-图2D为不同尺寸的金纳米盘电极在5mM的二茂铁乙腈溶液、5mM铁氰化钾溶液、5mM三氯六氨合钌溶液和FcACN溶液中COMSOL模拟的循环伏安图,扫速10mV/s。纳米盘电极的伏安响应和之前报道的结果一致,具有理想的S形曲线,且回扫时重叠很好,充电电流小,说明电极制备成功。由图可以看出,随电极尺寸的增加,循环伏安的极限扩散电流也随之增加。可以用极限扩散电流来计算电极半径,公式为id=4nFDCbR。id是极限扩散电流,n是电子转移数目,F是法拉第常数,D是扩散系数,Cb是氧化还原物种的本体浓度,R是电极半径。由公式计算得到图中相应的盘电极半径分别为15nm、40nm、72nm、124nm。由图2A和图2D可以看出,模拟数据与实际数据相符合。用于检测溶液的体积以能淹没电极为基准,所用检测均在室温条件下进行。
5)将制备好的金纳米盘电极置于含2.5mM FeCl3、2.5mM K3Fe(CN)6、0.1M KCl和0.1M HCl的溶液中,在0.5~-0.2V电位下(扫描速度为50mV/s),循环伏安扫描30圈沉积普鲁士蓝,制备出PB/Au电极。
6)将制备好的PB/Au电极置于含0.1M pyrrole+0.2mg/mLCDs的溶液中,在-0.2~0.8V电位下(扫描速度为50mV/s),循环伏安扫描4圈,制备出PPy/CDs/PB/Au电极。
图3A是电极Au、PB/Au、PPy/PB/Au和PPy/CDs/PB/Au分别在8mL电解液0.5M KCl水溶液中的CV曲线,扫速为50m V/s,电位窗口选择为-0.2V至0.5V。可以发现PB/Au电极在0.2V处有一对明显的氧化还原峰,这是普鲁士蓝和普鲁士白之间的转换造成的。而且,PPy/PB/Au电极的峰电流明显大于PB/Au电极的峰电流,这由于PPy可以提高电子转移速率,因此说明PPy使整个复合材料具有良好的导电性,电化学性能明显提升。而PPy/CDs/PB/Au电极的峰电流较PPy/PB/Au电极的峰电流明显变大,这是由于碳点具有良好的导电性,PPy/CDs复合膜的形成大大地提高了肼对该修饰电极的电化学响应,提高了该传感器的灵敏度和稳定性。
实施例2
一种PPy/CDs/PB/Au纳米电极检测肼的应用,具体为:
将实施例1制备的PPy/CDs/PB/Au纳米电极置于5mL的0.5M KCl水溶液中,用计时电流法,电位设置为0.3V,依次加入一定量的肼(每次加入肼后,待电流信号平稳后,方可再次加入肼),使每次加入后肼的终浓度依次为0.5μM、1.0μM、1.5μM、2.0μM、4.0μM、6.0μM、8.0μM、12μM、16μM、20μM、30μM、40μM、50μM、60μM、80μM,发现随着滴加肼浓度的升高,响应电流值逐渐增大,这说明该电极具有检测肼的能力。测试计时电流响应曲线,构建线性关系。
图5A是电极PPy/CDs/PB/Au在5mL的0.5M KCl水溶液中连续加入浓度从0.5μM至80μM的肼的安培响应曲线。从图5B中可以看出,在浓度区间为0.5μM至80μM时,I(pA)=26.21+10.68C(μM)(R2=0.9927)。检测限为0.18μM。从以上数据中可以看出,该传感器检测限低,检测范围宽。
将实施例1将制备的PPy/CDs/PB/Au电极应用于肼的检测。为了达到良好的检测效果,我们首先将工作电位进行优化。图4是电极PPy/CDs/PB/Au在不同电位下(0.25V、0.3V、0.35V)连续加入肼的安培响应曲线。对于肼的氧化,较负的氧化电位和较低的检测限一直是实验中所追求的,拥有越负的氧化电位,具有越高的电催化活性。对比三条曲线后,可以明显看出工作电位在0.25V处时,电流随着肼浓度的增加而增加的幅度并不理想,而电位在0.3V和0.35V时的电流随着肼浓度的增加而增加的幅度十分接近,这说明在0.3V和0.35V时该传感器对肼的氧化具有很好的电催化活性。此时,更负的氧化电位更满足我们的要求,因此,选择0.3V为最佳工作电位。
图6中探究了这种传感器的稳定性,对于在冰箱中保存一定时间(1天,3天,5天)的PPy/CDs/PB/Au电极,通过计时电流法,考察该传感器对5μM肼的计时电流响应。结果表明,第3天传感器对5μM肼的计时电流响应几乎与第一天一致,第5天相较于第1天电流响应降低5.48%。这表明该传感器具有良好的稳定性。
此外,为了检测该电极的抗干扰性能,选择了许多潜在干扰物进行了电化学测试。图7是电极PPy/CDs/PB/Au在5mL的0.5M KCl水溶液中连续加入各种干扰物的安培响应曲线,其中我们加入的干扰物是尿酸(1)、谷氨酸(2)、Na+(3)、NH4 +(4)、K+(5)、NO3 -(6)、和Cl-(7),肼的浓度为5μM,而其余干扰物浓度均为肼浓度的十倍。可以发现除了肼有明显的电流响应外,各种干扰物都没有明显的电流响应。这说明该电极具有良好的抗干扰能力。
实际样品检测:
将肼加入5mL饮用水当中检测,将不同浓度的肼实样分别测定他们的含量,结果如下表1:
表1 PPy/CDs/PB/Au电极在饮用水中检测肼
Figure BDA0001742604450000071
从表1当中看出,最终的结果发现检测效果良好,这说明本发明制备的PPy/CDs/PB/Au纳米电极具有良好的实用价值。

Claims (10)

1.一种PPy/ CDs/PB/Au纳米电极的制备方法,其特征在于,所述制备方法包括以下步骤:
1)将金丝装入铝硅酸盐毛细管中;
2)用激光拉制仪将毛细管拉制成两个尖端为纳米级的探针;
3)用银导电胶将钨丝与玻璃管中的未拉制的金丝一端连接,将尖端用环氧树脂胶封在玻璃管中;
4)抛光使其尖端露出,制成金纳米圆盘电极;
5)将制备好的金纳米盘电极置于含有FeCl3、K3Fe(CN)6、KCl和HCl的溶液中,电化学沉积普鲁士蓝,制备出PB/Au电极;
6)将步骤5)制备的PB/Au电极置于含吡咯和CDs的溶液中,利用循环伏安法,制备得到PPy/CDs/PB/Au纳米电极;
所述CDs是指碳点。
2.根据权利要求1所述的制备方法,其特征在于,步骤1)具体为:将直径为25um、长度3-4cm的金丝穿进长度7.5cm的铝硅酸盐玻璃毛细管中,铝硅酸盐玻璃毛细管规格外径 = 1.0mm; 内径= 0.64 mm。
3.根据权利要求1所述的制备方法,其特征在于,步骤2)具体为:在激光拉制仪上拉制出具有超细尖端的两段,拉制的两段玻璃尖端里的金丝要与玻璃很好的熔合且金丝要连续均匀的变化。
4.根据权利要求1所述的制备方法,其特征在于,步骤3)具体为:使用银导电胶将直径为250μm长7cm的钨丝与玻璃管中的未拉制的金丝一端连接,等银导电胶干了以后,将锥形尖端用环氧树脂胶封装在规格为外径= 2.0 mm; 内径 =1.16 mm,长6cm的硼硅酸盐玻璃管中。
5.根据权利要求1所述的制备方法,其特征在于,步骤4)具体为:等胶晾干之后以此用400,600,800,1000目的金相砂纸抛光打磨,制备出金纳米盘电极,将制备的金纳米盘电极依次用去离子水、乙醇超声清洗三次,每次超声2-3min,即可。
6.根据权利要求1所述的制备方法,其特征在于,将步骤4)制备的金纳米盘电极置于含有2.5 mM FeCl3、2.5 mM K3Fe(CN)6、0.1 M KCl和0.1 M HCl的溶液中,在0.5~-0.2V电位下,扫描速度为50 mV/s,循环伏安扫描20-50圈沉积普鲁士蓝,制备出PB/Au电极。
7.根据权利要求1所述的制备方法,其特征在于,步骤6)中具体为:将步骤5)制备的PB/Au电极置于含0.1M 吡咯和0.2mg/mLCDs的溶液中,在-0.2~0.8V电位下,扫描速度为50 mV/s),循环伏安扫描2-6圈,制备得到PPy/CDs/PB/Au纳米电极;
所述CDs是指碳点。
8.一种权利要求1-7任一项所述方法制备的PPy/CDs/PB/Au纳米电极。
9.一种权利要求8所述的PPy/CDs/PB/Au纳米电极检测肼的应用。
10.根据权利要求9所述的应用,其特征在于,具体检测方法为:
将制备的PPy/CDs/PB/Au纳米电极置于含有不同浓度肼的5 m L的0.5 M KCl水溶液中,测试安培响应曲线,构建线性关系。
CN201810826484.3A 2018-07-25 2018-07-25 一种PPy/CDs/PB/Au纳米电极、制备方法及其应用 Active CN108918616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810826484.3A CN108918616B (zh) 2018-07-25 2018-07-25 一种PPy/CDs/PB/Au纳米电极、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810826484.3A CN108918616B (zh) 2018-07-25 2018-07-25 一种PPy/CDs/PB/Au纳米电极、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108918616A CN108918616A (zh) 2018-11-30
CN108918616B true CN108918616B (zh) 2020-06-02

Family

ID=64418207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810826484.3A Active CN108918616B (zh) 2018-07-25 2018-07-25 一种PPy/CDs/PB/Au纳米电极、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108918616B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115888811A (zh) * 2022-12-29 2023-04-04 云南省烟草质量监督检测站 纳米酶材料及其制备方法和应用、Pb2+离子的检测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107287596A (zh) * 2017-06-16 2017-10-24 安徽师范大学 一种Au@Pt核壳结构纳米电极、制备方法及其应用
CN108007986B (zh) * 2017-11-28 2020-06-02 安徽师范大学 一种汞修饰的金纳米盘电极、制备方法及其对农药中甲基磺草酮的检测应用

Also Published As

Publication number Publication date
CN108918616A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN108802141B (zh) 无酶的葡萄糖电化学传感器及其检测方法
Lu et al. Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors
Fu et al. An electrochemical sensor based on reduced graphene oxide and ZnO nanorods-modified glassy carbon electrode for uric acid detection
CN105842312B (zh) 一种纳米花状超微金电极及其制备和应用
Chen et al. Au nanoparticles-ZnO composite nanotubes using natural silk fibroin fiber as template for electrochemical non-enzymatic sensing of hydrogen peroxide
Yin et al. Non-enzymatic hydrogen peroxide sensor based on a nanoporous gold electrode modified with platinum nanoparticles
Taheri et al. Sensitive and selective determination of Cu2+ at d-penicillamine functionalized nano-cellulose modified pencil graphite electrode
Huang et al. Sensitive detection of noradrenaline in human whole blood based on Au nanoparticles embedded vertically-ordered silica nanochannels modified pre-activated glassy carbon electrodes
Liu et al. Research on nonenzymatic electrochemical sensor using HO-BiONO3 nanocomposites for glucose detection
Babaei et al. A multi-walled carbon nano-tube and nickel hydroxide nano-particle composite-modified glassy carbon electrode as a new sensor for the sensitive simultaneous determination of ascorbic acid, dopamine and uric acid
Aziz et al. Nanomolar amperometric sensing of hydrogen peroxide using a graphite pencil electrode modified with palladium nanoparticles
Anvari et al. Electrochemical determination of methamphetamine in human plasma on a nanoceria nanoparticle decorated reduced graphene oxide (rGO) glassy carbon electrode (GCE)
Rezaeinasab et al. An electrochemical sensor based on Ni (II) complex and multi wall carbon nano tubes platform for determination of glucose in real samples
Zeng et al. A simple method to fabricate a Prussian Blue nanoparticles/carbon nanotubes/poly (1, 2-diaminobenzene) based glucose biosensor
Meng et al. A sensitive non-enzymatic glucose sensor in alkaline media based on cu/MnO 2-modified glassy carbon electrode
Gu et al. A portable and sensitive dopamine sensor based on AuNPs functionalized ZnO-rGO nanocomposites modified screen-printed electrode
CN105911128B (zh) 一种无酶葡萄糖电化学传感器及其应用
CN108483389B (zh) 一种银纳米电极及其制备方法
Zhang et al. Carnation‐like CuO Hierarchical Nanostructures Assembled by Porous Nanosheets for Nonenzymatic Glucose Sensing
Li et al. Determination of dopamine with a modified carbon dot electrode
CN109211989A (zh) 一种用于检测阿特拉津的电化学适配体传感器及其制备和检测方法
Feng et al. Direct electrochemical detection of guanosine-5′-monophosphate at choline monolayer supported and gold nanocages functionalized carbon nanotubes sensing interface
Xu et al. Simultaneous determination of ascorbic acid, dopamine, and uric acid based on double-walled carbon nanotubes/choline-modified electrode
Van et al. High-performance nonenzymatic electrochemical glucose biosensor based on AgNP-decorated MoS2 microflowers
Amini et al. Application of an electrochemical sensor using copper oxide nanoparticles/polyalizarin yellow R nanocomposite for hydrogen peroxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant