CN108877992B - 一种基于超长银铂合金空心纳米线透明导电电极的制备方法 - Google Patents
一种基于超长银铂合金空心纳米线透明导电电极的制备方法 Download PDFInfo
- Publication number
- CN108877992B CN108877992B CN201810753116.0A CN201810753116A CN108877992B CN 108877992 B CN108877992 B CN 108877992B CN 201810753116 A CN201810753116 A CN 201810753116A CN 108877992 B CN108877992 B CN 108877992B
- Authority
- CN
- China
- Prior art keywords
- silver
- electrode
- ions
- transparent conductive
- platinum alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/20—Conductive material dispersed in non-conductive organic material
- H01B1/22—Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/56—Electroplating: Baths therefor from solutions of alloys
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Dispersion Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
一种基于超长银铂合金空心纳米线透明导电电极的制备方法,属于功能材料技术制备与应用领域。本发明以四价的Pt4+离子为前驱体反应溶液,通过三电极电化学沉积技术将溶液中的Pt4+离子通过电化学还原的形式引入到制备好的银纳米线电极上去,四价的Pt4+离子在电场的作用下,首先被还原成二价的Pt2+离子。然后由于Pt2+离子的电极电位大于金属Ag的电极电位,从而,Ag可以将Pt2+进行自发的还原,这个过程为取代反应。并且利用银比铂金属原子有良好的扩散性能的特点,纳米线中心的银扩散到表面,最终形成空心合金结构。本发明有效地提高了银纳米线透明导电电极的稳定性。
Description
技术领域
本发明涉及一种以银(Ag)铂(Pt)纳米线为导电介质的透明电极的制备方法,属于功能材料技术制备与应用领域。
背景技术
随着柔性电子器件不断发展,性能优越的传统透明导电材料掺锡氧化铟(ITO)越来越无法满足应用的需求。这主要源于两个方面的因素:(1)铟元素储量有限,随着其储量地不断减少,ITO薄膜的成本会大幅增加;(2)ITO薄膜脆性大,在其弯折过程中容易产生裂纹,从而使得薄膜的性能大幅降低,影响器件性能。因此,新型的柔性导电材料亟需开发。为了满足这些需求,研究者们围绕着其核心问题:透明性、高导电率和柔韧性,开展了大量的研究工作。近年来,石墨烯、碳纳米管,、金属纳米材料以及导电高分子材料相继被用作导电组分来制备柔性导电材料,并应用于多种柔性的电子设备中。然而,由于导电聚合物在高温下会降解,只能在低温条件下使用。基于碳纳米管或石墨烯的透明电极由于原始材料中或在制造过程中而产生的固有缺陷或使得其导电性较差。金属纳米栅需要昂贵的工艺,这使得它们在大规模应用中不可行。作为纳米技术的一个重要组成部分,银纳米线可以被用来制作超小电路。银纳米线(Ag NWs)除具有银优良的导电性之外,由于纳米级别的尺寸效应,还具有优异的透光性、耐曲挠性。因此被视为是最有可能替代传统ITO透明电极的最优异材料,为实现柔性、可弯折LED显示、触摸屏等提供了可能,并已有大量的研究将其应用于薄膜太阳能电池,电化学能源器件。此外由于银纳米线的大长径比效应,使其在导电胶、导热胶等方面的应用中也具有突出的优势。
尽管如此、Ag NWs仍然存在一些问题需要解决。首先,Ag NW电极的热稳定性差,这对于需要高温制造加工和高工作温度的一些光电子器件非常重要。其次、银纳米线透明电极抗化学与电化学腐蚀能力比较差,这对于多数电化学能源器件来说是一个非常大的制约。因此,通过更为有效的手段提升银纳米线的稳定是当前柔性透明导电电极的重要任务与研究方向。
发明内容
本发明主要通过电化学制备工艺,制备出具有更高稳定性的银铂合金纳米线透明导电电极。
为了得到透光性好,电导率优良的银纳米线透明导电电极,本发明通过将银纳米线如长70μm、直径为110nm均匀分散到透明的柔性塑料衬底上。
为了有效地提高银纳米线透明导电电极的稳定性,本发明通过引入一定量的金属铂(Pt)进入到银纳米线中,且以银铂合金的形式使两种金属原子共存。
为了实现上述目的本发明采用以下技术方案。
一种基于超长银铂合金空心纳米线透明导电电极的制备方法,其特征在于,包括以下步骤:
(1)制备银纳米线;
优选采用以下方法:称取PVP搅拌溶解到乙二醇中,待完全溶解后,将事先研磨过的AgNO3粉末溶解在上述溶液中,最后加入氯化铁的乙二醇溶液,搅拌均匀最后放入110℃的油浴锅中进行加热12小时,后用丙酮、乙醇多次离心、清洗即可,最后将银纳米线分散到乙醇溶液中待用;进一步优选每0.98g的PVP对应125mL的乙二醇、1.1g AgNO3粉末、17g的600μmol/L的氯化铁乙二醇溶液。
(2)制备银纳米线透明导电电极,先将所需使用的Pt片用丙酮、乙醇超声清洗数次,后放入烘箱烘干;将制备的银纳米线通过匀胶机均匀滴定、旋涂到PET柔性塑料衬底上,后烘干待用;
(3)制备电合成银铂合金空心纳米线所需前驱体溶液:以乙醇为溶剂加入乙二醇、H2SO4、Pt4+离子,然后搅拌均匀,待完全溶解之后保存待用;优选前驱体溶液中乙二醇浓度0.5mol L-1,H2SO4浓度0.25mol L-1,Pt4+离子浓度1×10-4-1×10-3mol L-1;
(4)以铂片电极作为对电极,以银纳米线透明导电电极为工作电极,将工作电极与对电极进行平行相对排列;同时选择Ag/KCl作为参比电极;通过三电极电化学沉积技术将前驱体溶液中的Pt4+离子通过电化学还原的形式引入到制备好的银纳米线电极上去,四价的Pt4+离子在电场的作用下,首先被还原成二价的Pt2+离子;然后由于Pt2+离子的电极电位大于金属Ag的电极电位,从而,Ag将Pt2+进行自发的还原,这个过程为取代反应,由于银比铂金属原子有良好的扩散性能的特点,纳米线中心的银扩散到表面,最终形成银铂合金空心纳米线结构;
优选选择沉积条件电流密度为-0.5mA/cm2~-0.1mA/cm2,沉积时间为500s-1000s;且整个过程中保证装置稳定,之后将沉积的薄膜进行乙醇清洗,自然烘干。
本发明以四价的Pt4+离子为前驱体反应溶液,通过三电极电化学沉积技术将溶液中的Pt4+离子通过电化学还原的形式引入到制备好的银纳米线电极上去,四价的Pt4+离子在电场的作用下,首先被还原成二价的Pt2+离子。然后由于Pt2+离子的电极电位大于金属Ag的电极电位,从而,Ag可以将Pt2+进行自发的还原,这个过程为取代反应。并且利用银比铂金属原子有良好的扩散性能的特点,纳米线中心的银扩散到表面,最终形成空心合金结构。
为了降低本发明中铂的用量进而减少制造成本,本实验通过恒电流的沉积制备工艺,通过控制电流的作用时间进而控制所引入到银纳米线中的Pt的含量。
附图说明
图1为本发明所制备的长70μm、直径为110nm的长的银纳米线,。
图2三电极电化学体系在银纳米线电极上制备银铂合金空心纳米线装置图。
图3本发明中所涉及到的银纳米线与银铂合空心纳米线结构图。
图4本发明中所涉及到的银铂合金空心纳米线断面界面结构图
图5本发明中所涉及到的银铂合金空心纳米线形成机理图
图6本发明中所涉及到的银纳米线与银铂合金纳米线透明导电电极在过氧化氢H2O2腐蚀下电阻的变化情况。
具体实施方式
下面结合附图和实施例,进一步阐明本发明所涉及到的技术工艺特点,但本发明并不限于以下实施例。
实施例1
(1)、制备具有导电性好的银纳米线,称取0.98g的PVP在快速搅拌的情况下溶解到125mL的乙二醇中。待完全溶解后,将事先研磨过的AgNO3粉末1.1g溶解在上述溶液中。最后加入17g的600μmol/L的氯化铁乙二醇溶液。搅拌均匀最后放入110℃的油浴锅中进行加热12小时,后用丙酮、乙醇多次离心、清洗即可得到长度约70μm,直径为90nm的银纳米线,最后将银纳米线分散到乙醇溶液中待用。
(2)、制备银纳米线透明导电电极,先将所需使用的铂片用丙酮、乙醇超声清洗数次,后放入烘箱烘干。将制备的银纳米线在转速为3000转/分钟的匀胶机上滴定、旋涂到PET柔性塑料衬底上。旋涂两分钟后即可达到方块电阻值约为20Ω/sq,后烘干待用。
(3)、制备电合成银铂合金纳米线所需前驱体溶液:以乙醇为溶剂加入浓度为0.5mol L-1乙二醇,0.25mol L-1H2SO4,2×10-4mol L-1H2PtCI6,然后搅拌均匀,待完全溶解之后保存待用。
(4)、如图2所示,通过恒电位仪进行沉积电位及沉积时间控制,同时选择三电极体系。铂片电极作为对电极。以银纳米线透明导电电极为工作电极,将工作电极与对电极进行平行对称排列。同时选择Ag/KCl作为参比电极。选择沉积电流密度为-0.1mA/cm2,沉积时间为1000s。且整个过程中保证装置稳定,之后将沉积的薄膜进行乙醇清洗,自然烘干。
(5)、对本发明中所制备的银纳米线与银铂合金纳米线透明导电电极进行化学耐腐蚀测试评估,如图4所示,从所得到的电阻变化情况可以看出,本发明所制备的合金纳米线就有更为高的耐双氧水耐腐蚀性能。
Claims (4)
1.一种基于超长银铂合金空心纳米线透明导电电极的制备方法,其特征在于,包括以下步骤:
(1)制备银纳米线;
(2)制备银纳米线透明导电电极,先将所需使用的Pt片用丙酮、乙醇超声清洗数次,后放入烘箱烘干;将制备的银纳米线通过匀胶机均匀滴定、旋涂到PET柔性塑料衬底上,后烘干待用;
(3)制备电合成银铂合金空心纳米线所需前驱体溶液:以乙醇为溶剂加入乙二醇、H2SO4、Pt4+离子,然后搅拌均匀,待完全溶解之后保存待用;前驱体溶液中乙二醇浓度0.5mol L-1,H2SO4浓度0.25mol L-1,Pt4+离子浓度1×10-4-1×10-3mol L-1;
(4)以铂片电极作为对电极,以银纳米线透明导电电极为工作电极,将工作电极与对电极进行平行相对排列;同时选择Ag/KCl作为参比电极;通过三电极电化学沉积技术将前驱体溶液中的Pt4+离子通过电化学还原的形式引入到制备好的银纳米线电极上去,四价的Pt4 +离子在电场的作用下,首先被还原成二价的Pt2+离子;然后由于Pt2+离子的电极电位大于金属Ag的电极电位,从而,Ag将Pt2+进行自发的还原,由于银比铂金属原子有良好的扩散性能的特点,纳米线中心的银扩散到表面,最终形成银铂合金空心纳米线结构;且整个过程中保证装置稳定,之后将沉积的薄膜进行乙醇清洗,自然烘干。
2.按照权利要求1所述的一种基于超长银铂合金空心纳米线透明导电电极的制备方法,其特征在于,银纳米线的制备采用以下方法:称取PVP搅拌溶解到乙二醇中,待完全溶解后,将事先研磨过的AgNO3粉末溶解在上述溶液中,最后加入氯化铁的乙二醇溶液,搅拌均匀最后放入110℃的油浴锅中进行加热12小时,后用丙酮、乙醇多次离心、清洗即可,最后将银纳米线分散到乙醇溶液中待用;每0.98g的PVP对应125mL的乙二醇、1.1g AgNO3粉末、17g的600μmol/L的氯化铁乙二醇溶液。
3.按照权利要求1所述的一种基于超长银铂合金空心纳米线透明导电电极的制备方法,其特征在于,沉积条件:电流密度为-0.5mA/cm2~-0.1mA/cm2,沉积时间为500s-1000s。
4.按照权利要求1-3任一项所述的方法制备得到的基于超长银铂合金空心纳米线透明导电电极。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810753116.0A CN108877992B (zh) | 2018-07-10 | 2018-07-10 | 一种基于超长银铂合金空心纳米线透明导电电极的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810753116.0A CN108877992B (zh) | 2018-07-10 | 2018-07-10 | 一种基于超长银铂合金空心纳米线透明导电电极的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108877992A CN108877992A (zh) | 2018-11-23 |
CN108877992B true CN108877992B (zh) | 2019-11-22 |
Family
ID=64300810
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810753116.0A Expired - Fee Related CN108877992B (zh) | 2018-07-10 | 2018-07-10 | 一种基于超长银铂合金空心纳米线透明导电电极的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108877992B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11458538B2 (en) * | 2018-11-19 | 2022-10-04 | Honda Motor Co., Ltd. | General synthetic strategy for fabrication of multi-metallic nanostructures |
CN110257003A (zh) * | 2019-06-19 | 2019-09-20 | 复旦大学 | 自粘性可转移透明柔性导电胶膜及其制备方法和应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004051746A (ja) * | 2002-07-18 | 2004-02-19 | Sumitomo Metal Mining Co Ltd | 透明導電層形成用塗液 |
US7608784B2 (en) * | 2006-07-13 | 2009-10-27 | E. I. Du Pont De Nemours And Company | Photosensitive conductive paste for electrode formation and electrode |
CN104882190A (zh) * | 2015-05-14 | 2015-09-02 | 广州中国科学院先进技术研究所 | 一种基于纳米线的柔性透明导电电极及其制备方法 |
CN106405969A (zh) * | 2016-09-14 | 2017-02-15 | 北京工业大学 | 一种基于银纳米线(Ag NW)基底电致变色材料调节近红外光的方法 |
-
2018
- 2018-07-10 CN CN201810753116.0A patent/CN108877992B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN108877992A (zh) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stewart et al. | Synthesis of Cu–Ag, Cu–Au, and Cu–Pt core–shell nanowires and their use in transparent conducting films | |
Kiruthika et al. | Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network | |
Shao et al. | Fabrication of polyaniline/graphene/polyester textile electrode materials for flexible supercapacitors with high capacitance and cycling stability | |
Zhou et al. | Highly stable transparent conductive electrodes based on silver–platinum alloy-walled hollow nanowires for optoelectronic devices | |
CN104992781B (zh) | 一种石墨烯基三元复合材料的制备方法 | |
CN104040639A (zh) | 包含金属纳米线和碳纳米管的叠层透明电极 | |
KR100783766B1 (ko) | 탄소나노튜브 전극 및 그 제조방법 그리고 이에 의한염료감응형 태양전지 | |
An et al. | Oxidation-resistant metallized nanofibers as transparent conducting films and heaters | |
Tantang et al. | Nitrogen‐doped carbon nanotube‐based bilayer thin film as transparent counter electrode for dye‐sensitized solar cells (DSSCs) | |
TW200814339A (en) | Method for forming an electrode comprising an electrocatalyst layer thereon and electrochemical device comprising the same | |
Zhu et al. | Seed layer-assisted chemical bath deposition of CuO films on ITO-coated glass substrates with tunable crystallinity and morphology | |
He et al. | Surface functionalization of Ag/polypyrrole-coated cotton fabric by in situ polymerization and magnetron sputtering | |
Nie et al. | High-performance transparent and conductive films with fully enclosed metal mesh | |
CN108877992B (zh) | 一种基于超长银铂合金空心纳米线透明导电电极的制备方法 | |
Yin et al. | Copper nanowire dispersion through an electrostatic dispersion mechanism for high-performance flexible transparent conducting films and optoelectronic devices | |
Hu et al. | Ultra‐low resistivity copper mesh as embedded current collector layer for inkjet‐printed flexible electrochromic device realizing fast response and uniform coloration | |
Liu et al. | A crack templated copper network film as a transparent conductive film and its application in organic light-emitting diode | |
CN107680707B (zh) | 一种核壳结构的复合金属纳米线及其制备方法与应用 | |
Ding et al. | Room-temperature nanojoining of silver nanowires by graphene oxide for highly conductive flexible transparent electrodes | |
Woo et al. | Conducting polymer/in-situ generated platinum nanoparticle nanocomposite electrodes for low-cost dye-sensitized solar cells | |
Kumar et al. | Room temperature curable copper nanowire-based transparent heater | |
CN106448824B (zh) | 一种透明导电薄膜及其制备方法与应用 | |
Hu et al. | Cohesively improved conductivity, transparency, and stability of Ag NW flexible transparent conductive thin films by covering Al2O3 layer | |
Seetala et al. | Electrochemical enhancement of carbon black-infused poly (lactic acid) filament for additive manufactured electronic applications | |
Armstrong et al. | Scalable Solution Processing of Cu: NiO x Nanoparticles for Perovskite Solar Cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210207 Address after: Room b412, 4th floor, huanxiuhu building south, high speed railway new town, Xiangcheng District, Suzhou City, Jiangsu Province 215000 Patentee after: Zhongneng Zhiyuan (Suzhou) Technology Development Co.,Ltd. Address before: 100124 No. 100 Chaoyang District Ping Tian Park, Beijing Patentee before: Beijing University of Technology |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20191122 |