CN108872188A - 用于激光光谱学的内窥镜浸没式探针端部光学器件 - Google Patents

用于激光光谱学的内窥镜浸没式探针端部光学器件 Download PDF

Info

Publication number
CN108872188A
CN108872188A CN201810442644.4A CN201810442644A CN108872188A CN 108872188 A CN108872188 A CN 108872188A CN 201810442644 A CN201810442644 A CN 201810442644A CN 108872188 A CN108872188 A CN 108872188A
Authority
CN
China
Prior art keywords
lens
intermediate lens
optical device
light beam
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810442644.4A
Other languages
English (en)
Other versions
CN108872188B (zh
Inventor
詹姆士·M·特德斯科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endless And Hauser Optical Analysis Co ltd
Original Assignee
Kaiser Optical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaiser Optical Systems Inc filed Critical Kaiser Optical Systems Inc
Publication of CN108872188A publication Critical patent/CN108872188A/zh
Application granted granted Critical
Publication of CN108872188B publication Critical patent/CN108872188B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • G02B23/243Objectives for endoscopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0208Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using focussing or collimating elements, e.g. lenses or mirrors; performing aberration correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2446Optical details of the image relay
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6478Special lenses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6484Optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • G01N2021/655Stimulated Raman

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及用于激光光谱学的内窥镜浸没式探针端部光学器件。在本公开的一个方面中,公开了改进的端部光学器件,其使聚焦在样本点处的数值孔径最大化,同时使诸如光晕等不想要伪影最小化。所述配置还在探针倾斜或弯曲的情况下维持激发/收集光束居中于物镜上。所公开的配置特别适合于其中探针与激光器/分析器之间的激发和/或收集路径通过多模光纤耦合的探针,诸如在拉曼和其它形式的激光光谱学中。本公开包括在探针头部与位于探针尖端处的聚焦物镜之间插入一个或多个附加透镜。

Description

用于激光光谱学的内窥镜浸没式探针端部光学器件
技术领域
本公开一般涉及激光光谱学,并且特别地涉及浸没式端部光学器件。
背景技术
对于现场拉曼监测和其它应用,需要将细长端部光学器件耦合到用于传递激光激发并收集样本光谱的探针头部。然而,使用较长探针长度会出现质量问题。特别地,难以通过长而薄的浸没式端部光学器件维持来自探针头部的光束路径的对准。难以维持光管的直度和刚度的公差,这由光束在位于探针的远端处的聚焦物镜处的光晕造成,尤其是在机械应力下。此类问题由经由粗芯多模光纤耦合到分析器的拉曼探针头部中固有的光束发散进一步加剧。
图1是从密歇根州安娜堡的Kaiser Optical Systems有限公司可得的MR型滤波光纤耦合拉曼探针头部100的横截面图。探针头部100经由筒夹110与端部光管101接口连接。针对不同应用可得到各种长度和焦点深度的不同端部光学器件,所述应用包括反应容器、自动化实验室反应器、挤压机、工艺物流等的现场插入/浸没式拉曼分析。
如以引用的方式并入本文中的美国专利No.6,907,149中所描述,经由光纤102将激光激发引入到探针头部100中,并且接着通过透镜104使其准直。准直光接着穿过带通滤波器108以从光源移除在途中生成的非激光波长。通过镜106将滤波光反射到光束组合器120上,其接着作为反向传播光束122进入端部光管101。通过位于超过端部光管101的远端的样本散射的光沿相同反向传播光束路径122返回,在反向方向上穿过光束组合器120,并且在通过透镜114聚焦到收集光纤112的端部上之前,通过任选的陷波滤波器(未示出)进行滤波。
图2是图1的探针头部端部光学器件的简化图。归因于探针头部中的光束分布和滤波功能,探针头部通常大于容许的样本接口,这可需要具有可变长度和/或大小的管以便浸没在各种样本容器中。请注意,尽管参考密封浸没式光学器件使用“管”,但所述概念可推广到用于所述光学器件的任何合适支撑件结构。输入光纤200在光纤芯的边缘处具有高数值孔径(NA),其通过准直透镜206聚焦在无穷远处,从而在端部光学器件的管212内建立激发-收集光束210。光学器件的远端包括聚焦透镜202和窗口透镜物镜组件204,其一起在样本内的刚好在窗口204外部的焦点220(即,样本焦点220)处形成光纤的像。
光束在探针管212内的发散由光纤芯200的直径和准直透镜206的焦距确定。使用较短管,由于发散引起的光束大小膨胀受到限制,并且整个光束路径被有效地在焦点220处传输到样本中。然而,一些应用需要较长管,包括长度为500mm或更大的管。在此类长度下,如图3所描绘,光束在302处的发散致使自探针头部的光学路径对聚焦透镜202“过度填充”,这又导致光束路径被阻断,其中在样本内的样本焦点320处发生低效的聚焦或光晕。
因此,仍然需要对在用于现场光谱探针的细长端部光学器件中发生光晕的问题的解决方案。
发明内容
本公开涉及适于与光谱探针头部一起使用的端部光学器件,其包括指向准直透镜的输入光纤,所述准直透镜具有用于使反向传播激发和收集光束准直和聚焦的孔径。此类探针头部在拉曼光谱学和诸如荧光等其它领域中常见。除了最小化诸如光晕等不想要光学伪影之外,本公开的端部光学器件还在探针倾斜或弯曲时维持居中于物镜上的光束居中。本文所公开的配置特别适合于其中探针与激光器/分析器之间的激发和/或收集路径通过多模光纤耦合的探针。
所公开的解决方案涉及在探针头部与位于探针尖端处的聚焦物镜之间插入一个或多个附加透镜。尽管具有远端密封窗口的中空管可用于浸没式端部光学器件,但充当“光学试验台”的任何支撑件结构可用于定位并维持各种光学部件处于光学对准。
光学支撑件结构的近端与探针头部接口连接,使得所述支撑件结构将反向传播激发-收集光束携载至样本并且从样本携载反向传播激发-收集光束。在支撑件结构的远端处设置窗口或其它形式的光学接口。所述系统包括聚焦物镜,其具有用于使光束聚焦在样本中的紧邻于光学接口的焦点处的孔径。根据本公开,提供至少一个中间透镜以减小光束对聚焦物镜孔径的过度填充并且减小光晕。
所述中间透镜可为第一中间透镜,其设置在支撑件结构的近端处,并且其焦距被选择为在聚焦物镜处生成输入光纤的像。第二中间透镜可设置在第一中间透镜与聚焦物镜之间。在这样的实施例中,第一中间透镜在第二中间透镜处或附近形成输入光纤的像,而第二中间透镜操作以将准直透镜孔径中继到在聚焦透镜处或附近的像,并且响应于光学支撑件结构的弯曲来朝向聚焦物镜的中心引导光束。
第二中间透镜可操作以在超过聚焦物镜的点处生成准直透镜孔径的像以增大聚焦物镜孔径的光束填充并且改进所述样本中的焦点处的数值孔径。在所有实施例中,第二中间透镜可定位在沿支撑件结构的长度位于大致中途的区域中。
第一中间透镜可具有选择为在超过聚焦物镜的点处生成光纤的像的焦距以增大聚焦物镜孔径的光束填充并且改进样本中的焦点处的数值孔径。设置在第一中间透镜与聚焦物镜之间的第二中间透镜可被提供以响应于光学支撑件结构的弯曲来朝向聚焦物镜的中心引导光束。
附图说明
图1是现有技术光纤耦合拉曼探针头部的横截面图;
图2是图1的探针头部的简化图,所述探针头部包括用于浸没式样本分析的端部光学器件;
图3示出具有较长端部光学器件的管内的光束的发散致使来自探针头部的光学路径对聚焦透镜“过度填充”,从而在样本内的点处产生低效的聚焦;
图4描绘根据本公开的实施例;
图5示出其中选择较长焦距透镜以“压缩”光束以便更好地填充聚焦透镜的物镜孔径的另一实施例;
图6示出较长端部光学器件如何可能需要较长焦距中间透镜,其又在聚焦透镜处生成较大光纤像(即,最小光束印迹);
图7示出对于比近端中间透镜设计所允许的更长的端部光学器件,可添加第二中间透镜以将探针透镜孔径中继到聚焦透镜;
图8示出第二中间透镜处的较长焦距如何更好地填充聚焦透镜;
图9示出在端部光学器件中具有两个中间透镜的设计如何还使探针传输对光学器件在筒夹接口处的弯曲不敏感;以及
图10示出在端部光学器件中具有两个中间透镜的根据本公开的实施例,并且还示出在所述设计中所使用的光学部件的细节。
具体实施方式
本公开解决与用于诸如拉曼探针等现场探针的细长端部光学器件中的光晕相关联的问题,但所公开的解决方案适用于包括荧光等其它测量技术。本文所公开的配置特别适合于其中探针与激光器/分析器之间的激发和/或收集路径通过多模光纤耦合的探针。广义地说,所述解决方案涉及在探针头部与位于探针尖端处的聚焦物镜之间插入一个或多个附加透镜。除了最小化诸如光晕等不想要光学伪影之外,本文所述的本公开的配置在探针倾斜或弯曲时维持居中于物镜上的光束居中。
如此处所公开的各种实施例中所描述,此类附加透镜可并入到端部光学器件本身的套管或管中。然而,尽管具有远端密封窗口的中空管是用于浸没式端部光学器件的合理选择,但本公开不限于此。特别地,充当“光学试验台”的任何支撑件结构可用于定位并维持各种光学部件处于光学对准。除了远端窗口之外,可另选地使用直接样本暴露和/或样本容器(诸如试管)使用。
所述方法部分地类同于医学成像内窥镜中所使用的中间或“中继”透镜,但具有少得多的约束条件。在常规成像内窥镜中,目标通常是以适度高空间分辨率生成二维视觉像。然而,在本公开的情况下,目的是将激光激发光束(以及用于来自照射样本的激光激发发射的同轴收集路径)中的能量聚集到紧靠探针的远端窗口的区域,具有极小光晕或没有光晕。这个目的差异导致用于解决方案的不同要求并且因此不同结构。
根据本公开,不需要样本中的聚集能量区域对应于探针头部处的光纤的像,常规实践需要这样。实际上,不管探针“焦点”是对应于探针头部光纤的像还是另选地对应于探针头部中的透镜孔径(诸如光纤准直器孔径)的像,均获得可比较的性能。与常规内窥镜设计相比,这实现相对简单的低成本光学器件。
在本文所述的本公开的实施例中,示出三条光线,其从多模输入光纤的两个不同边缘中的每一者被追踪。出于图示/说明的目的,光纤像接着被视为在轴向位置处会聚到两个点的光线,而透镜孔径像在轴向位置处会聚到三个点。
图4示出本公开的实施例。在这种情况下,中间透镜定位在点402处,其位于端部光管412的近端输入端处或附近。所述中间透镜基本上“压缩”由透镜206提供的延伸光源多模输入光纤的发散准直像,从而减小光束在所述管内的扩展,将输入光纤404的像形成为标称地形成在位于探针的远端处的聚焦透镜202处。所述光束不对聚焦透镜202过度填充(如图3所示),并且样本焦点420处的焦点现在是探针头部透镜孔径而非光纤的像。
尽管图4的布置改进了用于较长端部光学器件组件的激发路径上的激光束传输,但如针对图4的管长度所描绘的解决方案是次佳的,因为在聚焦透镜处所形成的光纤像明显对聚焦透镜202填充不足。对聚焦透镜202填充不足导致样本收集路径上的数值孔径减小,这又减小从样本收集的全向光散射的立体角。图5中描绘用于此类配置的改进解决方案,其中选择较长焦距透镜502以比在图4的实施例中稍微较少地“压缩”光束以便更好地填充聚焦透镜202的物镜孔径。聚焦透镜202现在在点504处既没有过度填充也没有填充不足,从而在样本处恢复数值孔径以实现改进的光收集。然而,再次,样本中的样本焦点520仍是探针头部透镜孔径而不是光纤的像。实际上,光纤像现在定位超过聚焦透镜202并且在这个示例中在位置522处位于窗口204内。
即使利用上述解决方案,在延伸长度处,光纤像可能变得太大,并且可能再次对聚焦透镜202的物镜过度填充。如图6所示,较长端部光学器件需要较长焦距中间透镜,其又在聚焦透镜202处生成较大光纤像604(最小光束印迹)。利用此类条件,可以看到任何附加管长度将对聚焦透镜过度填充。为了解决这个问题,可将附加中间透镜并入到端部光学器件的管中。
如图7所示,对于比近端中间透镜设计所允许要长的端部光学器件,可添加第二中间透镜704(即,场透镜)以(标称地)将第一中间透镜孔径中继到聚焦透镜202。沿管的长度定位在大致中途,第二中间透镜704使长端部光学器件对由于筒夹接口处的机械弯曲或角度误差引起的光晕“不敏感”。聚焦透镜202的孔径现在在点710处被填充不足,并且样本中的样本焦点720现在是光纤的中继像而不是探针透镜孔径的像。
如果通过利用第二中间透镜704将探针孔径成像到聚焦透镜来使聚焦透镜填充不足,则可进一步修改焦距以更好地填充聚焦透镜202以在样本处实现改进的数值孔径。如图8所示,可选择第一中间透镜702的焦距以在第二中间透镜704处(或附近)成像光纤。透镜704的较长焦距使探针透镜孔径超过聚焦透镜202成像以更好地填充聚焦透镜孔径。聚焦透镜202在点810处既没有过度填充也没有填充不足,并且样本中的样本焦点802现在是光纤的中继像。
虽然需要聚焦透镜的宽覆盖范围以在样本处实现改进的数值孔径,但存在设计折衷。例如,由于管的潜在挠曲而可能需要比较短管更多地使较长管填充不足,管的潜在挠曲可能以其它方式将聚焦透镜移动离开光束路径。
图9进一步示出在端部光学器件中具有两个中间透镜的设计如何使探针性能对筒夹接口处的光学器件的弯曲不敏感。在图9中,所述管可能在接口902处倾斜小的角度,作为非限制性示例,0.4°。因而,由于管倾斜而使光束孔径在中间透镜904上偏离中心。然而,中间透镜904起作用以将光束在点906处朝向管的纵向轴线向回引导。光束现在在点910处比其在透镜904上更好地居中。如插图细节中所示,虽然撞击在聚焦透镜202上的像是偏轴的,但这对样本焦点920的位置和质量具有可以忽略不计的影响。
以回顾方式,图10示出在端部光学器件中具有两个中间透镜的实施例并且展示用于使来自多模光纤输入的光准直(并且将样本收集聚焦到光纤以供传递到光谱仪,未示出)的鼓形透镜。鼓形透镜的使用是无关紧要的,并且可在探针头部中使用更通用的透镜准直器来替换。如图10所示,与针对低背景噪声选择的光学材料一起使用薄单线透镜。然而,在所有实施例中,“透镜”或“光学器件”应当被视为包括预期执行本文所公开的指定功能的双重线透镜或透镜组。
尽管公开并且在附图中示出了具有第一和第二中间光学器件的实施例,但随着端部光学器件长度(或长度孔径比)进一步增大,相同设计概念可延伸到添加另外更多中间透镜以跨较长或较小直径路径中继孔径和光纤像。再次,强调成像内窥镜的常规规则不适用。利用本公开,将激发传递到基本上同质样本并且从其收集光以表征其成分。目标是在两个方向上在一个或多个光纤与样本之间最大地耦合能量,其中在样本中数值孔径尽可能地高以在入站路径上从样本最大地收集激发光谱(例如,拉曼、荧光)。理想地,整个光纤数值孔径在样本点处聚焦而不使出站激光功率发生光晕。然而,焦斑可为光纤的像、使光纤准直的透镜孔径的像或任一者的中继像。此类放松的要求不支持常规多像素成像系统,所述常规多像素成像系统必须解析样本中的不同物理位置。

Claims (20)

1.一种适于与光谱探针头部一起使用的端部光学器件,所述端部光学器件包括指向准直透镜的输入光纤,所述准直透镜具有用于使反向传播激发和收集光束准直和聚焦的孔径,所述端部光学器件包括:
光学支撑件结构,所述光学支撑件结构具有界定长度的近端和远端,其中所述光学支撑件的所述近端与探针头部接口连接,使得所述支撑件结构将反向传播激发-收集光束携载至样本并且从样本携载反向传播激发-收集光束;
光学接口,所述光学接口设置在所述支撑件结构的所述远端处;
聚焦物镜,所述聚焦物镜具有用于将所述光束聚焦在所述样本中的紧邻近于所述光学接口的焦点处的孔径;以及
至少一个中间透镜,所述至少一个中间透镜由所述光学支撑件支撑并且被实施为使所述光束对所述聚焦物镜孔径的过度填充最小化并减小光晕。
2.根据权利要求1所述的端部光学器件,其中所述光学支撑件结构是中空管。
3.根据权利要求1所述的端部光学器件,其中所述光学支撑件结构是中空管,并且设置在所述管的所述远端处的所述光学接口是密封到所述管以便使得所述端部光学器件能够浸没在所述样本内的窗口,其中所述样本是液体。
4.根据权利要求1所述的端部光学器件,其中所述光学支撑件结构是中空管,并且设置在所述管的所述远端处的所述光学接口是试管或其它密封样本容器。
5.根据权利要求1所述的端部光学器件,包括设置在所述支撑件结构的所述近端处或附近的第一中间透镜。
6.根据权利要求5所述的端部光学器件,其中所述第一中间透镜具有被选择为在所述聚焦物镜处生成所述输入光纤的像的焦距。
7.根据权利要求5所述的端部光学器件,还包括设置在所述第一中间透镜与所述聚焦物镜之间的第二中间透镜,其中所述第一中间透镜在所述第二中间透镜处或附近形成所述输入光纤的像,并且其中所述第二中间透镜操作以将所述准直透镜孔径中继到在所述聚焦透镜处或附近的像并且响应于所述光学支撑件结构的弯曲而朝向所述聚焦物镜的中心引导所述光束。
8.根据权利要求7所述的端部光学器件,其中所述第二中间透镜定位在沿所述支撑件结构的所述长度大致位于中途的区域中。
9.根据权利要求5所述的端部光学器件,还包括设置在所述第一中间透镜与所述聚焦物镜之间的第二中间透镜,其中所述第二中间透镜操作以在超过所述聚焦物镜的点处生成所述准直透镜孔径的像以增大所述聚焦物镜孔径的光束填充并且改进在所述样本中的所述焦点处的数值孔径。
10.根据权利要求5所述的端部光学器件,其中所述第一中间透镜具有被选择为在超过所述聚焦物镜的点处生成所述光纤的像的焦距以增大所述聚焦物镜孔径的光束填充并且改进在所述样本中的所述焦点处的数值孔径。
11.根据权利要求10所述的端部光学器件,还包括设置在所述第一中间透镜与所述聚焦物镜之间的第二中间透镜,并且其中所述第二中间透镜操作以响应于所述光学支撑件结构的弯曲而朝向所述聚焦物镜的中心引导所述光束。
12.根据权利要求11所述的端部光学器件,其中所述第二中间透镜定位在沿所述管的所述长度位于中途的区域中。
13.根据权利要求1所述的端部光学器件,其中所述输入光纤是多模光纤。
14.一种光谱探针,包括:
探针头部,所述探针头部包括指向具有孔径的准直透镜的输入光纤,所述准直透镜被实施为使反向传播激发-收集光束准直和聚焦;以及
端部光学器件,所述端部光学器件包括:
光学支撑件结构,所述光学支撑件结构具有界定长度的近端和远端,其中所述光学支撑件的所述近端与所述探针头部接口连接,使得所述支撑件结构将反向传播激发-收集光束携载至样本并且从样本携载反向传播激发-收集光束;
光学接口,所述光学接口设置在所述支撑件结构的所述远端处;
聚焦物镜,所述聚焦物镜具有用于将所述光束聚焦在所述样本中的紧邻近于所述光学接口的焦点处的孔径;以及
至少一个中间透镜,所述至少一个中间透镜由所述光学支撑件支撑并且被实施为使所述光束对所述聚焦物镜孔径的过度填充最小化并减小光晕。
15.根据权利要求14所述的光谱探针,包括第一中间透镜,所述第一中间透镜设置在所述支撑件结构的所述近端处或附近并且具有被选择为在所述聚焦物镜处生成所述输入光纤的像的焦距。
16.根据权利要求15所述的光谱探针,还包括设置在所述第一中间透镜与所述聚焦物镜之间的第二中间透镜,其中所述第一中间透镜在所述第二中间透镜处或附近形成所述输入光纤的像,并且其中所述第二中间透镜操作以将所述准直透镜孔径中继到在所述聚焦透镜处或附近的像并且响应于所述光学支撑件结构的弯曲而朝向所述聚焦物镜的中心引导所述光束。
17.根据权利要求15所述的光谱探针,还包括设置在所述第一中间透镜与所述聚焦物镜之间的第二中间透镜,其中所述第二中间透镜操作以在超过所述聚焦物镜的点处生成所述准直透镜孔径的像以增大所述聚焦物镜孔径的光束填充并且改进在所述样本中的所述焦点处的数值孔径。
18.根据权利要求15所述的光谱探针,其中所述第一中间透镜具有被选择为在超过所述聚焦物镜的点处生成所述光纤的像的焦距以增大所述聚焦物镜孔径的光束填充并且改进在所述样本中的所述焦点处的数值孔径。
19.根据权利要求18所述的光谱探针,还包括设置在所述第一中间透镜与所述聚焦物镜之间的第二中间透镜,并且其中所述第二中间透镜操作以响应于所述光学支撑件结构的弯曲而朝向所述聚焦物镜的中心引导所述光束。
20.根据权利要求14所述的光谱探针,其中所述输入光纤是多模光纤。
CN201810442644.4A 2017-05-11 2018-05-10 用于激光光谱学的内窥镜浸没式探针端部光学器件 Active CN108872188B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/592,506 US10481385B2 (en) 2017-05-11 2017-05-11 Endoscopic immersion probe end optics for laser spectroscopy
US15/592,506 2017-05-11

Publications (2)

Publication Number Publication Date
CN108872188A true CN108872188A (zh) 2018-11-23
CN108872188B CN108872188B (zh) 2021-07-13

Family

ID=62200242

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810442644.4A Active CN108872188B (zh) 2017-05-11 2018-05-10 用于激光光谱学的内窥镜浸没式探针端部光学器件

Country Status (3)

Country Link
US (1) US10481385B2 (zh)
EP (1) EP3401669B1 (zh)
CN (1) CN108872188B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656141A (zh) * 2022-11-15 2023-01-31 奥谱天成(厦门)光电有限公司 一种拉曼光谱探头

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571144A1 (fr) * 1984-10-01 1986-04-04 Centre Nat Rech Scient Dispositif notamment de multi-mesure pour analyser a distance et in situ, un echantillon par spectrometrie raman
US4735491A (en) * 1983-12-28 1988-04-05 Olympus Optical Co., Ltd. Optical system for endoscopes
US5295477A (en) * 1992-05-08 1994-03-22 Parviz Janfaza Endoscopic operating microscope
JPH09248276A (ja) * 1996-03-14 1997-09-22 Olympus Optical Co Ltd 視野方向可変硬性鏡装置
US5841545A (en) * 1994-09-19 1998-11-24 Lockheed Martin Energy Systems, Inc. Multi-function diamond film fiberoptic probe and measuring system employing same
US20040037486A1 (en) * 2002-06-10 2004-02-26 Doyle Walter M. Raman probe having a small diameter immersion tip
CN1705991A (zh) * 2002-10-18 2005-12-07 柯尼卡美能达精密光学株式会社 光拾取器装置用光学元件、中继透镜以及光拾取器装置
CN1713848A (zh) * 2002-11-20 2005-12-28 奥林巴斯株式会社 内窥镜插入方向检测装置、内窥镜插入方向检测系统及内窥镜插入方向检测方法
US20070057211A1 (en) * 2005-05-25 2007-03-15 Karsten Bahlman Multifocal imaging systems and method
CN102063014A (zh) * 2009-11-13 2011-05-18 上海微电子装备有限公司 一种用于微光刻的照明光学系统
WO2012078853A2 (en) * 2010-12-08 2012-06-14 Cornell University Microscope apparatus, method and application
US8425037B2 (en) * 2010-07-30 2013-04-23 Adventus Technologies, Inc. Intraoperative imaging system and apparatus
CN202891878U (zh) * 2012-10-26 2013-04-24 成都海瑞康科技有限公司 防光晕的发光光学喉镜
CN103987308A (zh) * 2011-12-20 2014-08-13 奥林巴斯株式会社 扫描型内窥镜
US8879058B2 (en) * 2010-11-05 2014-11-04 The University Of Ottawa Miniaturized multimodal cars endoscope
US20160345820A1 (en) * 2015-05-28 2016-12-01 Cylite Pty Ltd High resolution 3-d spectral domain optical imaging apparatus and method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3959581A (en) * 1975-01-29 1976-05-25 Zenith Radio Corporation Self-compensating focus system for optical video playback device
US5309541A (en) * 1993-04-16 1994-05-03 Laser Power Corporation Flexible light conduit
US6907149B2 (en) * 2002-02-01 2005-06-14 Kaiser Optical Systems, Inc. Compact optical measurement probe
JP4601266B2 (ja) * 2003-05-30 2010-12-22 オリンパス株式会社 レーザ顕微鏡
FR2900741B1 (fr) * 2006-05-05 2008-07-18 Mauna Kea Technologies Soc Par Tete optique miniaturisee a haute resolution spatiale et haute sensibilite, notamment pour l'imagerie de fluorescence confocale fibree
JP4880686B2 (ja) * 2006-06-20 2012-02-22 パナソニック株式会社 カップリングレンズ、光学ヘッドおよび光ディスク装置
US7723657B2 (en) * 2007-11-16 2010-05-25 Mitutoyo Corporation Focus detection apparatus having extended detection range
DE102009011647B4 (de) * 2009-03-04 2020-02-20 Carl Zeiss Meditec Ag CARS-Endoskop
US20160178439A1 (en) * 2013-06-17 2016-06-23 Invenio Imaging Inc. Methods and systems for coherent raman scattering
DE102015205163B4 (de) * 2015-03-23 2017-04-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Optisches System für eine Laserbearbeitungsmaschine, mit einem optischen Element in einem Stecker eines Lichtleitkabels

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735491A (en) * 1983-12-28 1988-04-05 Olympus Optical Co., Ltd. Optical system for endoscopes
FR2571144A1 (fr) * 1984-10-01 1986-04-04 Centre Nat Rech Scient Dispositif notamment de multi-mesure pour analyser a distance et in situ, un echantillon par spectrometrie raman
US5295477A (en) * 1992-05-08 1994-03-22 Parviz Janfaza Endoscopic operating microscope
US5841545A (en) * 1994-09-19 1998-11-24 Lockheed Martin Energy Systems, Inc. Multi-function diamond film fiberoptic probe and measuring system employing same
JPH09248276A (ja) * 1996-03-14 1997-09-22 Olympus Optical Co Ltd 視野方向可変硬性鏡装置
US20040037486A1 (en) * 2002-06-10 2004-02-26 Doyle Walter M. Raman probe having a small diameter immersion tip
CN1705991A (zh) * 2002-10-18 2005-12-07 柯尼卡美能达精密光学株式会社 光拾取器装置用光学元件、中继透镜以及光拾取器装置
CN1713848A (zh) * 2002-11-20 2005-12-28 奥林巴斯株式会社 内窥镜插入方向检测装置、内窥镜插入方向检测系统及内窥镜插入方向检测方法
US20070057211A1 (en) * 2005-05-25 2007-03-15 Karsten Bahlman Multifocal imaging systems and method
CN102063014A (zh) * 2009-11-13 2011-05-18 上海微电子装备有限公司 一种用于微光刻的照明光学系统
US8425037B2 (en) * 2010-07-30 2013-04-23 Adventus Technologies, Inc. Intraoperative imaging system and apparatus
US8879058B2 (en) * 2010-11-05 2014-11-04 The University Of Ottawa Miniaturized multimodal cars endoscope
WO2012078853A2 (en) * 2010-12-08 2012-06-14 Cornell University Microscope apparatus, method and application
CN103987308A (zh) * 2011-12-20 2014-08-13 奥林巴斯株式会社 扫描型内窥镜
CN202891878U (zh) * 2012-10-26 2013-04-24 成都海瑞康科技有限公司 防光晕的发光光学喉镜
US20160345820A1 (en) * 2015-05-28 2016-12-01 Cylite Pty Ltd High resolution 3-d spectral domain optical imaging apparatus and method
US9955863B2 (en) * 2015-05-28 2018-05-01 Cylite Pty Ltd High resolution 3-D spectral domain optical imaging apparatus and method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANKE BURKHARDT 等: "Endoscopic optical coherence tomography device for forward imaging with broad field of view", 《JOURNAL OF BIOMEDICAL OPTICS》 *
禹璐 等: "硬性内窥镜光学系统的杂散光分析与抑制", 《光学精密工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115656141A (zh) * 2022-11-15 2023-01-31 奥谱天成(厦门)光电有限公司 一种拉曼光谱探头

Also Published As

Publication number Publication date
EP3401669A1 (en) 2018-11-14
US10481385B2 (en) 2019-11-19
EP3401669B1 (en) 2023-06-07
CN108872188B (zh) 2021-07-13
US20180329196A1 (en) 2018-11-15

Similar Documents

Publication Publication Date Title
EP1283413B1 (en) Multi-photon endoscopy
JP6397431B2 (ja) リモート分光法のための光ファイバプローブ
CN101365375B (zh) 用于经由谱编码进行光学成像的方法和设备
US8912511B2 (en) Device and method for multi-photon fluorescence microscopy for obtaining information from biological tissue
JP5305035B2 (ja) ファイバー共焦点蛍光撮像用の高空間分解能及び高感度小型光学ヘッド
JP2004240346A (ja) 対物レンズユニット、該対物レンズユニットの組立方法
US10606064B2 (en) Optical probes with astigmatism correction
KR20050021492A (ko) 광섬유 고해상, 특히 공초점, 형광 이미징을 위한 방법 및장치
JP2005512747A (ja) 特に内視鏡用の小型化された集束用光学ヘッド
WO2017049085A1 (en) Apparatus and methods for mirror tunnel imaging device and for providing pseudo-bessel beams in a miniaturized optical system for imaging
JP5188146B2 (ja) Octシステムを備える手術用顕微鏡
JP4533628B2 (ja) 表面下自己蛍光の分光装置
CN109564327B (zh) 环形光束耦合系统
JP5213417B2 (ja) Octシステムを備える手術用顕微鏡
KR101258682B1 (ko) 내시경과 일체형으로 제작된 광섬유쌍 프로브 이미징 시스템
JP6389828B2 (ja) 医用撮像装置と共に使用するための光学装置
CN108872188A (zh) 用于激光光谱学的内窥镜浸没式探针端部光学器件
US20070197919A1 (en) Video Endoscopy Device
JP5864105B2 (ja) 光プローブ
US20210033838A1 (en) Apparatuses and methods for multi-direction digital scanned light sheet microscopy
CN107361723B (zh) 快速组织分子光谱成像装置
US9237852B2 (en) Probe
US20230270333A1 (en) 2-photon endoscopic fluorescence imaging probe with multiple, bent, slanted-cut collection fibers
US20230341668A1 (en) An optical element
JP6723835B2 (ja) 光干渉断層撮像装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221020

Address after: Michigan, USA

Patentee after: Endless and Hauser Optical Analysis Co.,Ltd.

Address before: Michigan, USA

Patentee before: KAISER OPTICAL SYSTEMS Inc.

TR01 Transfer of patent right