CN108872081B - 一种检测重金属离子的多层微流控芯片 - Google Patents

一种检测重金属离子的多层微流控芯片 Download PDF

Info

Publication number
CN108872081B
CN108872081B CN201811027701.9A CN201811027701A CN108872081B CN 108872081 B CN108872081 B CN 108872081B CN 201811027701 A CN201811027701 A CN 201811027701A CN 108872081 B CN108872081 B CN 108872081B
Authority
CN
China
Prior art keywords
layer
substrate
channel
sample
sedimentation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811027701.9A
Other languages
English (en)
Other versions
CN108872081A (zh
Inventor
廖晓玲
徐文峰
黄秋红
李�浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Science and Technology
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201811027701.9A priority Critical patent/CN108872081B/zh
Publication of CN108872081A publication Critical patent/CN108872081A/zh
Application granted granted Critical
Publication of CN108872081B publication Critical patent/CN108872081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Abstract

本发明提供了一种检测重金属离子的多层微流控芯片,由第一层过滤装置、第二层吸收装置、第三层反应装置和密封垫四部分组成,其特征在于:整个芯片分三层结构,并用固定针固定,经第一层沉淀过滤、第二层通过安装吸油装置吸收油污、有机物,第三层的反应检测装置。其中反应检测池和滤液收集池的深度都低于分液通道,防止滤液回流。本发明技术的有益效果是,芯片内部多级过滤系统使废水中的重金属离子得到了更进一步的提取,在第三层反应装置中设计了均分通道和防回流装置,实现了多分离多层次过滤、检测的一体化。整个装置代替了现有的体积大、设备复杂的特点,使检测更加方便、快捷,并且可携带,适用于不同现场的实时检测。

Description

一种检测重金属离子的多层微流控芯片
技术领域
本发明涉及一种多层微流控芯片,具体讲是一种利用显色法快速检测石油废水中重金属离子浓度的多层微流控芯片。
技术背景
随着社会经济的发展,社会环境所受到的污染也越来越多,石油废水是当今社会的污染源之一。在石油废水中含有大量的油物质、重金属等有毒有害物质,会间接的对人体健康造成危害。当今社会,石油废水中重金属的检测倍受欢迎。但是,由于目前此类检测仪器,大多体积较大,操作复杂;加上石油废水样品的处理难度大,还存在多数检测仪器不能满足现场快速检测的缺点。
因此,发明设计利用微流控芯片技术,设计一种能够一次检测多种重金属离子的芯片,实现现场取样,快速样品除杂、分离纯化,一体化检测的目的,是十分有必要的。
发明内容
本发明的目的在于提供一种清除石油废水的杂质,用于检测其中重金属离子的微流控芯片。以满足石油废水中的多种重金属离子的快速检测,方便环境保护的现场检测和现场监测控制。
本使用新型的技术方案为:一种检测重金属离子的多层微流控芯片,主要由第一层基片过滤装置、第二层基片吸收装置、第三层基片反应装置三部分组成,其特征在于:所述芯片呈圆形或矩形,由三层形状和尺寸大小一致的、透明材质的基片贴合在一起,用固定针通过固定孔固定,并能够拆卸。
所述第一层基片,在圆形或矩形的基片一侧上面加工有进样口,进样通道的一端连接进样口。进样通道依次穿过、围绕芯片边缘加工的波浪沉淀池、网格沉淀池、和凹坑沉淀池后,其另一端与漫流池连通。漫流池的底部水平面低于进样通道的底部水平面。在圆形或矩形第一层基片的中间部位加工有贯通第一层基片底部的出样口,出样口内加工有滤网卡槽,滤网卡槽安装有凹面型的过滤网。所述进样口的直径尺寸大于进样通道的宽度尺寸,进样口的底面水平面低于进样通道的底面水平面。出样口通过漫流通道与漫流池相连通。漫流通道的底部水平面高于漫流池的底部水平面,低于进样通道的底部水平面。漫流通道的端头伸入在漫流池的中间部位,其端头加工成一个直径尺寸大于漫流通道宽度尺寸近似圆柱形的漫流柱。漫流柱顶部上加工有一个高于漫流通道底部水平面的环形壁,即为漫流通道的漫流入口。漫流入口的环形壁漫流结构的顶部水平面高度接近进样通道底部水平面高度。第一层基片的上表面的加工开口均密闭,在漫流入口和漫流通道的密闭层下,都安装有一层吸油材料。所述第一层基片上加工的所有功能区构件,均在圆形或矩形的基片一侧,不超过第一层基片总上表面积的2/3。所述第一层基片的另外一种规格,在基片上表面的一侧没有加工进样通道、和围绕芯片边缘加工的波浪沉淀池、网格沉淀池、以及凹坑沉淀池,样品直接在漫流池进样。
所述第二层基片在对应第一层基片的出样口的位置加工有二层进样口。二层进样口是上下贯通第二层基片的圆柱状通道。在二层进样口的上半部圆柱状侧壁上加工有一个圆筒卡槽,能够安装固定配合使用的固定圆筒,固定圆筒固定二层进样口中部位置的一个有机物吸收过滤网。二层进样口朝向第一层基片没有加工部件这一侧的中间方向上,在第二层基片底部加工有滤液通道,在滤液通道的顶部,都安装有一层吸油材料。滤液通道通往滤液排出口。滤液排出口是一个开口向下圆柱形,与第三层基片的滤液收集池相通,位置对应在第一层基片没有加工部件这一侧的中心区。
所述第三层基片在对应第一层基片没有加工部件这一侧的中心处,加工有一个圆形滤液收集池,滤液收集池与滤液排出口之间安装有一个过滤网。滤液收集池的圆周上均匀分布加工有3条以上的向外呈花瓣状发散的分液通道。每条分液通道的各项尺寸参数一致,其端头都连通到一个反应检测池。反应检测池和滤液收集池的底部水平面都低于分液通道的底部水平面。
上述技术方案中,所述有波浪沉淀池、网格沉淀池、和凹坑沉淀池的芯片,每个芯片至少各有1个波浪沉淀池、网格沉淀池、和凹坑沉淀池。每个芯片根据芯片规格,能够有不同的波浪沉淀池、网格沉淀池、和凹坑沉淀池的数量。所述波浪沉淀池、网格沉淀池、和凹坑沉淀池的底部水平面均低于进样通道的底部水平面;所述波浪沉淀池的底部安装有竖直、横向进样通道流向的挡板。挡板的高度由低到高排列,最高挡板的顶部与进样通道的底部水平面平齐。所述网格沉淀池是由数个水平放置的网格组成,最高的网格顶部与进样通道的底部水平面平齐。所述凹坑沉淀池的底部加工有密布的小凹坑。
上述技术方案中,所述第一层基片、第二层基片、第三层基片固定时,相互之间都安装有密封垫。
与现有技术相比,本发明具有下列有益效果:微流控芯片结构的设计采用了多层过滤吸收系统,使石油废水的除杂更有效,尽可能的排除了其它干扰物质对实验的影响;第三层反应装置设计有滤液均分装置和防倒流装置,提高了微流控检测的准确性;该微流控芯片还配有固定孔,能实现微流控芯片的可拆卸,方便清洗和换取过滤装置、比色纸等;而且本发明体积小,可用于环境的实时、连续监测。
附图说明
图1为本发明的一种俯视结构示意图。
图2为本发明图1的一种第一层俯视结构示意图。
图3为本发明图1的一种第二层俯视结构示意图。
图4为本发明图1的一种第三层俯视结构示意图。
图5为本发明的一种第一层局部省略俯视结构示意图。
图6为本发明的一种第二层俯视结构示意图。
图7为本发明的一种第三层俯视结构示意图。
图8为本发明的一种从漫流池开始的局部主视示意图。
图9本发明的一种漫流池的主视图和A-A剖视示意图。
图10本发明的一种波浪沉淀池剖视示意图。
图11本发明的一种网格沉淀池剖视示意图。
图12本发明的一种凹坑沉淀池剖视示意图。
图中:1.进样口;2.进样通道;3.滤网卡槽;4.固定孔;5.出样口;6.二层进样口;7.固定圆筒;8.滤液通道;9.滤液排出口;10.反应检测池;11.滤液收集池;12.分液通道;13.密封垫;14. 圆筒卡槽;15.固定针;16.波浪沉淀池;17.网格沉淀池;18.凹坑沉淀池;19.漫流池;20.漫流入口;21.漫流通道;22.吸油材料;23.漫流柱;24.挡板;25.网格;26.小凹坑;27.第一层基片;28.第二层基片;29.第三层基片。
具体实施例
参照图1至图12中的形状结构,一种检测重金属离子的多层微流控芯片,由第一层基片27、第二层基片28和第三层基片29三部分组成。其特征在于:所述芯片呈圆形或矩形,由三层形状和尺寸大小一致的、透明材质的基片贴合在一起,用固定针15通过固定孔4固定,并能够拆卸。
所述第一层基片27,在圆形或矩形的基片一侧上面加工有进样口1,进样通道2的一端连接进样口1。进样通道2依次穿过、围绕芯片边缘加工的波浪沉淀池16、网格沉淀池17、和凹坑沉淀池18后,其另一端与漫流池19连通。漫流池19的底部水平面低于进样通道2的底部水平面。在圆形或矩形第一层基片27的中间部位加工有贯通第一层基片27底部的出样口5,出样口5内加工有滤网卡槽3,滤网卡槽3安装有凹面型的过滤网。所述进样口1的直径尺寸大于进样通道2的宽度尺寸,进样口1的底面水平面低于进样通道2的底面水平面。进样口1的直径大于进样通道2的宽,防止了样品的溢出。过滤网是选用铜质的、凹面型的过滤网,用于过滤石油废水中的大颗粒杂质,防止其堵塞微通道,而且凹面型铜网防止加样过快导致回流。并且在出样口5设计滤网卡槽3,用于过滤网的固定。出样口5通过漫流通道21与漫流池19相连通。漫流通道21的底部水平面高于漫流池19的底部水平面,低于进样通道2的底部水平面。漫流通道21的端头伸入在漫流池19的中间部位,其端头加工成一个直径尺寸大于漫流通道21宽度尺寸近似圆柱形的漫流柱23。漫流柱23顶部上加工有一个高于漫流通道21底部水平面的环形壁,即为漫流通道21的漫流入口20。漫流入口20的环形壁的漫流结构,其顶部水平面高度接近进样通道2底部水平面高度。第一层基片27的上表面的加工开口均密闭,在漫流入口20和漫流通道21的密闭层下,都安装有一层吸油材料22。例如,去脂毡垫。所述第一层基片27上加工的所有功能区构件,均在圆形或矩形的基片一侧,不超过第一层基片27总上表面积的2/3。第一层基片27上加工的所有功能区构件的集中布置,有利于给第三层基片29的检测功能构件留出便于上下观察的检测区域。所述第一层基片27的另外一种规格,在基片上表面的一侧没有加工进样通道2、和围绕芯片边缘加工的波浪沉淀池16、网格沉淀池17、以及凹坑沉淀池18,样品直接在漫流池19进样。
所述第二层基片28在对应第一层基片27的出样口5的位置加工有二层进样口6。二层进样口6是上下贯通第二层基片28的圆柱状通道。在二层进样口6的上半部圆柱状侧壁上加工有一个圆筒卡槽14,能够安装固定配合使用的固定圆筒7,固定圆筒7固定二层进样口6中部位置的一个有机物吸收过滤网。例如:通过安装碳海绵吸收油污、有机物。有机物吸收过滤网由碳海绵和固定圆筒7构成。碳海绵用于石油废水中的油污和有机物的吸收,并且吸附强度非常好,固定圆筒7的外直径等于碳海绵的直径。首先将碳海绵放入圆筒卡槽14,再将固定圆筒7放在碳海绵上,固定圆筒7的高度等于圆筒卡槽14的高度,有利于碳海绵的固定。二层进样口6朝向第一层基片27没有加工部件这一侧的中间方向上,在第二层基片28底部加工有滤液通道8,在滤液通道8的顶部,都安装有一层吸油材料22。滤液通道8通往滤液排出口9。滤液排出口9是一个开口向下圆柱形,与第三层基片29的滤液收集池11相通,位置对应在第一层基片27没有加工部件这一侧的中心处。
所述第三层基片29在对应第一层基片27没有加工部件这一侧的中心处,加工有一个圆形滤液收集池11,滤液收集池11与滤液排出口9之间安装有一个过滤网。滤液收集池11的圆周上均匀分布加工有3条以上的向外呈花瓣状发散的分液通道12。每条分液通道12的各项尺寸参数一致,其端头都连通到一个反应检测池10。反应检测池10用来放置与重金属离子反应显色的比色纸。反应检测池10和滤液收集池11的底部水平面都低于分液通道12的底部水平面。滤液收集池11的深度低于分液通道12,当滤液填满滤液收集池11滤液收集池11与分液通道12有高度差时,滤液通过溢出的方式流入各个反应检测池10中,保证了每个分液通道12的流量到达反应检测池10的量相同,使实验结果更准确。反应检测池10的深度也低于分液通道12。防止了进入反应检测池10的滤液回流污染了滤液收集池11。例如,当滤液流入反应检测池10与池中的比色纸反应显色后,防止滤液将显色的滤液回流到滤液收集池中。反应检测池10放置的重金属离子反应显色的比色纸,显色反应后,与制作的标准色阶板进行对比,来确定石油废水中重金属的浓度。本发明具有微量、快速、方便,可携带的特点。
上述技术方案中,所述有波浪沉淀池16、网格沉淀池17、和凹坑沉淀池18的芯片,每个芯片至少各有1个波浪沉淀池16、网格沉淀池17、和凹坑沉淀池18;每个芯片根据芯片规格,能够有不同的波浪沉淀池16、网格沉淀池17、和凹坑沉淀池18的数量。所述波浪沉淀池16、网格沉淀池17、和凹坑沉淀池18的底部水平面均低于进样通道2的底部水平面。所述波浪沉淀池16的底部安装有竖直、横向进样通道2流向的挡板24;挡板24的高度由低到高排列,最高挡板24的顶部与进样通道2的底部水平面平齐。所述网格沉淀池17是由数个水平放置的网格25组成,最高的网格顶部与进样通道2的底部水平面平齐。所述凹坑沉淀池18的底部加工有密布的小凹坑26。
上述技术方案中心,所述第一层基片27、第二层基片28、第三层基片29固定时,相互之间都安装有密封垫13。密封垫13使第一层与第二层、第二层与第三层之间有了更好的密封性,防止漏液。发明多层的结构使得过滤与除油相结合,方便有效地起到了避免大颗粒杂质堵塞检测通道,以及避免了油污、有机物对重金属离子检测的影响。最后,将第一层、密封垫、第二层、密封垫和第三层依次组装,并用钢针固定。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种检测重金属离子的多层微流控芯片,由第一层基片、第二层基片和第三层基片三部分组成,其特征在于:所述芯片呈圆形或矩形,由三层形状和尺寸大小一致的、透明材质的基片贴合在一起,用固定针通过固定孔固定,并能够拆卸;
所述第一层基片,在圆形或矩形的基片一侧上面加工有进样口,进样通道的一端连接进样口;进样通道依次穿过、围绕芯片边缘加工的波浪沉淀池、网格沉淀池、和凹坑沉淀池后,其另一端与漫流池连通;所述波浪沉淀池、网格沉淀池、和凹坑沉淀池的底部水平面均低于进样通道的底部水平面;所述波浪沉淀池的底部安装有竖直、横向进样通道流向的挡板;挡板的高度由低到高排列,最高挡板的顶部与进样通道的底部水平面平齐;所述网格沉淀池是由数个水平放置的网格组成,最高的网格顶部与进样通道的底部水平面平齐;所述凹坑沉淀池的底部加工有密布的小凹坑;漫流池的底部水平面低于进样通道的底部水平面;在圆形或矩形第一层基片的中间部位加工有贯通第一层基片底部的出样口,出样口内加工有滤网卡槽,滤网卡槽安装有凹面型的过滤网;所述进样口的直径尺寸大于进样通道的宽度尺寸,进样口的底面水平面低于进样通道的底面水平面;出样口通过漫流通道与漫流池相连通;漫流通道的底部水平面高于漫流池的底部水平面,低于进样通道的底部水平面;漫流通道的端头伸入在漫流池的中间部位,其端头加工成一个直径尺寸大于漫流通道宽度尺寸近似圆柱形的漫流柱;漫流柱顶部上加工有一个高于漫流通道底部水平面的环形壁,即为漫流通道的漫流入口;漫流入口的环形壁漫流结构的顶部水平面高度接近进样通道底部水平面高度;第一层基片的上表面的加工开口均密闭,在漫流入口和漫流通道的密闭层下,都安装有一层吸油材料;所述第一层基片上加工的所有功能区构件,均在圆形或矩形的基片一侧,不超过第一层基片总上表面积的2/3;所述第一层基片的另外一种规格,在基片上表面的一侧没有加工进样通道、和围绕芯片边缘加工的波浪沉淀池、网格沉淀池、以及凹坑沉淀池,样品直接在漫流池进样;
所述第二层基片在对应第一层基片的出样口的位置加工有二层进样口;二层进样口是上下贯通第二层基片的圆柱状通道;在二层进样口的上半部圆柱状侧壁上加工有一个圆筒卡槽,能够安装固定配合使用的固定圆筒,固定圆筒固定二层进样口中部位置的一个有机物吸收过滤网;二层进样口朝向第一层基片没有加工部件这一侧的中间方向上,在第二层基片底部加工有滤液通道,在滤液通道的顶部,都安装有一层吸油材料;滤液通道通往滤液排出口;滤液排出口是一个开口向下圆柱形,与第三层基片的滤液收集池相通,位置对应在第一层基片没有加工部件这一侧的中心区;
所述第三层基片在对应第一层基片没有加工部件这一侧的中心处,加工有一个圆形滤液收集池,滤液收集池与滤液排出口之间安装有一个过滤网;滤液收集池的圆周上均匀分布加工有3条以上的向外呈花瓣状发散的分液通道;每条分液通道的各项尺寸参数一致,其端头都连通到一个反应检测池;反应检测池和滤液收集池的底部水平面都低于分液通道的底部水平面。
2.根据权利要求1所述的一种检测重金属离子的多层微流控芯片,其特征在于:所述有波浪沉淀池、网格沉淀池、和凹坑沉淀池的芯片,每个芯片至少各有1个波浪沉淀池、网格沉淀池、和凹坑沉淀池;每个芯片根据芯片规格,能够有不同的波浪沉淀池、网格沉淀池、和凹坑沉淀池的数量。
3.根据权利要求1所述的一种检测重金属离子的多层微流控芯片,其特征在于:所述第一层基片、第二层基片、第三层基片固定时,相互之间都安装有密封垫。
CN201811027701.9A 2018-09-04 2018-09-04 一种检测重金属离子的多层微流控芯片 Active CN108872081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811027701.9A CN108872081B (zh) 2018-09-04 2018-09-04 一种检测重金属离子的多层微流控芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811027701.9A CN108872081B (zh) 2018-09-04 2018-09-04 一种检测重金属离子的多层微流控芯片

Publications (2)

Publication Number Publication Date
CN108872081A CN108872081A (zh) 2018-11-23
CN108872081B true CN108872081B (zh) 2023-06-23

Family

ID=64323191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811027701.9A Active CN108872081B (zh) 2018-09-04 2018-09-04 一种检测重金属离子的多层微流控芯片

Country Status (1)

Country Link
CN (1) CN108872081B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109929735A (zh) * 2019-04-25 2019-06-25 湖南工业大学 一种柱塞式核酸检测一体化卡盒及其检测方法
CN110426526B (zh) * 2019-08-08 2023-05-12 重庆科技学院 一种用于重金属离子检测的多层微流控芯片
CN110658166B (zh) * 2019-09-30 2022-03-25 重庆科技学院 微流控芯片及其体系、水体中重金属离子的检测方法
CN111085281B (zh) * 2020-01-08 2021-05-14 西安交通大学 一种声表面波调控的高通量微液滴生成装置及方法
CN115069316B (zh) * 2022-06-21 2023-08-04 扬州大学 一种能同时检测多种体液的芯片

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914536A (zh) * 2012-10-19 2013-02-06 大连大学 一种图案化多层阵列纸芯片和制备方法及其应用
CN103055979A (zh) * 2012-12-31 2013-04-24 苏州汶颢芯片科技有限公司 一种检测水体中多环芳烃的离心式微流控芯片及其制备方法
CN103865754A (zh) * 2014-03-12 2014-06-18 杭州霆科生物科技有限公司 一种基于微流控的酶抑制反应平台及分析方法
CN104071928A (zh) * 2014-07-16 2014-10-01 哈尔滨工业大学 低温低浊高氨氮水强化处理系统及其处理方法
CN104549587A (zh) * 2015-01-20 2015-04-29 重庆科技学院 一种三通道微球筛选芯片及使用方法
CN105424784A (zh) * 2015-12-15 2016-03-23 哈尔滨工业大学宜兴环保研究院 一种水中重金属离子检测微流控芯片与检测方法
CN106000487A (zh) * 2016-05-16 2016-10-12 南京工业大学 基于氟材料疏水疏油性能微流控纸芯片的制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312085B2 (en) * 2002-04-01 2007-12-25 Fluidigm Corporation Microfluidic particle-analysis systems
EP1938101A2 (en) * 2005-09-13 2008-07-02 Fluidigm Corporation Microfluidic assay devices and methods
PT103601B (pt) * 2006-11-09 2008-10-14 Biosurfit Sa Dispositivo de detecção baseado no efeito de ressonância de plasmão de superfície
JP5504690B2 (ja) * 2008-05-15 2014-05-28 東レ株式会社 分析チップ
CN101428882A (zh) * 2008-12-09 2009-05-13 哈尔滨工业大学 变流向强化沉淀、澄清组合水净化装置
JP6037184B2 (ja) * 2012-09-28 2016-12-07 国立研究開発法人産業技術総合研究所 多孔質媒体を利用したアッセイ装置
CN104931440B (zh) * 2015-06-12 2018-04-10 中国科学院合肥物质科学研究院 一种基于微流控芯片的便携式重金属高灵敏度检测装置
DE212016000165U1 (de) * 2015-08-07 2018-04-16 Poc Medical Systems Inc. Mikrofluidikvorrichtungen
CN106093027A (zh) * 2016-07-22 2016-11-09 苏州汶颢芯片科技有限公司 重金属离子检测芯片
CN107739706B (zh) * 2017-09-26 2020-04-14 南京岚煜生物科技有限公司 主动控制流路的多通量微流控核酸检测芯片及其使用方法
CN208902598U (zh) * 2018-09-04 2019-05-24 重庆科技学院 检测重金属离子的多层微流控芯片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102914536A (zh) * 2012-10-19 2013-02-06 大连大学 一种图案化多层阵列纸芯片和制备方法及其应用
CN103055979A (zh) * 2012-12-31 2013-04-24 苏州汶颢芯片科技有限公司 一种检测水体中多环芳烃的离心式微流控芯片及其制备方法
CN103865754A (zh) * 2014-03-12 2014-06-18 杭州霆科生物科技有限公司 一种基于微流控的酶抑制反应平台及分析方法
CN104071928A (zh) * 2014-07-16 2014-10-01 哈尔滨工业大学 低温低浊高氨氮水强化处理系统及其处理方法
CN104549587A (zh) * 2015-01-20 2015-04-29 重庆科技学院 一种三通道微球筛选芯片及使用方法
CN105424784A (zh) * 2015-12-15 2016-03-23 哈尔滨工业大学宜兴环保研究院 一种水中重金属离子检测微流控芯片与检测方法
CN106000487A (zh) * 2016-05-16 2016-10-12 南京工业大学 基于氟材料疏水疏油性能微流控纸芯片的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
微流控芯片上润滑油中微金属颗粒快速分离;苑海超,武森,江佳威,潘新祥;科学技术与工程;第18卷(第19期);49-53 *

Also Published As

Publication number Publication date
CN108872081A (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN108872081B (zh) 一种检测重金属离子的多层微流控芯片
CN108704684B (zh) 一种检测用多层微流控芯片的使用方法
CN108760661B (zh) 一种石油废水重金属离子多通道检测芯片
CN208902598U (zh) 检测重金属离子的多层微流控芯片
CN210367143U (zh) 一种双通道三相分离器、三相分离系统以及厌氧反应器
CN109142299B (zh) 一种石油废水重金属离子检测芯片使用方法
CN108614091A (zh) 一种土壤重金属淋滤实验系统
CN113310740B (zh) 一种微塑料原位采集、分离与消解装置及方法
CN202881015U (zh) 工业废水处理设备
CN208513350U (zh) 一种土壤修复工程用淋洗装置
CN205528262U (zh) 一种机械加工含油废水处理系统
CN214936668U (zh) 一种实验室废水处理系统
CN113848296B (zh) 一种一体化水质监测系统
CN208795631U (zh) 一种用于测试填料处理污水性能的实验装置
CN205838768U (zh) 废水处理装置
CN211374746U (zh) 一种酸雨淋滤装置
CN111289710A (zh) 一种城市污水水质多参数在线监测仪器
CN205258158U (zh) 一种含重金属废水的过滤池
CN217173429U (zh) 一种水样分析实验室废液分离处理回收器
CN207904052U (zh) 污水处理系统
CN213708044U (zh) 一种实验室液体处理装置
CN214360555U (zh) 油水分离器
CN111924934A (zh) 一种市政沟渠污水初级处理器及其运行工艺
CN214880637U (zh) 一种煤化工的废水除油装置
CN215263440U (zh) 一种水质检测用污水处理装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant