CN105973265A - 一种基于激光扫描传感器的里程估计方法 - Google Patents

一种基于激光扫描传感器的里程估计方法 Download PDF

Info

Publication number
CN105973265A
CN105973265A CN201610332725.XA CN201610332725A CN105973265A CN 105973265 A CN105973265 A CN 105973265A CN 201610332725 A CN201610332725 A CN 201610332725A CN 105973265 A CN105973265 A CN 105973265A
Authority
CN
China
Prior art keywords
point
feature
local
robot
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610332725.XA
Other languages
English (en)
Other versions
CN105973265B (zh
Inventor
王海瑞
陈如申
黎勇跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Shenhao Technology Co Ltd
Hangzhou Shenhao Information Technology Co Ltd
Original Assignee
Hangzhou Shenhao Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Shenhao Technology Co Ltd filed Critical Hangzhou Shenhao Technology Co Ltd
Priority to CN201610332725.XA priority Critical patent/CN105973265B/zh
Publication of CN105973265A publication Critical patent/CN105973265A/zh
Application granted granted Critical
Publication of CN105973265B publication Critical patent/CN105973265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C22/00Measuring distance traversed on the ground by vehicles, persons, animals or other moving solid bodies, e.g. using odometers, using pedometers

Abstract

本发明公开了一种基于激光扫描传感器的里程估计方法,机器人的激光扫描传感器,可获得一定范围内的障碍物角度和距离信息,在每个位置可以得到局部环境地图,在相邻位置通过匹配两个局部地图可以得到一个旋转平移变换矩阵,根据变换矩阵对相邻的局部地图进行数据融合,最终可以得到一个全局的环境地图,然后机器人可利用激光扫描传感器扫描到的数据与全局环境地图匹配定位,从而得出一个准确的里程估计。本发明仅仅利用激光数据估计里程计信息,利用外部环境信息的迭代匹配进行估计里程,由于外部环境信息的相对稳定性,减少累积误差。

Description

一种基于激光扫描传感器的里程估计方法
技术领域
本发明属于机器人运动技术领域,特别涉及一种基于激光扫描传感器的里程估计方法。
背景技术
里程信息是机器人运动状态的最基本信息。现有的机器人里程估计方法需要对机器人在一段局部运行路径中各点的位姿变化来确定,这个位姿变化可由编码器和惯性导航传感器来得到,传统的编码器估计里程方法仅仅利用内部传感器的信息累积得到里程信息,但该位姿变化误差会不断累积,误差较大,最终得到的里程信息不准确。
发明内容
本发明的目的是为了解决上述问题,提供一种稳定且准确的基于激光扫描传感器的里程估计方法。
为此,本发明的技术方案是:一种基于激光扫描传感器的里程估计方法,在至少具有运动控制系统、惯性导航系统、激光扫描传感器的机器人上使用;其特征在于:包括以下步骤:
1)对杂乱无规律的扫描数据点进行滤波处理,去除无用点;
2)将滤波后数据通过光线追踪方法计算局部栅格地图;局部栅格地图是指机器人当前位姿为坐标原点,将该位置观测到的数据构建的栅格地图,局部栅格地图创建通过激光原点所在位置到激光光束结束位置通过光束追踪计算得到,两者之间的连线经过的栅格点应为非障碍物占据,激光光束结束点为障碍物占据状态,在连线该点之后为未观测状态,即障碍物占据的概率等于非障碍物占据概率;
3)计算相邻两个位姿下的局部栅格地图的sift特征点对及其对应特征描述子;sift,即尺度不变特征变换,是用于图像处理领域的一种描述;这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子;
4)根据特征描述子的相关性对特征点对进行排序,滤除特征描述子相关性较小的特征点;在两幅相邻局部地图中分别提取特征点及其描述子,遍历该点集,寻找特征描述子距离满足阈值条件的特征点对,并根据距离由小到大对其排序,不匹配的特征点舍弃;选取匹配的特征点对的前百分之三十的特征点对进行ICP迭代计算变换矩阵;
5)将两个相邻位姿下的局部地图进行最近点迭代算法ICP,计算两个局部地图的变换矩阵;ICP迭代算法是利用与多条不平行直线的距离来确定一点的原理,通过计算直线相对机器人的距离变化信息得到机器人自身的相对位姿变化;利用两条不平行直线特征即可定位,当激光传感器获得多条不平行直线特征时,筛选线性相关系数较高的直线,两两直线进行定位解算,最后将结果舍去最大值和最小值求平均值;
6)重复步骤1)-5),记录完成整个路径的变换矩阵,最后进行数据合并得到全局栅格地图;
7)利用激光传感器获得环境特征,将环境特征与全局地图匹配,从而计算出机器人的位姿变化,得出里程估计。
本发明仅仅利用激光数据估计里程计信息,不需要传统的编码器等传感器,适用于无法安装或不方便装配该类传感器的情况;利用外部环境信息的迭代匹配进行估计里程,由于外部环境信息的相对稳定性,减少累积误差;本发明计算的里程信息可以和传统的编码器或IMU得到的里程信息通过扩展卡尔曼滤波等方法进行融合,从而得到更稳定准确的里程信息。
附图说明
以下结合附图和本发明的实施方式来作进一步详细说明
图1为本发明的流程框图;
图2为本发明的特征识别示意图;
图3为本发明的定位结算示意图;
图4为本发明的位姿校正示意图。
具体实施方式
参见附图。本实施例所述的里程估计方法,在至少具有运动控制系统、惯性导航系统、激光扫描传感器的机器人上使用;机器人系统装有二维激光扫描传感器,可获得一定范围内的障碍物角度和距离信息,在每个位置可以得到局部环境地图,在相邻位置通过匹配两个局部地图可以得到一个旋转平移变换矩阵,根据变换矩阵对相邻的局部地图进行数据融合,最终我们可以得到一个全局的环境地图,然后机器人可利用激光扫描传感器扫描到的数据与全局环境地图匹配定位,从而得出一个准确的里程估计。
具体包括以下步骤:
1)对杂乱无规律的扫描数据点进行滤波处理,去除无用点;
2)将滤波后数据通过光线追踪方法计算局部栅格地图;局部栅格地图是指机器人当前位姿为坐标原点,将该位置观测到的数据构建的栅格地图,由于该地图是单次激光数据构建的,因而地图的估计误差主要为激光传感器的观测误差,不存在估计偏差。局部栅格地图创建通过激光原点所在位置到激光光束结束位置(障碍物位置)通过光束追踪计算得到,两者之间的连线经过的栅格点应为非障碍物占据,激光光束结束点为障碍物占据状态,在连线该点之后为未观测状态,即障碍物占据的概率等于非障碍物占据概率;
3)计算相邻两个位姿下的局部栅格地图的sift特征点对及其对应特征描述子;SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子,在尺度空间寻找极值点,提取位置,尺度,旋转不变量,SIFT特征对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;
4)根据特征描述子的相关性对特征点对进行排序,滤除特征描述子相关性较小的特征点;在两幅相邻局部地图中分别提取特征点及其描述子,遍历该点集,寻找特征描述子距离满足阈值条件的特征点对,并根据距离有小到大对其排序,不匹配的特征点舍弃;选取匹配的特征点对的前百分之三十的特征点对进行ICP迭代计算变换矩阵;
5)将两个相邻位姿下的局部地图进行最近点迭代算法ICP,计算两个局部地图的变换矩阵;利用与多条不平行直线的距离来确定一点的原理,通过计算直线相对机器人的距离变化信息得到机器人自身的相对位姿变化;利用两条不平行直线特征即可定位,当激光传感器获得多条不平行直线特征时,筛选线性相关系数较高的直线,两两直线进行定位解算,最后将结果舍去最大值和最小值求平均值(如图2所示);如图3所示,已知两条不平行直线l1、l2和与两条直线的距离(d1,d2),可以确定点P;
6)重复步骤1)-5),记录完成整个路径的变换矩阵,最后进行数据合并得到全局栅格地图;地图表示采用几何描述方式,在离线方式下获得,首先设定初始位姿,然后控制机器人按预定路径行进,在行进过程中,利用编码器和惯性传感器信息可以估计出机器人当前位姿,与此同时激光传感器不断扫描环境信息,通过定位过程所述方法,从激光传感器获得数据中提取自然环境特征得到特征参数;由于在一定范围内,同一特征能够一直被激光传感器所扫描获得,利用该特征的参数变化可计算出机器人运动的相对位姿变化,利用该位姿变化来校正编码器和惯性传感器的位姿信息;由校正后的位姿信息,将特征参数变换到起始位姿确定的全局坐标系下,然后将该特征添加到全局地图中;机器人不断前进扫描到新的环境特征,重复上述过程完成全局地图创建;
7)利用激光传感器获得环境特征,将环境特征与全局地图匹配,从而计算出机器人的位姿变化,得出里程估计。如图4所示,P1-P2-P3为机器人一段局部运行路径,在该局部范围内,激光传感器均能获得直线特征L1,L2,L3;从P1至P3的位姿变化可由编码器和惯性导航传感器得到,但该位姿变化误差会不断累积,误差较大;所以利用直线特征也可计算出 P1至P3的位姿变化,该位姿变化没有累积误差,因而误差较小,通过比较位姿的变化,我们就得到了一个较为精准的里程估计。

Claims (1)

1.一种基于激光扫描传感器的里程估计方法,在至少具有运动控制系统、惯性导航系统、激光扫描传感器的机器人上使用;其特征在于:包括以下步骤:
1)对杂乱无规律的扫描数据点进行滤波处理,去除无用点;
2)将滤波后数据通过光线追踪方法计算局部栅格地图;局部栅格地图是指机器人当前位姿为坐标原点,将该位置观测到的数据构建的栅格地图,局部栅格地图创建通过激光原点所在位置到激光光束结束位置通过光束追踪计算得到,两者之间的连线经过的栅格点应为非障碍物占据,激光光束结束点为障碍物占据状态,在连线该点之后为未观测状态,即障碍物占据的概率等于非障碍物占据概率;
3)计算相邻两个位姿下的局部栅格地图的sift特征点对及其对应特征描述子;sift,即尺度不变特征变换,是用于图像处理领域的一种描述;这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子;
4)根据特征描述子的相关性对特征点对进行排序,滤除特征描述子相关性较小的特征点;在两幅相邻局部地图中分别提取特征点及其描述子,遍历该点集,寻找特征描述子距离满足阈值条件的特征点对,并根据距离由小到大对其排序,不匹配的特征点舍弃;选取匹配的特征点对的前百分之三十的特征点对进行ICP迭代计算变换矩阵;
5)将两个相邻位姿下的局部地图进行最近点迭代算法ICP,计算两个局部地图的变换矩阵;ICP迭代算法是利用与多条不平行直线的距离来确定一点的原理,通过计算直线相对机器人的距离变化信息得到机器人自身的相对位姿变化;利用两条不平行直线特征即可定位,当激光传感器获得多条不平行直线特征时,筛选线性相关系数较高的直线,两两直线进行定位解算,最后将结果舍去最大值和最小值求平均值;
6)重复步骤1)-5),记录完成整个路径的变换矩阵,最后进行数据合并得到全局栅格地图;
7)利用激光传感器获得环境特征,将环境特征与全局地图匹配,从而计算出机器人的位姿变化,得出里程估计。
CN201610332725.XA 2016-05-19 2016-05-19 一种基于激光扫描传感器的里程估计方法 Active CN105973265B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610332725.XA CN105973265B (zh) 2016-05-19 2016-05-19 一种基于激光扫描传感器的里程估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610332725.XA CN105973265B (zh) 2016-05-19 2016-05-19 一种基于激光扫描传感器的里程估计方法

Publications (2)

Publication Number Publication Date
CN105973265A true CN105973265A (zh) 2016-09-28
CN105973265B CN105973265B (zh) 2019-03-19

Family

ID=56957064

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610332725.XA Active CN105973265B (zh) 2016-05-19 2016-05-19 一种基于激光扫描传感器的里程估计方法

Country Status (1)

Country Link
CN (1) CN105973265B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108240807A (zh) * 2016-12-27 2018-07-03 乐视汽车(北京)有限公司 估计空间占据的方法
CN108693875A (zh) * 2018-03-13 2018-10-23 浙江工业大学 一种非接触式适用于瓦楞状轨道的导向装置及其导向方法
CN108917759A (zh) * 2018-04-19 2018-11-30 电子科技大学 基于多层次地图匹配的移动机器人位姿纠正算法
CN109933056A (zh) * 2017-12-18 2019-06-25 九阳股份有限公司 一种基于slam的机器人导航方法以及机器人
CN110361010A (zh) * 2019-08-13 2019-10-22 中山大学 一种基于占据栅格地图且结合imu的移动机器人定位方法
CN110686677A (zh) * 2019-10-10 2020-01-14 东北大学 一种基于几何信息的全局定位方法
CN111033426A (zh) * 2017-09-04 2020-04-17 日本电产株式会社 移动体、位置推断装置以及计算机程序
CN112101177A (zh) * 2020-09-09 2020-12-18 东软睿驰汽车技术(沈阳)有限公司 地图构建方法、装置及运载工具

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000507A (zh) * 2006-09-29 2007-07-18 浙江大学 移动机器人在未知环境中同时定位与地图构建的方法
CN102135620A (zh) * 2010-01-21 2011-07-27 郭瑞 一种基于几何统计特征的全局扫描匹配方法
CN103268729A (zh) * 2013-05-22 2013-08-28 北京工业大学 基于混合特征的移动机器人级联式地图创建方法
US20140005933A1 (en) * 2011-09-30 2014-01-02 Evolution Robotics, Inc. Adaptive Mapping with Spatial Summaries of Sensor Data
CN103674015A (zh) * 2013-12-13 2014-03-26 国家电网公司 一种无轨化定位导航方法及装置
CN104180818A (zh) * 2014-08-12 2014-12-03 北京理工大学 一种单目视觉里程计算装置
CN104503449A (zh) * 2014-11-24 2015-04-08 杭州申昊科技股份有限公司 一种基于环境直线特征的定位方法
CN104881029A (zh) * 2015-05-15 2015-09-02 重庆邮电大学 基于一点ransac和fast算法的移动机器人导航方法
CN105222789A (zh) * 2015-10-23 2016-01-06 哈尔滨工业大学 一种基于激光测距传感器的楼宇室内平面图建立方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000507A (zh) * 2006-09-29 2007-07-18 浙江大学 移动机器人在未知环境中同时定位与地图构建的方法
CN102135620A (zh) * 2010-01-21 2011-07-27 郭瑞 一种基于几何统计特征的全局扫描匹配方法
US20140005933A1 (en) * 2011-09-30 2014-01-02 Evolution Robotics, Inc. Adaptive Mapping with Spatial Summaries of Sensor Data
CN103268729A (zh) * 2013-05-22 2013-08-28 北京工业大学 基于混合特征的移动机器人级联式地图创建方法
CN103674015A (zh) * 2013-12-13 2014-03-26 国家电网公司 一种无轨化定位导航方法及装置
CN104180818A (zh) * 2014-08-12 2014-12-03 北京理工大学 一种单目视觉里程计算装置
CN104503449A (zh) * 2014-11-24 2015-04-08 杭州申昊科技股份有限公司 一种基于环境直线特征的定位方法
CN104881029A (zh) * 2015-05-15 2015-09-02 重庆邮电大学 基于一点ransac和fast算法的移动机器人导航方法
CN105222789A (zh) * 2015-10-23 2016-01-06 哈尔滨工业大学 一种基于激光测距传感器的楼宇室内平面图建立方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108240807A (zh) * 2016-12-27 2018-07-03 乐视汽车(北京)有限公司 估计空间占据的方法
CN108240807B (zh) * 2016-12-27 2023-06-02 法法汽车(中国)有限公司 估计空间占据的方法
CN111033426A (zh) * 2017-09-04 2020-04-17 日本电产株式会社 移动体、位置推断装置以及计算机程序
CN109933056A (zh) * 2017-12-18 2019-06-25 九阳股份有限公司 一种基于slam的机器人导航方法以及机器人
CN108693875A (zh) * 2018-03-13 2018-10-23 浙江工业大学 一种非接触式适用于瓦楞状轨道的导向装置及其导向方法
CN108693875B (zh) * 2018-03-13 2023-09-29 浙江工业大学 一种非接触式适用于瓦楞状轨道的导向装置及其导向方法
CN108917759A (zh) * 2018-04-19 2018-11-30 电子科技大学 基于多层次地图匹配的移动机器人位姿纠正算法
CN110361010A (zh) * 2019-08-13 2019-10-22 中山大学 一种基于占据栅格地图且结合imu的移动机器人定位方法
CN110361010B (zh) * 2019-08-13 2022-11-22 中山大学 一种基于占据栅格地图且结合imu的移动机器人定位方法
CN110686677A (zh) * 2019-10-10 2020-01-14 东北大学 一种基于几何信息的全局定位方法
CN110686677B (zh) * 2019-10-10 2022-12-13 东北大学 一种基于几何信息的全局定位方法
CN112101177A (zh) * 2020-09-09 2020-12-18 东软睿驰汽车技术(沈阳)有限公司 地图构建方法、装置及运载工具

Also Published As

Publication number Publication date
CN105973265B (zh) 2019-03-19

Similar Documents

Publication Publication Date Title
CN105973265A (zh) 一种基于激光扫描传感器的里程估计方法
WO2021232470A1 (zh) 基于多传感器融合的slam制图方法、系统
CN105806344A (zh) 一种基于局部地图拼接的栅格地图创建方法
JP6760114B2 (ja) 情報処理装置、データ管理装置、データ管理システム、方法、及びプログラム
CN109655805B (zh) 一种基于扫描线段重合长度估计的激光雷达定位方法
US9797981B2 (en) Moving-object position/attitude estimation apparatus and moving-object position/attitude estimation method
Holz et al. Sancta simplicitas-on the efficiency and achievable results of SLAM using ICP-based incremental registration
CN112767490B (zh) 一种基于激光雷达的室外三维同步定位与建图方法
Cui et al. Efficient large-scale structure from motion by fusing auxiliary imaging information
CN104040590A (zh) 用于估计物体的姿态的方法
CN104503449A (zh) 一种基于环境直线特征的定位方法
CN111932614B (zh) 一种基于聚类中心特征的激光雷达即时定位与建图方法
CN111242000A (zh) 一种结合激光点云转向的道路边沿检测方法
Jang et al. Road lane semantic segmentation for high definition map
CN115620261A (zh) 基于多传感器的车辆环境感知方法、系统、设备及介质
CN117218350A (zh) 一种基于固态雷达的slam实现方法及系统
Rehder et al. Submap-based SLAM for road markings
Lu et al. Pole-based localization for autonomous vehicles in urban scenarios using local grid map-based method
CN117029870A (zh) 一种基于路面点云的激光里程计
CN114777775A (zh) 一种多传感器融合的定位方法及系统
CN109614966B (zh) 一种基于信息融合的Lidar传感器的高效路面和路沿检测方法
Chen et al. Lidar inertial odometry and mapping for autonomous vehicle in GPS-denied parking lot
CN113554705A (zh) 一种变化场景下的激光雷达鲁棒定位方法
Busch et al. High definition mapping using lidar traced trajectories
Wang et al. A point-line feature based visual SLAM method in dynamic indoor scene

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant