CN108917759A - 基于多层次地图匹配的移动机器人位姿纠正算法 - Google Patents

基于多层次地图匹配的移动机器人位姿纠正算法 Download PDF

Info

Publication number
CN108917759A
CN108917759A CN201810353637.7A CN201810353637A CN108917759A CN 108917759 A CN108917759 A CN 108917759A CN 201810353637 A CN201810353637 A CN 201810353637A CN 108917759 A CN108917759 A CN 108917759A
Authority
CN
China
Prior art keywords
map
pose
robot
point cloud
algorithm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810353637.7A
Other languages
English (en)
Inventor
左琳
蒋正钢
张昌华
刘宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810353637.7A priority Critical patent/CN108917759A/zh
Publication of CN108917759A publication Critical patent/CN108917759A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/005Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 with correlation of navigation data from several sources, e.g. map or contour matching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Abstract

本发明公开了一种基于多层次地图匹配的移动机器人位姿纠正算法,属于机器人和计算机图形学技术领域。本发明所述算法利用同步定位与构图算法建立全局栅格地图,结合当前观测与栅格地图的匹配关系利用AMCL算法纠正航迹推算出的位姿,从而得到相对准确的全局位姿信息;同时,本发明把栅格地图转换为之对应的全局目标点云地图,将机器人实时观测的激光点云与目标点云地图配准,以进一步修正全局位姿。本发明所述方法可以获得准确的全局位姿信息,减少长距离定位误差积累,避免现有粒子滤波技术中因粒子空间有限导致求解的位姿不够准确以及ICP算法求解的精度与效率对初始位姿过于依赖的缺点,实现了高效且准确的位姿求解。

Description

基于多层次地图匹配的移动机器人位姿纠正算法
技术领域
本发明属于机器人和计算机图形学技术领域,具体涉及一种基于多层次地图匹配的移动机器人位姿纠正算法。
背景技术
随着人工智能的不断发展,机器人的应用越来越广泛。为保证机器人能适应不同复杂的环境,因此对机器人的智能化提出了更高的要求。移动机器人的自主导航定位技术是机器人技术的核心,而其中定位是要解决的首要问题,吸引了众多研究人员的热切关注。定位问题可以分为两个子问题,一是机器人初始位置已知的局部位置跟踪问题,二是初始位置未知的全局定位问题。局部位置跟踪可以通过采集里程计、惯性导航单元信息进行航迹推算来完成,但存在很大的误差积累。激光雷达、摄像头、GPS等传感器可以得到机器人的全局位姿信息,但是摄像头和GPS对环境依赖大,如,摄像头对光线要求较高,GPS要求周围遮挡物较少。激光雷达具有精度高、环境适应能力强等特点,被广泛应用于机器人领域。早期的机器人定位算法主要包括扩展卡尔曼滤波、马尔可夫定位、多假设跟踪、粒子滤波等算法。虽然上述算法可以获得机器人的定位信息,但是计算效率和定位精度不高,不适用于一些特殊的应用环境。例如,变电站巡检、工厂物体抓取等工作需要可靠的感知传感器和高精度定位算法。因此,对移动机器人高精度定位研究具有很大的意义。以往机器人定位研究工作主要有以下几种方法:
(1)Fox提出了可尔可夫定位算法,已知移动机器人采用动作和传感器观测求解机器人在某个环境空间的位姿可信度,从而求解出最好的位姿。
(2)Leonard提出把扩展卡尔曼滤波算法应用于移动机器人定位,它其实是马尔可夫定位的一种特殊情况,但用一阶矩和二阶矩表示置信度,即均值和协方差。它适用于地标一致性可以绝对肯定的情况。
(3)Dellaert提出了蒙特卡洛定位算法,通过把合适的概率运动和感知模型代入粒子滤波算法中,它使用粒子滤波估计机器人位姿的后验,适应用于局部定位和全局定位,也能解决部分机器人绑架问题。之后,有学者将自适应机制引入蒙特卡洛算法,减少了计算时间。
(4)Minguez提出采用迭代最近点算法估计移动机器人位移。此算法对里程计输出的位姿进行了有效的纠正,提高了移动机器人长距离移动的定位精度。
粒子滤波算法的运用可以对非线性非高斯问题进行评估,迭代最近点算法可以减少里程计误差的积累。以上方法都在一定程度上解决了机器人定位的问题,但依然存在很多局限,主要表现在:
(1)定位精度不高。由于车轮打滑、传感器温度漂移带来的误差,以上方法在利用二维激光的情况下只能得到一个粗略的位姿估计,不能满足一些高精度定位需求的场合。目前,机器人定位多数是基于概率的方法估计最优的机器人位姿。蒙特卡洛算法由于粒子数量有限、粒子退化、栅格地图分辨率有限等问题,造成了估计得到局部最优位姿,而错过了全局最优位姿。迭代最近点算法在有一个较优的初始解情况下,可以保证全局最优,但如果采用的相邻激光点云进行匹配,这样就不可避免的引出了全局误差积累。
(2)计算效率与定位精度不能兼顾。当以上方法单独使用时可以保证机器人运行的时效性,但是定位精度不高。如蒙特卡洛算法想要提高定位精度,最直接的方式就是增加粒子数,虽然增加粒子数可以提高位姿估计的精度,但会增加计算成本,影响机器人运行的流畅性。迭代最近点算法的引入,可以增加机器人定位的准确性,但如果初始迭代参数选择不准确、关联点对搜索算法效率不高、不能很好的剔除伪点对就会造成算法求解迭代次数增加,求解结果陷入局部最优,反而会降低机器人运行的效率。
发明内容
本发明的目的是解决现有的定位算法在求解机器人位姿存在较大误差,误差会随距离增加而积累,且难以保证实时性的问题,提供一种基于多层次地图匹配的移动机器人位姿纠正算法。
本发明所提出的技术问题是这样解决的:
一种基于多层次地图匹配的移动机器人位姿纠正算法,包括以下步骤:
步骤1.利用同步定位与构图(SLAM)算法建立机器人二维栅格地图;在机器人每次开机后,采用开源的计算机视觉的opencv函数库读取已经建好的栅格地图;
步骤2.栅格地图上的黑色像素点代表激光扫描到的物体,把相应的黑色像素点转化为图像标系下的激光点云数据格式;再将图像坐标系下的激光点云P转换至地图坐标系下,得到地图坐标系下的点云P′,即全局目标点云地图;
图像坐标系和地图坐标系之间的转换关系为:P′=RP+t;其中R是图像坐标系到地图坐标系的旋转矩阵,t是地图坐标系原点在图像坐标系下的坐标;
步骤3.根据机器人运动学模型,利用里程计和惯性测量单元的数据融合,计算出机器人的航迹,从而得到一个没有全局信息的初始位姿估计;
步骤4.采用自适应蒙特卡洛定位(AMCL)算法将激光雷达扫描到的当前观测点云与栅格地图进行匹配,纠正机器人航迹推算出的位姿,从而得到机器人在栅格地图中的全局位姿;
步骤5.设定激光雷达的扫描间距和旋转角度差,激光雷达依次扫描并采集激光点云数据Sk,该点云位于机器人坐标系下;再采用AMCL算法输出的全局位姿作为激光点云Sk与全局目标点云地图P′的初始配准参数初始旋转矩阵和初始平移向量
步骤6.根据初始配准参数,将点云Sk和全局目标点云地图P′进行配准,得到最终纠正的机器人位姿,为旋转矩阵和平移向量
步骤6的具体步骤为:
步骤6-1.令当前迭代次数i=1,根据把机器人坐标系下的点云Sk旋转平移变换得到地图坐标系下的点云Q,并把点云Q和点云地图P′按照kd-tree的数据结构存储,Q={qj,j=1...N},P′={p′j,j=1...N},N是激光单次扫描得到点云总数;
步骤6-2.根据最近距离原则在Q中搜索p′j的距离最近点qj得到搜索关联点对(qj,p′j);
根据最近互邻原则在点云地图P′中搜索qj的最近点p″j,判断p″j与p″j的距离是否小于预设条件dm
若搜索关联点对(qj,p′j)满足预设条件,则确定关联点对为(qj,p′j);否则返回步骤6-2重新搜索;最终得到Nt对关联点对(qm,p′m),m=1…Nt,Nt为满足预设条件的关联点对的个数,每个关联点对的距离为
步骤6-3.对Nt对关联点对的距离进行排序,选择距离较小的No对关联点对(qn,p′n),其中n=1…No,No=Nt×η,η为固定重叠率;
步骤6-4.基于奇异分解的方法,利用No对关联点对(qn,p′n),计算并更新旋转矩阵和平移向量
步骤6-5.判断当前误差是否达到预设精度要求,如达到要求则进行下一步骤,end=i;如未达到要求,令i=i+1,返回至步骤6-1;
步骤7.把旋转矩阵转换为对应的四元数,最终得到纠正后的机器人在地图坐标系下的位置和角度。
本发明的有益效果是:
本发明对现有的机器人定位算法进行了改进,提出了基于多层次地图匹配的移动机器人位姿纠正算法。
(1)在定位精度上有很大提升。通过AMCL算法和改进的ICP算法将机器人实时观测分别与栅格地图和点云地图进行匹配,先后对机器人位姿进行纠正,减少了长距离定位误差积累,避免AMCL算法因粒子空间有限导致求解的位姿不够准确。改进的迭代最近点(ICP)算法中设计的伪点对剔除方法,提高了匹配的精度。所以本发明中采用的算法提高了机器人的全局位姿精度,拓宽了移动机器人的运用领域。
(2)在计算效率中有所改进,多种算法结合来纠正机器人位姿就必须考虑运行效率。本发明中采用改进的ICP算法间隔纠正AMCL算法输出的全局位姿,保证了两种算法组合运行的时效性。粒子数自适应的方式,从而减少概率估计的时间,且本发明中改进的ICP的初始迭代参数由AMCL算法计算得到,从而克服传统的ICP算法求解的精度与效率对初始位姿过于依赖的缺点,实现了高效且准确的位姿求解。
附图说明
图1为本发明所述基于多次层地图匹配的移动机器位姿纠正算法流程图;
图2为本发明中栅格地图转换为全局目标点云地图的效果图;
图3为本发明中里程计输出的位姿得到的点云效果图;
图4为本发明中AMCL算法输出的位姿得到的点云效果图;
图5为采用里程计输出的位姿结合传统的ICP算法得到的点云效果图;
图6为采用AMCL算法输出的位姿结合传统的ICP算法得到的点云效果图;
图7为本发明实施例采用多层次地图匹配算法得到的点云效果图;
图8为采用里程计输出的位姿和理想位姿绘制的轨迹图;
图9为采用AMCL算法输出的位姿和理想位姿绘制的轨迹图;
图10为本发明实施多层次地图匹配得到的位姿和理想位姿绘制的轨迹图。
具体实施方式
下面结合附图和实施例对本发明进行进一步的说明。
本实施例提供一种基于多层次地图匹配的移动机器人位姿纠正算法,本发明实施例采用HUSKY A200机器人进行算法验证,机器人内部装有ROS系统的工控机、运动控制模块、信息采集模块等,此外还搭载了LMS151的二维激光雷达、里程计、惯性测量单元等传感器。本发明实施例使用的栅格地图由机器人通过SLAM算法建成。机器人每前进30厘米或旋转30度采集一次数据,一共记录了17次数据,数据内容包括原始激光点云、里程计输出的位姿、AMCL算法输出的位姿。本发明进行了多次实验对比,最终验证了本发明提出的基于多层次地图匹配的移动机器位姿纠正算法相比现有的一些位姿纠正算法有明显的改进效果。算法流程图如图1所示,包括以下步骤:
步骤1.利用同步定位与构图(SLAM)算法建立机器人二维栅格地图;在机器人每次开机后,采用开源的计算机视觉的opencv函数库读取已经建好的栅格地图;
步骤2.栅格地图上的黑色像素点代表激光扫描到的物体,把相应的黑色像素点转化为图像标系下的激光点云数据格式;再将图像坐标系下的激光点云P转换至地图坐标系下,得到地图坐标系下的点云P′,即全局目标点云地图;栅格地图转换为全局目标点云地图的效果图如图2所示;
图像坐标系和地图坐标系之间的转换关系为:P′=RP+t;其中R是图像坐标系到地图坐标系的旋转矩阵,图像坐标系到地图坐标系的旋转角度因为点云按照右手坐标系存储,所以要加负号,再转换为四元素表示x=0,y=0,由四元素和相应的转换函数得到旋转矩阵R;t是地图坐标系原点在图像坐标系下的坐标;其中r为图像的行数,c为图像的列数,d为图像分辨率;
通过以上步骤把栅格地图转换为全局目标点云地图,各参数的具体数值如下表所示:
步骤3.根据机器人运动学模型,利用里程计和惯性测量单元的数据融合,计算出机器人的航迹,从而得到一个没有全局信息的初始位姿估计;里程计输出的位姿得到的点云效果图如图3所示;
步骤4.采用自适应蒙特卡洛定位(AMCL)算法将激光雷达扫描到的当前观测点云与栅格地图进行匹配,纠正机器人航迹推算出的位姿,从而得到机器人在栅格地图中的全局位姿;AMCL算法输出的位姿得到的点云效果图如图4所示;
步骤5.设定激光雷达的扫描间距和旋转角度差,激光雷达依次扫描并采集激光点云数据Sk,该点云位于机器人坐标系下;再采用AMCL算法输出的全局位姿作为激光点云Sk与全局目标点云地图P′的初始配准参数初始旋转矩阵和初始平移向量
步骤6.根据初始配准参数,将点云Sk和全局目标点云地图P′进行配准,得到最终纠正的机器人位姿,为旋转矩阵和平移向量图5为采用里程计输出的位姿结合传统的ICP算法得到的点云效果图;图6为采用AMCL算法输出的位姿结合传统的ICP算法得到的点云效果图;
步骤6的具体步骤为:
步骤6-1.令当前迭代次数i=1,根据把机器人坐标系下的点云Sk旋转平移变换得到地图坐标系下的点云Q,并把点云Q和点云地图P′按照kd-tree的数据结构存储,Q={qj,j=1...N},P′={p′j,j=1...N},N是激光单次扫描得到点云总数;
步骤6-2.根据最近距离原则在Q中搜索p′j的距离最近点qj得到搜索关联点对(qj,p′j);
根据最近互邻原则在点云地图P′中搜索qj的最近点p″j,判断p′j与p″j的距离是否小于预设条件dm
若搜索关联点对(qj,p′j)满足预设条件,则确定关联点对为(qj,p′j);否则返回步骤6-2重新搜索;最终得到Nt对关联点对(qm,p′m),m=1…Nt,Nt为满足预设条件的关联点对的个数,每个关联点对的距离为
步骤6-3.对Nt对关联点对的距离进行排序,选择距离较小的No对关联点对(qn,p′n),其中n=1…No,No=Nt×η,η为固定重叠率;
步骤6-4.基于奇异分解的方法,利用No对关联点对(qn,p′n),计算并更新旋转矩阵和平移向量
步骤6-5.判断当前误差是否达到预设精度要求,如达到要求则进行下一步骤,end=i;如未达到要求,令i=i+1,返回至步骤6-1;
步骤7.把旋转矩阵转换为对应的四元数,最终得到纠正后的机器人在地图坐标系下的位置和角度。
在完成以上步骤后,得到了本发明提出的基于多层次地图匹配的移动机器位姿纠正算法的效果图,如图7所示。
下表给出了针对采集到的数据集(其中包含了扫描得到的二维激光点云数据和里程计数据和AMCL数据)。不同位姿纠正算法在运行时间上的对比。记录的时间是进行17次扫描匹配所用时间的总和。
名称 里程计+传统ICP AMCL+传统ICP 多次层地图匹配
运行时间 0.333s 0.309s 0.287s
由于本发明主要是纠正机器人位姿,所以对算法运行的效率要求较高。在本实验例中综合考虑了运用时间和匹配精度,改进的ICP算法选择的匹配点对数为50个,也可以根据不同环境和精度需求改变匹配对数、收敛条件等参数,使其达到实际工作要求。图3是通过里程计信息和惯性测量单元信息进行航迹推算得到的点云效果图,从图中圈出的部分可以发现推算出的位姿和全局地图偏差较大,且有些变形,说明机器人位姿出现了漂移。图4是通过AMCL算法结合栅格地图对航迹推算出的位姿进行纠正得到的点云效果图,从图中圈出的部分可以发现机器人的位姿还是出现了偏差,但相比图3有所改进。图5是使用了传统的ICP算法对航迹推算出的位姿进行纠正。从图中圈出的部分可以发现机器人得到的位姿信息比较稳定没有漂移,但是存在全局误差积累,且偏差较大。图6是使用了传统的ICP算法对AMCL算法输出的位姿进行纠正。从图中圈出的部分可以发现机器人得到的位姿信息比较稳定没有漂移,且相比图5和全局地图的偏差有所减小。图7是本发明最终改善的效果,对比前面所有的方法,匹配效果有明显的改善。图8为通过里程计得到的位姿和理想位姿绘制的轨迹图;图9为使用了AMCL算法得到的位姿和理想位姿绘制的轨迹图。图10为本发明实施多层次地图匹配得到的位姿和理想位姿绘制的轨迹图。通过图8、9和图10的效果对比,更能表明本发明提出的基于多层次地图匹配的算法对于纠正移动机器人的位姿有很好效果。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (1)

1.一种基于多层次地图匹配的移动机器人位姿纠正算法,其特征在于,包括以下步骤:
步骤1.利用同步定位与构图算法建立机器人二维栅格地图;在机器人每次开机后,采用开源的计算机视觉的opencv函数库读取已经建好的栅格地图;
步骤2.栅格地图上的黑色像素点代表激光扫描到的物体,把相应的黑色像素点转化为图像标系下的激光点云数据格式;再将图像坐标系下的激光点云P转换至地图坐标系下,得到地图坐标系下的点云P′,即全局目标点云地图;
图像坐标系和地图坐标系之间的转换关系为:P′=RP+t;其中R是图像坐标系到地图坐标系的旋转矩阵,t是地图坐标系原点在图像坐标系下的坐标;
步骤3.根据机器人运动学模型,利用里程计和惯性测量单元的数据融合,计算出机器人的航迹,从而得到一个没有全局信息的初始位姿估计;
步骤4.采用自适应蒙特卡洛定位算法将激光雷达扫描到的当前观测点云与栅格地图进行匹配,纠正机器人航迹推算出的位姿,从而得到机器人在栅格地图中的全局位姿;
步骤5.设定激光雷达的扫描间距和旋转角度差,激光雷达依次扫描并采集激光点云数据Sk,该点云位于机器人坐标系下;再采用AMCL算法输出的全局位姿作为激光点云Sk与全局目标点云地图P′的初始配准参数初始旋转矩阵和初始平移向量
步骤6.根据初始配准参数,将点云Sk和全局目标点云地图P′进行配准,得到最终纠正的机器人位姿,为旋转矩阵和平移向量
步骤6的具体步骤为:
步骤6-1.令当前迭代次数i=1,根据把机器人坐标系下的点云Sk旋转平移变换得到地图坐标系下的点云Q,并把点云Q和点云地图P′按照kd-tree的数据结构存储,Q={qj,j=1...N},P′={p′j,j=1...N},N是激光单次扫描得到点云总数;
步骤6-2.根据最近距离原则在Q中搜索p′j的距离最近点qj得到搜索关联点对(qj,p′j);
根据最近互邻原则在点云地图P′中搜索qj的最近点p″j,判断p′j与p″j的距离是否小于预设条件dm
若搜索关联点对(qj,p′j)满足预设条件,则确定关联点对为(qj,p′j);否则返回步骤6-2重新搜索;最终得到Nt对关联点对(qm,p′m),m=1…Nt,Nt为满足预设条件的关联点对的个数,每个关联点对的距离为
步骤6-3.对Nt对关联点对的距离进行排序,选择距离较小的No对关联点对(qn,p′n),其中n=1…No,No=Nt×η,η为固定重叠率;
步骤6-4.基于奇异分解的方法,利用No对关联点对(qn,p′n),计算并更新旋转矩阵和平移向量
步骤6-5.判断当前误差是否达到预设精度要求,如达到要求则进行下一步骤,end=i;如未达到要求,令i=i+1,返回至步骤6-1;
步骤7.把旋转矩阵转换为对应的四元数,最终得到纠正后的机器人在地图坐标系下的位置和角度。
CN201810353637.7A 2018-04-19 2018-04-19 基于多层次地图匹配的移动机器人位姿纠正算法 Pending CN108917759A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810353637.7A CN108917759A (zh) 2018-04-19 2018-04-19 基于多层次地图匹配的移动机器人位姿纠正算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810353637.7A CN108917759A (zh) 2018-04-19 2018-04-19 基于多层次地图匹配的移动机器人位姿纠正算法

Publications (1)

Publication Number Publication Date
CN108917759A true CN108917759A (zh) 2018-11-30

Family

ID=64403150

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810353637.7A Pending CN108917759A (zh) 2018-04-19 2018-04-19 基于多层次地图匹配的移动机器人位姿纠正算法

Country Status (1)

Country Link
CN (1) CN108917759A (zh)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709801A (zh) * 2018-12-11 2019-05-03 智灵飞(北京)科技有限公司 一种基于激光雷达的室内无人机定位系统及方法
CN109916393A (zh) * 2019-03-29 2019-06-21 电子科技大学 一种基于机器人位姿的多重栅格值导航方法及其应用
CN109932713A (zh) * 2019-03-04 2019-06-25 北京旷视科技有限公司 定位方法、装置、计算机设备、可读存储介质和机器人
CN110045733A (zh) * 2019-04-04 2019-07-23 肖卫国 一种实时定位方法及其系统、计算机可读介质
CN110058594A (zh) * 2019-04-28 2019-07-26 东北大学 基于示教的多传感器的移动机器人定位导航系统及方法
CN110132284A (zh) * 2019-05-30 2019-08-16 东北大学 一种基于深度信息的全局定位方法
CN110243380A (zh) * 2019-06-26 2019-09-17 华中科技大学 一种基于多传感器数据与角度特征识别的地图匹配方法
CN110285806A (zh) * 2019-07-05 2019-09-27 电子科技大学 基于多次位姿校正的移动机器人快速精确定位算法
CN110297224A (zh) * 2019-08-01 2019-10-01 深圳前海达闼云端智能科技有限公司 激光雷达的定位方法、装置、机器人及计算设备
CN110319832A (zh) * 2019-07-05 2019-10-11 北京海益同展信息科技有限公司 机器人定位方法、装置、电子设备及介质
CN110333513A (zh) * 2019-07-10 2019-10-15 国网四川省电力公司电力科学研究院 一种融合最小二乘法的粒子滤波slam方法
CN110456797A (zh) * 2019-08-19 2019-11-15 杭州电子科技大学 一种基于2d激光传感器的agv重定位系统及方法
CN110515382A (zh) * 2019-08-28 2019-11-29 锐捷网络股份有限公司 一种智能设备及其定位方法
CN110567441A (zh) * 2019-07-29 2019-12-13 广东星舆科技有限公司 基于粒子滤波的定位方法、定位装置、建图及定位的方法
CN110686677A (zh) * 2019-10-10 2020-01-14 东北大学 一种基于几何信息的全局定位方法
CN110887493A (zh) * 2019-11-29 2020-03-17 上海有个机器人有限公司 基于局部地图匹配的轨迹推算方法、介质、终端和装置
CN110889808A (zh) * 2019-11-21 2020-03-17 广州文远知行科技有限公司 一种定位的方法、装置、设备及存储介质
CN110927740A (zh) * 2019-12-06 2020-03-27 合肥科大智能机器人技术有限公司 一种移动机器人定位方法
CN111060888A (zh) * 2019-12-31 2020-04-24 芜湖哈特机器人产业技术研究院有限公司 一种融合icp和似然域模型的移动机器人重定位方法
CN111192364A (zh) * 2020-01-09 2020-05-22 北京科技大学 一种低成本移动多机器人视觉同时定位和地图创建方法
CN111223145A (zh) * 2020-01-03 2020-06-02 上海有个机器人有限公司 数据处理方法、系统、服务装置及其存储介质
CN111307147A (zh) * 2020-03-06 2020-06-19 同济人工智能研究院(苏州)有限公司 一种融合定位反光板与激光特征的agv高精度定位方法
CN111427060A (zh) * 2020-03-27 2020-07-17 深圳市镭神智能系统有限公司 一种基于激光雷达的二维栅格地图构建方法和系统
CN111461981A (zh) * 2020-03-30 2020-07-28 北京百度网讯科技有限公司 点云拼接算法的误差估计方法和装置
CN111678516A (zh) * 2020-05-08 2020-09-18 中山大学 一种基于激光雷达的有界区域快速全局定位方法
CN111735451A (zh) * 2020-04-16 2020-10-02 中国北方车辆研究所 一种基于多源先验信息的点云匹配高精度定位方法
CN111765881A (zh) * 2019-04-02 2020-10-13 广达电脑股份有限公司 移动装置的定位系统
CN111812668A (zh) * 2020-07-16 2020-10-23 南京航空航天大学 绕机检查装置及其定位方法、存储介质
CN111812669A (zh) * 2020-07-16 2020-10-23 南京航空航天大学 绕机检查装置及其定位方法、存储介质
CN112085786A (zh) * 2019-06-13 2020-12-15 北京地平线机器人技术研发有限公司 位姿信息确定方法及装置
CN112508767A (zh) * 2020-12-14 2021-03-16 北京超星未来科技有限公司 一种基于gpu的gmm点云配准算法
CN112506200A (zh) * 2020-12-14 2021-03-16 广州视源电子科技股份有限公司 机器人定位方法、装置、机器人及存储介质
CN112711012A (zh) * 2020-12-18 2021-04-27 上海蔚建科技有限公司 一种激光雷达定位系统的全局位置初始化方法及系统
CN112764053A (zh) * 2020-12-29 2021-05-07 深圳市普渡科技有限公司 一种融合定位方法、装置、设备和计算机可读存储介质
CN113124902A (zh) * 2021-04-19 2021-07-16 追创科技(苏州)有限公司 移动机器人的定位修正方法和装置、存储介质、电子装置
CN113532439A (zh) * 2021-07-26 2021-10-22 广东电网有限责任公司 输电线路巡检机器人同步定位与地图构建方法及装置
CN113534185A (zh) * 2020-04-22 2021-10-22 北京京东乾石科技有限公司 一种设备定位方法和装置
CN113589306A (zh) * 2020-04-30 2021-11-02 北京猎户星空科技有限公司 定位方法、装置、电子设备及存储介质
CN113744317A (zh) * 2021-09-13 2021-12-03 浙江大学湖州研究院 一种非结构路面下只依赖点云的阿克曼底盘轨迹生成方法
CN113781550A (zh) * 2021-08-10 2021-12-10 国网河北省电力有限公司保定供电分公司 一种四足机器人定位方法与系统
CN113819914A (zh) * 2020-06-19 2021-12-21 北京图森未来科技有限公司 一种地图构建方法及装置
CN113865581A (zh) * 2021-09-16 2021-12-31 江苏大学 基于多层级地图的封闭场景定位方法
CN114862932A (zh) * 2022-06-20 2022-08-05 安徽建筑大学 基于bim全局定位的位姿修正方法及运动畸变矫正方法
WO2022183785A1 (zh) * 2021-03-05 2022-09-09 深圳市优必选科技股份有限公司 机器人定位方法、装置、机器人和可读存储介质
CN115127559A (zh) * 2022-06-28 2022-09-30 广东利元亨智能装备股份有限公司 一种定位方法、装置、设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914865A (zh) * 2015-05-29 2015-09-16 国网山东省电力公司电力科学研究院 变电站巡检机器人定位导航系统及方法
CN105701771A (zh) * 2016-03-17 2016-06-22 江苏科技大学 一种基于射频识别锚点的数字地图拼接方法
CN105806344A (zh) * 2016-05-17 2016-07-27 杭州申昊科技股份有限公司 一种基于局部地图拼接的栅格地图创建方法
CN105973265A (zh) * 2016-05-19 2016-09-28 杭州申昊科技股份有限公司 一种基于激光扫描传感器的里程估计方法
CN107123138A (zh) * 2017-04-28 2017-09-01 电子科技大学 基于vanilla‑R点对剔除策略的点云配准算法
CN107607117A (zh) * 2017-08-09 2018-01-19 华南理工大学 一种基于激光雷达的机器人建图导航系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104914865A (zh) * 2015-05-29 2015-09-16 国网山东省电力公司电力科学研究院 变电站巡检机器人定位导航系统及方法
CN105701771A (zh) * 2016-03-17 2016-06-22 江苏科技大学 一种基于射频识别锚点的数字地图拼接方法
CN105806344A (zh) * 2016-05-17 2016-07-27 杭州申昊科技股份有限公司 一种基于局部地图拼接的栅格地图创建方法
CN105973265A (zh) * 2016-05-19 2016-09-28 杭州申昊科技股份有限公司 一种基于激光扫描传感器的里程估计方法
CN107123138A (zh) * 2017-04-28 2017-09-01 电子科技大学 基于vanilla‑R点对剔除策略的点云配准算法
CN107607117A (zh) * 2017-08-09 2018-01-19 华南理工大学 一种基于激光雷达的机器人建图导航系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
于金霞,等: "基于粒子滤波的移动机器人定位关键技术研究综述", 《计算机应用研究》 *
刘雅彬,等: "融合激光与视觉信息的自主移动机器人的SLAM研究", 《工业控制计算机》 *
张宝先: "基于异构传感器的多机器人SLAM地图融合研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109709801B (zh) * 2018-12-11 2024-02-02 智灵飞(北京)科技有限公司 一种基于激光雷达的室内无人机定位系统及方法
CN109709801A (zh) * 2018-12-11 2019-05-03 智灵飞(北京)科技有限公司 一种基于激光雷达的室内无人机定位系统及方法
CN109932713A (zh) * 2019-03-04 2019-06-25 北京旷视科技有限公司 定位方法、装置、计算机设备、可读存储介质和机器人
CN109916393A (zh) * 2019-03-29 2019-06-21 电子科技大学 一种基于机器人位姿的多重栅格值导航方法及其应用
CN111765881A (zh) * 2019-04-02 2020-10-13 广达电脑股份有限公司 移动装置的定位系统
CN111765881B (zh) * 2019-04-02 2022-01-11 广达电脑股份有限公司 移动装置的定位系统
CN110045733A (zh) * 2019-04-04 2019-07-23 肖卫国 一种实时定位方法及其系统、计算机可读介质
CN110045733B (zh) * 2019-04-04 2022-11-01 肖卫国 一种实时定位方法及其系统、计算机可读介质
CN110058594A (zh) * 2019-04-28 2019-07-26 东北大学 基于示教的多传感器的移动机器人定位导航系统及方法
CN110132284A (zh) * 2019-05-30 2019-08-16 东北大学 一种基于深度信息的全局定位方法
CN110132284B (zh) * 2019-05-30 2022-12-09 东北大学 一种基于深度信息的全局定位方法
CN112085786A (zh) * 2019-06-13 2020-12-15 北京地平线机器人技术研发有限公司 位姿信息确定方法及装置
CN110243380A (zh) * 2019-06-26 2019-09-17 华中科技大学 一种基于多传感器数据与角度特征识别的地图匹配方法
CN110243380B (zh) * 2019-06-26 2020-11-24 华中科技大学 一种基于多传感器数据与角度特征识别的地图匹配方法
CN110319832A (zh) * 2019-07-05 2019-10-11 北京海益同展信息科技有限公司 机器人定位方法、装置、电子设备及介质
CN110285806A (zh) * 2019-07-05 2019-09-27 电子科技大学 基于多次位姿校正的移动机器人快速精确定位算法
CN110333513A (zh) * 2019-07-10 2019-10-15 国网四川省电力公司电力科学研究院 一种融合最小二乘法的粒子滤波slam方法
CN110333513B (zh) * 2019-07-10 2023-01-10 国网四川省电力公司电力科学研究院 一种融合最小二乘法的粒子滤波slam方法
CN110567441A (zh) * 2019-07-29 2019-12-13 广东星舆科技有限公司 基于粒子滤波的定位方法、定位装置、建图及定位的方法
CN110297224A (zh) * 2019-08-01 2019-10-01 深圳前海达闼云端智能科技有限公司 激光雷达的定位方法、装置、机器人及计算设备
CN110456797A (zh) * 2019-08-19 2019-11-15 杭州电子科技大学 一种基于2d激光传感器的agv重定位系统及方法
CN110456797B (zh) * 2019-08-19 2022-06-28 杭州电子科技大学 一种基于2d激光传感器的agv重定位系统及方法
CN110515382A (zh) * 2019-08-28 2019-11-29 锐捷网络股份有限公司 一种智能设备及其定位方法
CN110686677A (zh) * 2019-10-10 2020-01-14 东北大学 一种基于几何信息的全局定位方法
CN110686677B (zh) * 2019-10-10 2022-12-13 东北大学 一种基于几何信息的全局定位方法
CN110889808B (zh) * 2019-11-21 2023-02-28 广州文远知行科技有限公司 一种定位的方法、装置、设备及存储介质
CN110889808A (zh) * 2019-11-21 2020-03-17 广州文远知行科技有限公司 一种定位的方法、装置、设备及存储介质
CN110887493B (zh) * 2019-11-29 2023-05-05 上海有个机器人有限公司 基于局部地图匹配的轨迹推算方法、介质、终端和装置
CN110887493A (zh) * 2019-11-29 2020-03-17 上海有个机器人有限公司 基于局部地图匹配的轨迹推算方法、介质、终端和装置
CN110927740B (zh) * 2019-12-06 2023-09-08 合肥科大智能机器人技术有限公司 一种移动机器人定位方法
CN110927740A (zh) * 2019-12-06 2020-03-27 合肥科大智能机器人技术有限公司 一种移动机器人定位方法
CN111060888A (zh) * 2019-12-31 2020-04-24 芜湖哈特机器人产业技术研究院有限公司 一种融合icp和似然域模型的移动机器人重定位方法
CN111060888B (zh) * 2019-12-31 2023-04-07 芜湖哈特机器人产业技术研究院有限公司 一种融合icp和似然域模型的移动机器人重定位方法
CN111223145A (zh) * 2020-01-03 2020-06-02 上海有个机器人有限公司 数据处理方法、系统、服务装置及其存储介质
CN111192364A (zh) * 2020-01-09 2020-05-22 北京科技大学 一种低成本移动多机器人视觉同时定位和地图创建方法
CN111307147B (zh) * 2020-03-06 2023-10-20 同济人工智能研究院(苏州)有限公司 一种融合定位反光板与激光特征的agv高精度定位方法
CN111307147A (zh) * 2020-03-06 2020-06-19 同济人工智能研究院(苏州)有限公司 一种融合定位反光板与激光特征的agv高精度定位方法
CN111427060A (zh) * 2020-03-27 2020-07-17 深圳市镭神智能系统有限公司 一种基于激光雷达的二维栅格地图构建方法和系统
CN111427060B (zh) * 2020-03-27 2023-03-07 深圳市镭神智能系统有限公司 一种基于激光雷达的二维栅格地图构建方法和系统
CN111461981A (zh) * 2020-03-30 2020-07-28 北京百度网讯科技有限公司 点云拼接算法的误差估计方法和装置
CN111461981B (zh) * 2020-03-30 2023-09-01 北京百度网讯科技有限公司 点云拼接算法的误差估计方法和装置
CN111735451A (zh) * 2020-04-16 2020-10-02 中国北方车辆研究所 一种基于多源先验信息的点云匹配高精度定位方法
CN111735451B (zh) * 2020-04-16 2022-06-07 中国北方车辆研究所 一种基于多源先验信息的点云匹配高精度定位方法
CN113534185A (zh) * 2020-04-22 2021-10-22 北京京东乾石科技有限公司 一种设备定位方法和装置
CN113589306A (zh) * 2020-04-30 2021-11-02 北京猎户星空科技有限公司 定位方法、装置、电子设备及存储介质
WO2021219023A1 (zh) * 2020-04-30 2021-11-04 北京猎户星空科技有限公司 定位方法、装置、电子设备及存储介质
CN111678516A (zh) * 2020-05-08 2020-09-18 中山大学 一种基于激光雷达的有界区域快速全局定位方法
CN113819914A (zh) * 2020-06-19 2021-12-21 北京图森未来科技有限公司 一种地图构建方法及装置
CN111812668B (zh) * 2020-07-16 2023-04-14 南京航空航天大学 绕机检查装置及其定位方法、存储介质
CN111812669A (zh) * 2020-07-16 2020-10-23 南京航空航天大学 绕机检查装置及其定位方法、存储介质
CN111812668A (zh) * 2020-07-16 2020-10-23 南京航空航天大学 绕机检查装置及其定位方法、存储介质
CN112508767B (zh) * 2020-12-14 2023-10-13 北京超星未来科技有限公司 一种基于gpu的gmm点云配准方法
CN112506200B (zh) * 2020-12-14 2023-12-08 广州视源电子科技股份有限公司 机器人定位方法、装置、机器人及存储介质
CN112506200A (zh) * 2020-12-14 2021-03-16 广州视源电子科技股份有限公司 机器人定位方法、装置、机器人及存储介质
CN112508767A (zh) * 2020-12-14 2021-03-16 北京超星未来科技有限公司 一种基于gpu的gmm点云配准算法
CN112711012A (zh) * 2020-12-18 2021-04-27 上海蔚建科技有限公司 一种激光雷达定位系统的全局位置初始化方法及系统
CN112764053A (zh) * 2020-12-29 2021-05-07 深圳市普渡科技有限公司 一种融合定位方法、装置、设备和计算机可读存储介质
CN112764053B (zh) * 2020-12-29 2022-07-15 深圳市普渡科技有限公司 一种融合定位方法、装置、设备和计算机可读存储介质
WO2022183785A1 (zh) * 2021-03-05 2022-09-09 深圳市优必选科技股份有限公司 机器人定位方法、装置、机器人和可读存储介质
WO2022222345A1 (zh) * 2021-04-19 2022-10-27 追觅创新科技(苏州)有限公司 移动机器人的定位修正方法和装置、存储介质、电子装置
CN113124902A (zh) * 2021-04-19 2021-07-16 追创科技(苏州)有限公司 移动机器人的定位修正方法和装置、存储介质、电子装置
CN113532439B (zh) * 2021-07-26 2023-08-25 广东电网有限责任公司 输电线路巡检机器人同步定位与地图构建方法及装置
CN113532439A (zh) * 2021-07-26 2021-10-22 广东电网有限责任公司 输电线路巡检机器人同步定位与地图构建方法及装置
CN113781550A (zh) * 2021-08-10 2021-12-10 国网河北省电力有限公司保定供电分公司 一种四足机器人定位方法与系统
CN113744317A (zh) * 2021-09-13 2021-12-03 浙江大学湖州研究院 一种非结构路面下只依赖点云的阿克曼底盘轨迹生成方法
CN113744317B (zh) * 2021-09-13 2024-03-15 浙江大学湖州研究院 一种非结构路面下只依赖点云的阿克曼底盘轨迹生成方法
CN113865581A (zh) * 2021-09-16 2021-12-31 江苏大学 基于多层级地图的封闭场景定位方法
CN114862932B (zh) * 2022-06-20 2022-12-30 安徽建筑大学 基于bim全局定位的位姿修正方法及运动畸变矫正方法
CN114862932A (zh) * 2022-06-20 2022-08-05 安徽建筑大学 基于bim全局定位的位姿修正方法及运动畸变矫正方法
CN115127559A (zh) * 2022-06-28 2022-09-30 广东利元亨智能装备股份有限公司 一种定位方法、装置、设备和存储介质

Similar Documents

Publication Publication Date Title
CN108917759A (zh) 基于多层次地图匹配的移动机器人位姿纠正算法
CN112484725B (zh) 一种基于多传感器融合的智能汽车高精度定位与时空态势安全方法
CN105843223B (zh) 一种基于空间词袋模型的移动机器人三维建图与避障方法
Nieto et al. Recursive scan-matching SLAM
Chen Kalman filter for robot vision: a survey
CN107356252A (zh) 一种融合视觉里程计与物理里程计的室内机器人定位方法
Chen et al. Recent advances in simultaneous localization and map-building using computer vision
Engel et al. Deeplocalization: Landmark-based self-localization with deep neural networks
Yamauchi Mobile robot localization in dynamic environments using dead reckoning and evidence grids
Tao et al. A multi-sensor fusion positioning strategy for intelligent vehicles using global pose graph optimization
CN115272596A (zh) 一种面向单调无纹理大场景的多传感器融合slam方法
CN111474932B (zh) 一种集成情景经验的移动机器人建图与导航方法
CN116182837A (zh) 基于视觉激光雷达惯性紧耦合的定位建图方法
CN105096341A (zh) 基于三焦张量和关键帧策略的移动机器人位姿估计方法
Li et al. Indoor multi-sensor fusion positioning based on federated filtering
Choi et al. Efficient simultaneous localization and mapping based on ceiling-view: ceiling boundary feature map approach
Lin et al. Fast, robust and accurate posture detection algorithm based on Kalman filter and SSD for AGV
Gokhool et al. A dense map building approach from spherical RGBD images
Porta et al. Appearance-based concurrent map building and localization
Roggeman et al. Embedded vision-based localization and model predictive control for autonomous exploration
CN114459474B (zh) 一种基于因子图的惯性/偏振/雷达/光流紧组合导航的方法
Zhang et al. A Robust Lidar SLAM System Based on Multi-Sensor Fusion
Kaiser et al. Position and orientation of an aerial vehicle through chained, vision-based pose reconstruction
Lacroix et al. Integration of concurrent localization algorithms for a planetary rover
Wang et al. Monocular visual-inertial localization in a point cloud map using feature-to-distribution registration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181130

RJ01 Rejection of invention patent application after publication