CN108863787A - 3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化及其应用 - Google Patents

3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化及其应用 Download PDF

Info

Publication number
CN108863787A
CN108863787A CN201710345475.8A CN201710345475A CN108863787A CN 108863787 A CN108863787 A CN 108863787A CN 201710345475 A CN201710345475 A CN 201710345475A CN 108863787 A CN108863787 A CN 108863787A
Authority
CN
China
Prior art keywords
alkyl
chiral
catalytic hydrogenation
phenyl
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710345475.8A
Other languages
English (en)
Inventor
周其林
谢建华
刘运亭
王立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201710345475.8A priority Critical patent/CN108863787A/zh
Publication of CN108863787A publication Critical patent/CN108863787A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/26Preparation of ethers by reactions not forming ether-oxygen bonds by introduction of hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/09Preparation of carboxylic acids or their salts, halides or anhydrides from carboxylic acid esters or lactones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/367Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/377Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/313Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • C07C67/32Decarboxylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及3‑烷基‑2‑乙氧羰基取代环状共轭烯酮的不对称催化氢化及其应用。采用手性螺环吡啶胺基膦配体的铱催化剂,在碱存在的条件下,对3‑烷基‑2‑乙氧羰基取代环状共轭烯酮进行不对称催化氢化,得到具有一定光学纯度的含有三个连续手性中心的环状醇。该方法是一种高效、高选择性、经济、可操作性好、环境友好、以及适合工业生产的新方法。可以在较低催化剂的用量下以非常高的对映选择性及收率获得光学活性的含有三个连续手性中心的环状醇。该方法所得到的手性醇可做为关键手性原料用于药物罗沙前列醇和(‑)‑茉莉酸的光学异构体的不对称合成。

Description

3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化及 其应用
技术领域
本发明涉及一种3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化方法,该方法高效、高选择性地制备了含有三个连续手性中心的光学活性环状醇,并应用于药物罗沙前列醇和(-)-茉莉酸的光学异构体的不对称合成。
背景技术
含有多个连续手性中心的光学活性手性醇是合成手性药物和具有重要生理活性天然产物分子的重要手性原料。通过羰基化合物的不对称催化氢化是合成光学活性手性醇的重要方法。尤其是通过α-取代酮类化合物动态动力学拆分的不对称催化氢化(DKR)能够有效地合成含有连续手性中心的手性醇,并已在手性药物和天然产物的合成中得到了广泛的应用(Ohkuma,T.;Ooka,H.;Yamakawa,M.;Ikariya,T.;Noyori,R.J.Org.Chem.,1996,61,4872;Lavergne,D.;Mordant,C.;Ratovelomanana-Vidal,V.;Genet,J.-P.Org.Lett.2001,3,1909;Mordant,C.;Reymond,S.;Tone,H.;Lavergne,D.;Toutai,R.;Hassine,B.;Ratovelomanana-Vidal,V.;Genet,J.-P.Tetrahedron 2007,63,6115)。然而,采用动态动力学拆分的不对称催化氢化方法往往得到仅含有两个连续手性中心的手性醇。通过多取代酮类化合物的不对称催化氢化来合成含有三个连续手性中心的手性醇仍然存在很大的挑战。目前文献报道的方法,主要是通过手性钌和手性铱催化剂对消旋α,α′-取代环酮,以及对消旋α-取代β-烷氧羰基环酮类化合物等的动态动力学拆分不对称催化氢化来制备含有三个连续手性中心的光学活性手性醇(Liu,C.;Xie,J.-H.;Li,Y.-L.;Chen,J.-Q.;Zhou,Q.-L.Angew.Chem.Int.Ed.2013,52,593.Lin,H.;Xiao,L.-J.;Zhou,M.-J.;Yu,H.-M.;Xie,J.-H.;Zhou,Q.-L.Org.Lett.2016,18,1434.;Liu,Y.;Cheng,L.-J.;Yue,H.-T.;Che,W.;Xie,J.-H.;Zhou,Q.-L.Chem.Sci.2016,7,4725)。但采用酮类化合物动态动力学拆分的不对称催化氢化方法来合成含有三个连续手性中心的多样性手性醇仍面临很大的局限。如很难通过酮类化合物动态动力学拆分的不对称催化氢化方法来合成β-位烷基取代的三个连续手性中心的光学活性手性环醇。
含有连续手性中心的手性环醇,特别是其β-位烷基取代的连续手性中心手性环醇结构单元在手性药物和具有重要生理活性天然产物分子中广泛存在,发展高效、高选择性的方法来合成这样的光学活性手性环醇一直受到化学家们的广泛关注(Dalko,P.I.Comprehesive Enantioselective Organocatalysis,Wiley-VCH,Weinheim,2013.;Rios Torres,R.Stereoselective Organocatalysis,Wiley-VCH,Weinheim,2013.;Simeonov,S.P.;Nunes,J.P.M.;Guerra,K.;Kurteva,V.B.;Afonso,C.A.M.Chem.Rev.2016,116,5744)。但目前文献报道的方法往往是从手性原料出发,通过多步反应步骤来制备,合成效率和原子经济差,不符合“环境友好和可持续发展”的合成理念和发展趋势。由此,我们发展了一种3-烷基-2-乙氧羰基取代环状共轭烯酮不对称催化氢化来制备β-位烷基取代的含有三个连续手性中心的光学活性手性环醇的新方法。即通过超高效手性螺环吡啶胺基膦配体的铱催化剂(Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.;Zhou,Q.-L.Angew.Chem.,Int.Ed.2011,50,7329;Zhou,Q.-L.;Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.WO2012065571A1;Zhou,Q.-L.;Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.CN102040625B)的不对称催化氢化,实现3-烷基-2-乙氧羰基取代环状共轭烯酮中碳氧双键(C=O)和共轭碳碳双键(C=C)的“一锅”还原,从而得到相应的含有三个连续手性中心的光学活性手性环醇。该环状共轭烯酮不对称催化氢化的效率和选择性非常高,能够在很低的催化剂用量下,获得高达95%的收率和达到99%ee的高对映选择性。反应的非对映选择性也非常优秀,几乎仅得到单一立体选择性氢化产物,且反应的条件非常温和(可在室温和低于30atm的氢化反应条件下进行)。因此,该环状共轭烯酮不对称催化氢化新方法具有高效、高选择性、经济、可操作性好、环境友好、以及适合工业生产的优点,并且采用该方法制备的含有三个连续手性中心光学活性环醇已成功应用于药物罗沙前列醇的光学异构体以及可用做香料的天然产物(-)-茉莉酸的不对称合成。
发明内容
本发明的目的在于提供一种3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化方法,从而为制备含有三个连续手性中心的光学活性环状醇提供高效方法,并将其应用到手性药物和天然产物分子的不对称合成中。
本发明的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化方法,其特征在于在手性螺环吡啶胺基膦配体的铱催化剂以及碱存在的条件下,对3-烷基-2-乙氧羰基取代环状共轭烯酮进行不对称催化氢化,得到含有三个连续手性中心的光学活性环状醇。
本发明的方法所得到的含有三个连续手性中心的光学活性环戊醇的构型既可以是(1R,2S,5S)-构型也可以是(1S,2R,5R)-构型。所得到的含有三个连续手性中心的光学活性环己醇的构型既可以是(1S,2R,6S)-构型也可以是(1R,2S,6R)-构型。
本发明的方法所得到的含有三个连续手性中心的光学活性环戊醇,可以作为手性起始原料用于药物罗沙前列醇和(-)-茉莉酸的不对称合成。
本发明的积极效果是:它是一种高效、高选择性、经济、可操作性好、环境友好、以及适合工业生产的新方法。该方法可以在很低的催化剂用量下,以很高的对映选择性及收率获得在手性药物和天然产物分子不对称合成中有重要用途的光学活性手性化合物。该制备方法所得到含有三个连续手性中心的光学活性环戊醇作为关键手性中间体成功应用于药物罗沙前列醇和(-)-茉莉酸的不对称合成。
具体实施方式
根据本发明,为了实现3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化方法,可以对具有通式为I和III的3-烷基-2-乙氧羰基取代环状共轭烯酮进行不对称催化氢化。其催化氢化反应过程是:
在有机溶剂中,加入3-烷基-2-乙氧羰基取代环状共轭烯酮、催化剂、碱,并在1~100atm压力的氢气氛围中搅拌反应0.5~16小时得到含有三个连续手性中心的光学活性环状醇。
在通式I和III中:
R1为C1~C20烷基、C1~C20卤代烷基、C2~C20链烯基、C5~C25芳基烷基、C6~C26芳基烯基、-(C1~C8烷基)-OR2、-(C1~C8烷基)-SR3、或-(C1~C8烷基)-NR4R5,其中:R3、R4和R5分别是C1~C8烷基、C5~C14芳基烷基或C4~C15芳基,R4和R5还可以是4-20个碳原子的环状氨基;
所得通式为II的手性醇的构型既可以是(1R,2S,5S)-构型也可以是(1S,2R,5R)-构型。
所得通式为IV的手性醇的构型既可以是(1S,2R,6S)-构型也可以是(1R,2S,6R)-构型。
本发明所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化是在具有通式为V的手性螺环吡啶胺基膦配体与铱金属前体现场络合所得配合物的催化作用下实现的(Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.;Zhou,Q.-L.Angew.Chem.,Int.Ed.2011,50,7329;Zhou,Q.-L.;Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.WO2012065571A1;Zhou,Q.-L.;Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.CN102040625B)。
在通式V中:
R1为C1~C8的烃基、苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C8的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基;
R2、R3、R4、R5为H、C1~C8烷基、苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C8的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基;或C1~C8烷氧基;或R2~R3、R4~R5并为C3~C7脂肪环、芳香环;R2、R3、R4、R5可以相同也可以不同;
R6、R7为H、C1~C8烷基、C1~C8烷氧基、C1~C8脂肪胺基,n=0~3;或当n≥2时,两个相邻的R6、R7可并为C3~C7脂肪环或芳香环,R6、R7可以相同也可以不同;
R8、R9为H、C1~C8烷基、C1~C8烷氧基,苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C8的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基,m=0~3;或当m≥2时,相邻的R9或R8和R9可并为C3~C7脂肪环或芳香环,R8、R9可以相同也可以不同;
R10为H、C1~C8烷基、苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C8的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基。
铱金属前体为[Ir(cod)Cl]2(cod=环辛二烯)、[Ir(cod)2]BF4、[Ir(cod)2]PF6、[Ir(cod)2]SbF6、[Ir(cod)2]OTf等。
适宜的手性螺环吡啶胺基膦配体包括如下结构式所示:
其中,DTB为3,5-二叔丁基苯基;Xyl为3,5-二甲基苯基;tBu为叔丁基;
铱催化剂的结构既可是(R)-构型也可以是(S)-构型;
本发明中“C1~C10烷基”表示直链或支链的含有至多10个碳原子的烷基,例如甲基、乙基、丙基、异丙基、丁基、异丁基、叔丁基、戊基、异戊基、新戊基、己基、叔己基、庚基、异庚基、辛基及异辛基。类似地,“C1~C10烷氧基”表示通过氧原子连接的如上文所定义的烷基,如甲氧基、乙氧基、丙氧基、丁氧基等。“芳基”表示具有芳香环结构性质的取代基,如苯基、呋喃基、噻吩基、吡啶基、喹啉基、吲哚基,以及芳环上带有不同取代基的芳基,如对甲苯基,对甲氧基苯基,对氯苯基等。“链烯基”表示含有双键的链状烷基,如烯丙基、丙烯基,1-丁烯基,2-丁烯基等。
本发明所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化中所使用的手性螺环吡啶胺基膦配体的铱催化剂按文献方法的制备(Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.;Zhou,Q.-L.Angew.Chem.,Int.Ed.2011,50,7329;Zhou,Q.-L.;Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.WO2012065571A1;Zhou,Q.-L.;Xie,J.-H.;Liu,X.-Y.;Xie,J.-B.;Wang,L.-X.CN102040625B)。具体制备方法如下:
在1~10atm氢气压力下,反应温度为25~40℃的条件下,1当量的铱金属前体(如[Ir(cod)Cl]2(cod=环辛二烯)、[Ir(cod)2]BF4、[Ir(cod)2]PF6、[Ir(cod)2]SbF6、[Ir(cod)2]OTf) 与1~1.2当量的手性螺环吡啶胺基膦配体在有机溶剂中络合反应0.5~4小时,脱溶得到相应的铱催化剂。
本发明所采用的铱催化剂优选[Ir(cod)Cl]2作为前体,(R)-N-(3-甲基吡啶-2-甲基)-7-二-(3,5-二叔丁基苯基)膦基-7′-氨基-1,1′-螺二氢茚作为配体。
本发明所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化中所使用的碱为醇的碱金属盐(如叔丁醇钾、叔丁醇钠、异丙醇钾、异丙醇钠)、碱金属氢氧化物(如氢氧化钾、氢氧化钠)、碱金属碳酸盐(如碳酸钾、碳酸钠),优选醇的碱金属盐。
本发明所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化中所使用的溶剂为甲醇、乙醇、丙醇、异丙醇、丁醇、四氢呋喃、甲苯、甲基叔丁基醚、二氧六环、DMF、DMSO中的一种或其中几种的混合溶剂,优选醇类溶剂。
根据本发明,在进行不对称催化氢化反应时,不对称氢化的氢气压力为5-100atm,优选为10atm;反应的温度为25-100℃,优选为室温反应最佳(25-30℃);底物3-烷基-2-乙氧羰基取代环状共轭烯酮和催化剂的摩尔比为1000∶1-5000∶1,优选为1000∶1;碱的浓度为0.01-0.1M,优选为0.02-0.06M;底物的浓度为0.001-2.0M,优选为0.01-1.0M;不对称催化氢化反应的时间为0.2-16小时,最佳的反应时间为0.5-6小时。
本发明通过下列实施实例进一步举例说明,但以下实例仅有助于进一步理解本发明,但不能限制本发明的内容。
实施例1:
手性螺环吡啶胺基膦配体的铱催化剂的制备,以铱催化剂Vd为例。
在1atm氢气氛围下,将[Ir(cod)Cl]2(60mg,0.09mmol)和(R)-N-(3-甲基吡啶-2-甲基)-7-二-(3,5-二叔丁基苯基)膦基-7′-氨基-1,1′-螺二氢茚(141mg,0.188mmol)溶于乙醇(8mL)中,室温下搅拌反应3小时,减压脱溶得到淡黄色固体。该固体直接用于氢化反应中。
其余铱催化剂按照相同的方法制备。
实施例2:
3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化。
在氮气保护下,向氢化反应内管中依次加入1mmol 3-烷基-2-乙氧羰基取代环状共轭烯酮,0.001mmol催化剂的乙醇溶液(0.5mL),0.01mmol叔丁醇钾的乙醇溶液(0.5mL)以及4mL乙醇。密封反应釜,充氢气至10atm,在该氢气压力下室温搅拌反应0.5-16小时。氢化反应完毕后,缓慢释放氢气,减压脱出溶剂。核磁测定转化率,液相色谱测定化合物的对映选择性,结果见表1和表2.
表1.
表2
上述实施例制备所得手性醇2a-n的旋光、核磁共振光谱、高效液相色谱及高分辨质谱数据如下所示:
(1R,2S,5S)-Ethyl 2-hydroxy-5-methyleyclopentanecarboxylate(2a)
2.15-2.06(m,1H),1.95-1.86(m,1H),1.77-1.68(m,1H),1.31-1.26(m,3H),1.25-1.17(m,1H),1.10(t,J=5.8Hz,3H).13C NMR(101MHz,CDCl3)δ175.0,74.6,60.7,57.0,35.8,33.7,31.6,20.0,14.4.HRMS(ESI)m/z calcd for C9H16NaO3([M+Na]+):195.0997;found:195.0993.HPLC analysis(Chiralpak OD-3column,hexane/2-propanol=95∶5,flow rate=1.0mL/min,wavelength=254nm):tR=8.22(major)and 7.73min(minor).
(1R,2S,5S)-Ethyl 2-ethyl-5-hydroxycyclopentanecarboxylate(2b)
(m,1H),1.80-1.71(m,1H),1.66-1.57(m,1H),1.28(t,J=7.2Hz,5H),0.91(t,J=7.4Hz,3H). 13C NMR(101MHz,CDCl3)δ175.3,74.7,60.8,55.2,42.8,33.9,28.8,28.2,14.4,12.4.HRMS(ESI)m/z calcd for C10H18NaO3([M+Na]+):209.1154,found 209.1150.HPLCanalysis(Chiralpak OD-3column,hexane/2-propanol=97∶3,flow rate=1.0mL/min,wavelength=220rm):tR=8.87(major)and 8.49min(minor).
(1R,2S,5S)-Ethyl 2-hydroxy-5-isopropylcyclopentanecarboxylate(2c)
2.12-2.03(m,1H),1.89-1.81(m,1H),1.74(m,1H),1.58-1.47(m,1H),1.37-1.19(m,7H),0.89(t,J=7.1Hz,3H).13C NMR(101MHz,CDCl3)δ175.2,74.6,60.8,55.6,40.9,37.8,33.9,29.2,21.3,14.4,14.3.HRMS(ESI)m/z calcd for C11H21O3([M+H]+):201.1491;found:201.1487.HPLC analysis(Chiralpak OD-H column,hexane/2-propanol=80∶20,flowrate=1.0mL/min,wavelength=220nm):tR=5.13(major)and 4.68min(minor).
(1R,2S,5S)-Ethyl 2-hydroxy-5-isopropylcyclopentanecarboxylate(2d)
2.49(dd,J=9.8,5.3Hz,1H),2.35-2.25(m,1H),1.94(dt,J=15.1,8.4Hz,1H),1.80-1.70(m,2H),1.64-1.56(m,1H),1.39-1.31(m,1H),1.26(t,J=7.1Hz,3H),0.85(t,J=7.3Hz,6H).13C NMR(101MHz,CDCl3)δ175.5,75.0,60.8,52.8,47.8,34.4,31.7,25.9,21.2,19.3,14.3.HRMS(ESI)m/z calcd for C11H20NaO3([M+Na]+):223.1310;found:223.1304.HPLCanalysis(Chiralpak AD-H column,hexane/2-propanol=95∶5,flow rate=1.0mL/min,wavelength=254nm):tR=5.69(major)and 7.58min(minor).
(1R,2S,5S)-Ethyl 2-hexyl-5-hydroxycyclopentanccarboxylate(2e)
1H),1.77-1.71(m,1H),1.59-1.49(m,1H),1.30-1.20(m,13H),0.87(t,J=5.5Hz,3H).13CNMR(101MHz,CDCl3)δ175.2,74.6,60.8,55.5,41.1,35.5,33.9,31.9,29.5,29.2,28.1,22.8,14.4,14.2.HRMS(ESI)m/z calcd for C14H26NaO3([M+Na]+):265.1780;found:265.1777.HPLC analysis(Chiralpak AD-3column,hexane/2-propanol=98∶2,flow rate=0.8mL/min,wavelength=220nm):tR=10.16(major)and7.72min(minor).
(1R,2S,5S)-Ethyl 2-hydroxy-5-phenethylcyclopentanecarboxylate(2f)
2.63-2.53(m,1H),2.51-2.35(m,2H),2.23-2.12(m,1H),1.99-1.84(m,2H),1.83-1.73(m,1H),1.62-1.52(m,1H),1.40-1.32(m,1H),1.27(t,J=7.1Hz,3H).13C NMR(101MHz,CDCl3)δ175.0,142.4,128.5,128.4,125.9,74.5,60.8,55.6,40.7,37.5,34.6,33.8,29.2,14.4.HRMS(ESI)m/z calcd for C16H23O3([M+H]+):263.1647,found 263.1645.HPLCanalysis(Chiralpak OD-H column,Hexare;2-propanol=80∶20,flow rate=1.0mL/min,wavelength=254nm):tR=4.57(major)and 5.43min(minor).
(1R,2S,5S)-Ethyl 2-hydroxy-5-phenethylcyclopentanecarboxylate(2g)
1H),2.46(dd,J=10.5,4.6Hz,1H),2.32(dd,J=15.5,8.5Hz,1H),2.24-2.15(m,1H),1.92-1.84(m,1H),1.79-1.74(m,1H),1.44-1.31(m,1H),1.26(dt,J=13.1,7.1Hz,6H).13C NMR(101MHz,CDCl3)δ174.2,172.5,74.2,61.0,60.5,54.8,39.4,36.8,33.4,29.2,14.4.HRMS(ESI)m/z calcd for C12H21O5([M+H]+):245.1389,found 245.1386.HPLC analysis(Chiralpak OD-3column,Hexane:2-propanol=95∶5,flow rate=1.0mL/min,wavelength=280nm):tR=8.14(major)and7,61min(minor).
(1S,2R,6S)-Ethyl 2-hydroxy-6-methylcyclohexanecarboxylate(2h)
1.54-1.39(m,2H),1.27(t,J=7.1Hz,4H),1.03(d,J=7.1Hz,3H)..13C NMR(101MHz,CDCl3)δ173.94(s),70.27(s),60.28(s),51.55(s),32.71(s),30.62(s),29.67(s),21.21(s),18.93(s),14.48(s).HRMS(ESI)m/z calcd for C10H18NaO3([M+Na]+):209.1154;found:209.1152.HPLC analysis(Chiralpak OJ-3column,Hexane:2-propanol=95∶5,flow rate=1.0mL/min,wavelength=254nm):tR=10.32(major)and 8.06min(minor).
(1S,2R,6S)-Ethyl 2-ethyl-6-hydroxycyclohexanecarboxylate(2i)
1H),1.74-1.68(m,1H),1.65-1.58(m,1H),1.52-1.44(m,3H),1.42-1.32(m,2H),1.27(t,J=7.1Hz,3H),0.91(t,J=7.4Hz,3H).13C NMR(101MHz,CDCl3)δ173.5,71.0,60.2,50.5,40.6,30.7,26.7,26.3,22.4,14.5,12.3.HRMS(ESI)m/z calcd for C11H20NaO3([M+Na]+):223.1310;found:223.1307.HPLC analysis(Chiralpak OJ-3column,Hexane:2-propanol=97∶3,flow rate=1.0mL/min,wavelength=254nm):tR=16.57(major)and 12.95min(minor).
(1S,2R,6S.)-Ethyl 2-hydroxy-6-propylcyclohexanecarboxylate(2j)
(m,1H),1.74-1.55(m,3H),1.53-1.40(m,2H),1.39-1.31(m,3H),1.27(dd,J=9.2,5.1Hz,4H),0.88(t,J=7.0Hz,3H).13C NMR(101MHz,CDCl3)δ173.6,70.9,60.2,50.7,38.3,35.7,30.8,27.1,22.3,20.7,14.5,14.3.HRMS(ESI)m/z calcd for C12H22NaO3([M+Na]+):237.1467;found:237.1466.GC conditions:Gamma-DEXTM 120column(df=0.25μm,0.25mmi.d.×30m,fused silica capillary column);carrier gas,N2(flow 2mL/min);injection temp,230℃;constant column temperature,115℃);tR=58.76min(major).and 61.12(minor)
(1S,2R,6S)-Ethyl 2-butyl-6-hydroxycyclohexanecarboxylate(2k)
1.73-1.67(m,1H),1.52-1.48(m,1H),1.47-1.37(m,2H),1.33-1.23(m,10H),0.91-0.86(m,3H). 13C NMR(101MHz,CDCl3)δ173.6,71.0,60.2,50.7,38.6,33.1,30.8,29.9,27.1,22.9,22.3,14.5,14.2.HRMS(ESI)m/z calcd for C13H24NaO3([M+Na]+):251.1623;found:251.1620.HPLC analysis(Chiralpak AD-H column,hexane/2-propanol=80∶20,flowrate=1.0mL/min,wavelength=220nm):tR=3.56(major)and 3.73min(minor).
(1S,2R,6R)-Ethyl 2-hydroxy-6-isobutylcyclohexanecarboxylate(21)
1.74-1.62(m,3H),1.49(dt,J=13.6,6.8Hz,1H),1.40-1.33(m,1H),1.31-1.19(m,5H),1.12(dt,J=13.8,7.0Hz,1H),0.84(dd,J=10.7,6.6Hz,6H).13C NMR(101MHz,CDCl3)δ173.6,70.8,60.2,50.6,42.5,35.8,30.7,27.2,25.0,22.9,22.6,22.2,21.4,14.5.HRMS(ESI)m/z calcd for C13H24NaO3([M+Na]+):251.1623;found:251.1620.HPLC analysis(Chiralpak AD-H column,hexane/2-propanol=90∶10,flow rate=1.0mL/min,wavelength=220nm):tR=3.72(major)and3.92min(minor).
(1S,2R,6R)-Ethyl 2-hydroxy-6-phenethylcyclohexanecarboxylate(2m)
4.0Hz,1H),2.63(t,J=7.7Hz,2H),2.35(s,1H),1.98-1.85(m,1H),1.84-1.76(m,1H),1.74-1.51(m,5H),1.48-1.41(m,1H),1.23(t,J=7.1Hz,4H).13C NMR(101MHz,CDCl3)δ173.5,142.4,128.5,125.9,70.8,60.3,50.4,37.9,35.1,33.8,30.7,27.0,22.1,14.5.HRMS(ESI)m/z calcd for C17H24NaO3([M+Na]+):299.1623;found:299.1618.HPLCanalysis(Chiralpak AD-H column,hexane/2-propanol=80∶20,flow rate=1.0mL/min,wavelength=210nm):tR=4.75(minor)and 5.06min(major).
(1S,2R,6R)-Ethyl 2-(2-ethoxy-2-oxoethyl)-6-hydroxycyclohexanecarboxylate(2n)
Hz,1H),2.36(dd,J=16.0,6.2Hz,1H),2.28-2.22(m,1H),1.90-1.76(m,2H),1.72-1.64(m,1H),1.57-1.42(m,2H),1.39-1.30(m,1H),1.25(dt,J=11.3,7.1Hz,6H).13C NMR(101MHz,CDCl3)δ173.3,172.7,70.1,60.6,60.5,49.8,38.0,34.5,30.6,27.4,21.3,14.4,14.3.HRMS(ESI)m/z calcd for C13H22NaO5([M+Na]+):281.1365;found:281.1362.HPLCanalysis(Chiralpak AD-H column,hexane/2-propanol=90∶10,flow rate=1.0mL/min,wavelength=210nm):tR=7.56(major)and 8.07min(minor).
实施例3:
不对称合成(+)-(1R,2S,5S)-Rosal和(+)-(1R,2S,5R)-Rosal
3.1羟基的保护
向(1R,2S,5S)-2-正己基基-5-羟基环戊烷-1-甲酸乙酯3(1.5g,6.0mmol)的环己烷(40mL)和二氯甲烷(20mL)的溶液中加入新制备的2,2,2-三氯乙酰胺苄酯(BTCA)(1.8g,7.2mmol),向该溶液中缓慢加入三氟乙酸,室温反应12小时。反应完毕后用饱和NaHCO3溶液淬灭,用乙醚萃取,合并有机相,无水硫酸镁干燥。抽滤脱溶后,经硅胶柱层析(石油醚∶乙酸乙酯=20∶1)得到无色液体1.8g,收率90%。(c 1.0CHCl3).1H NMR(400MHz,CDCl3)δ7.34-7.20(m,5H),4.56-4.38(m,2H),4.21-4.03(m,3H),2.53-2.44(m,2H),2.04-1.97(m,1H),1.83(dd,J=12.2,7.2Hz,2H),1.51-1.42(m,1H),1.29-1.11(m,13H),0.85(t,J=6.3Hz,3H).13C NMR(101MHz,CDCl3)δ172.7,138.8,128.3,127.4,81.9,71.1,60.3,56.0,39.7,35.9,32.0,31.0,29.6,29.3,28.2,22.8,14.4,14.2.HRMS(ESI)m/z calcd forC21H33O3([M+H]+):333.2430;found:333.2429.
3.2酯基的还原
冰浴条件下向(1R,2S,5S)-2-苄氧基-5-正己基环戊烷-1-甲酸乙酯4(1.9g,5.7mmol)的无水乙醚溶液中分批加入四氢铝锂(412mg,17.1mmol),加完后升至室温下反应6小时后,用2M盐酸溶液淬灭反应。用乙酸乙酯萃取,合并有机相,分别用水洗,饱和氯化钠溶液洗。无水硫酸镁干燥,脱溶后,经硅胶柱层析(石油醚∶乙酸乙酯=4∶1)得到无色液体1.5g,收率90%。(c 1.0CHCl3).1H NMR(400MHz,CDCl3)δ7.37-7.28(m,5H),4.62(d,J=11.8Hz,1H),4.39(d,J=11.8Hz,1H),4.13(dd,J=11.4,5.6Hz,1H),3.86-3.64(m,2H),2.91(t,J=6.1Hz,1H),2.06-1.79(m,3H),1.78-1.62(m,2H),1.53-1.45(m,1H),1.35-1.21(m,8H),1.18-1.05(m,2H),0.87(t,J=6.4Hz,3H).13C NMR(101MHz,CDCl3)δ138.5,128.6,127.8,127.6,83.7,71.1,62.4,51.0,38.7,35.5,32.0,30.6,29.7,29.6,28.2,22.8,14.3.HRMS(ESI)m/z calcd for C19H31O2([M+H]+):291.2324,found 291.2323.
3.3羟基的氧化
向(1R,2S,5S)-2-苄氧基-5-正己基环戊烷-1-甲醇5(1.3g,4.5mmol)的无水二氯甲烷溶液中加入DMP(3.8g,9mmol),室温下反应1小时后,用饱和硫代硫酸钠溶液淬灭反应。用二氯甲烷萃取,合并有机相,分别用饱和碳酸氢钠溶液洗,饱和氯化钠溶液洗。无水硫酸镁干燥,脱溶后,经硅胶柱层析(石油醚∶乙酸乙酯=20∶1)得到无色液体1.18g,收率92%。(c 1.0CHCl3).1H NMR(400MHz,CDCl3)δ9.81(d,J=3.4Hz,1H),7.38-7.25(m,5H),4.54(d,J=12.0Hz,1H),4.39(d,J=12.0Hz,1H),4.32(dd,J=11.3,4.9Hz,1H),2.56-2.50(m,1H),2.45-2.26(m,1H),2.13-2.05(m,1H),1.99-1.74(m,2H),1.42-1.36(m,1H),1.32-1.20(m,10H),0.87(t,J=6.7Hz,3H).13C NMR(101MHz,CDCl3)δ204.1,138.3,128.5,127.7,127.6,82.6,71.1,62.2,38.5,35.7,31.9,31.5,29.8,29.5,28.2,22.8,14.2.HRMS(ESI)m/z calcd for C19H28O2([M+H]+):288.2089,found:288.2085
3.4Wittig反应
将5-羧丁基三苯基溴化膦(2.75g,6mmol)置于反应瓶中,加入无水四氢呋喃(40mL)。冰浴条件下加入LiHMDS(11mL,1M in THF,11mmol),搅拌反应0.5小时后降至-78℃。向得到的血红色溶液中加入(1R,2S,5S)-2-苄氧基-5-正己基环戊烷-1-甲醛6(1.15g,4.0mmol)的水四氢呋喃(4mL)溶液,加完后升至室温反应12小时。反应完毕后用1M盐酸溶液淬灭,用乙酸乙酯萃取,合并有机相,用饱和氯化钠溶液洗。无水硫酸镁干燥,脱溶后,经硅胶柱层析(石油醚∶丙酮=5∶1)得到无色液体1.23g,收率80%。(c 1.0CHCl3).1HNMR(400MHz,CDCl3)δ11.29(s,1H),7.39-7.21(m,5H),5.65-5.45(m,2H),4.48(q,J=12.2Hz,2H),3.86-3.83(m,1H),2.44-2.22(m,3H),2.16-1.95(m,3H),1.94-1.76(m,3H),1.70-1.61(m,2H),1.49-1.13(m,13H),0.88(t,J=6.8Hz,3H).13C NMR(101MHz,CDCl3)δ179.8,139.4,130.5,130.0,128.3,127.4,127.3,83.6,71.1,49.4,44.0,34.8,34.0,32.1,31.1,29.8,29.5,29.4,28.5,27.5,24.5,22.8,14.3.HRMS(ESI)m/z calcd for C25H39O3([M+H]+):387.2899,found:387.2900.
3.4双键的还原及苄基的脱除
将(E)-7-((1S,2S,5S)-2-(苄氧基)-5-正己基环戊基)庚-6-烯酸7(1.2g,3.1mmol)溶于乙醇(30mL)中,加入10%o氢氧化钯(220mg)。置换成氢气,加热至60℃反应24小时。反应完毕后将催化剂过滤掉,脱溶后,经硅胶柱层析(石油醚∶丙酮=2∶1)得到无色液体0.85g,收率92%。(c 2.1,CHCl3).1H NMR(400MHz,CDCl3)δ6.23(bs,1H),4.21(t,J=3.8Hz,1H),2.34(t,J=7.4Hz,2H),2.03-1.91(m,1H),1.87-1.78(m,1H),1.70-1.55(m,4H),1.54-1.14(m,19H),1.08-0.96(m,1H),0.88(t,J=6.7Hz,3H).13C NMR(101MHz,CDCl3)δ179.7,74.7,51.6,41.9,35.2,34.1,33.5,32.0,29.7,29.1,28.3,27.7,24.7,22.8,14.2.HRMS(ESI)m/z calcd for C18H34NaO3([M+Na]+):321.2406,found:321.2402.
3.5酯化反应
将(+)-(1R,2S,5S)-Rosal(250mg,0.84mmol)溶于甲醇(5mL)中,加入三氟化硼乙醚(240mg,1.68mmol)。N2氛围下,加热至回流反应5小时。反应完毕后加水淬灭,用乙醚萃取,合并有机相,用饱和氯化钠溶液洗,无水硫酸镁干燥。脱溶后,经硅胶柱层析(石油醚∶乙酸乙酯=6∶1)得到无色液体238mg,收率91%。(c 0.7CHCl3).1H NMR(400MHz,CDCl3)δ4.19(s,1H),3.66(s,3H),2.36-2.26(m,2H),2.03-1.93(m,1H),1.85-1.78(m,1H),1.64-1.57(m,4H),1.53-1.43(m,1H),1.39-1.21(m,19H),1.06-0.99(m,1H),0.87(t,J=6.8Hz,3H).13C NMR(101MHz,CDCl3)δ174.5,74.6,51.6,51.6,42.0,35.3,34.2,33.7,32.1,29.8,29.8,29.2,29.1,28.5,28.3,27.8,25.0,22.8,14.3.
3.5羟基构型翻转
将(E)-7-((1S,2S,5S)-2-(苄氧基)-5-正己基环戊基)庚-6-烯酸甲酯8(125mg,0.4mmol),三苯基膦(136mg,0.52mmol),对硝基苯甲酸(PNBA,74mg,0.44mmol)溶于四氢呋喃(6mL)中,冰浴条件下反应15分钟。然后加偶氮二甲酸二异丙酯(PNBA,74mg,0.44mmol)。所得黄色溶液在0℃反应30分钟,然后升至室温反应5小时。脱溶,将所得残渣溶于乙醇(4mL),加入1M氢氧化锂溶液(3mL),室温反应8小时。用1M盐酸调PH=1,真空旋掉乙醇,用乙酸乙酯萃取,无水硫酸镁干燥。脱溶后,经硅胶柱层析(石油醚∶丙酮=3∶1)得到无色液体93mg,收率77%。(c 0.6CHCl3).1H NMR(400MHz,CDCl3)δ6.25(bs,1H),3.91-3.84(m,1H),2.33(t,J=7.5Hz,2H),1.81-1.70(m,2H),1.66-1.56(m,3H),1.54-1.43(m,1H),1.43-1.13(m,21H),0.87(t,J=6.8Hz,3H).13C NMR(101MHz,CDCl3)δ179.6,79.4,54.6,44.8,36.2,34.4,34.2,33.7,32.0,29.8,29.7,29.5,29.1,28.4,27.8,24.8,22.8,14.3.
实施例4:
(-)-茉莉酸的合成
4.1羟基的氧化
向醇9(732mg,3mmol)的二氯甲烷(20mL)溶液中加入硅藻土(2g)、PCC(1.94g,9mmol),室温搅拌6小时。硅藻土抽滤,脱溶后,经硅胶柱层析(石油醚∶乙酸乙酯=3∶1)得到无色液体653mg,收率90%。(c 1.0CHCl3).1H NMR(400MHz,CDCl3)δ4.19(tt,J=7.1,3.5Hz,2H),4.12(q,J=7.2Hz,2H),2.96(t,J=4.0Hz,2H),2.54(dd,J=9.6,6.0Hz,1H),2.50-2.26(m,4H),1.64-1.50(m,1H),1.26(dt,J=11.3,7.1Hz,6H).13C NMR(101MHz,CDCl3)δ210.8,171.5,168.8,61.6,60.8,60.8,38.8,38.4,37.6,27.2,14.3.
4.2亲核取代反应
将酮10(242mg,1.0mmol)用无水甲苯(3mL)溶解后,加入叔丁醇钾(135mg,1.2mmol),并室温下搅拌0.5小时。随后再加入溴代物11(222mg,1.5mmol),在氮气保护下,加热回流反应过夜。冷却至室温,加入0.5N HCl淬灭反应,乙酸乙酯萃取,无水硫酸镁干燥。脱溶后,经硅胶柱层析(石油醚∶乙酸乙酯=3∶1)得到无色液体233mg,收率75%。(c 1.0CHCl3).1H NMR(400MHz,CDCl3)δ5.56-5.49(m,1H),5.23-5.00(m,1H),4.26-4.02(m,4H),2.69-2.64(m,1H),2.60-2.50(m,4H),2.28-2.09(m,3H),2.10-1.99(m,2H),1.87-1.73(m,1H),1.25(td,J=7.1,3.7Hz,6H),0.94(t,J=7.5Hz,3H).13C NMR(101MHz,CDCl3)δ215.0,171.9,170.4,136.7,122.3,62.3,61.5,60.8,39.8,38.8,36.0,28.9,26.5,20.8,14.3,14.3,14.1.
4.3脱羧反应
将酮12(155mg,0.5mmol)用HMPA(3mL)溶解后,加入碘化锂(134mg,1.0mmol)、水(45mg,2.5mmol)。在氮气保护下,加热至180℃反应3小时。冷却至室温,加入饱和氯化钠溶液,用乙醚萃取,合并有机相。用水洗,饱和氯化钠溶液洗,无水硫酸镁干燥。脱溶后,经硅胶柱层析(石油醚∶乙酸乙酯=4∶1)得到无色液体92mg,收率77%。(c 1.0CHCl3).1HNMR(400MHz,CDCl3)δ5.50-5.38(m,1H),5.32-5.17(m,1H),4.14(q,J=7.1Hz,2H),2.68(d,J=11.0Hz,1H),2.41-2.20(m,6H),2.14-1.99(m,3H),1.94-1.81(m,1H),1.58-1.39(m,1H),1.26(t,J=7.1Hz,3H),0.95(t,J=7.5Hz,3H).13C NMR(101MHz,CDCl3)δ219.2,172.2,134.2,125.1,60.6,54.2,39.2,38.1,37.9,27.3,25.6,20.7,14.4,14.2.
4.4水解反应
将酮13(48mg,0.2mmol)用乙醇(1mL)溶解后,加入氢氧化钾(56mg,1.0mmol)。在氮气保护下,加热至回流反应过夜。冷却至室温,加入1M盐酸溶液淬灭反应。真空旋掉乙醇,用乙醚萃取,合并有机相,饱和氯化钠溶液洗,无水硫酸镁干燥。脱溶后,经硅胶柱层析(石油醚∶乙酸乙酯∶乙酸=3∶1∶0.1)得到无色液体36mg,收率85%。(c 0.95MeOH).1HNMR(400MHz,CDCl3)δ10.56(bs,1H),5.54-5.37(m,1H),5.29-5.22(m,1H),4.24-4.02(m,1H),3.72-3.62(m,1H),2.77(d,J=11.9Hz,1H),2.53-2.21(m,6H),2.19-2.01(m,3H),1.97-1.85(m,1H),1.63-1.46(m,1H),0.95(t,J=7.5Hz,3H).13C NMR(101MHz,CDCl3)δ219.0,178.1,134.4,125.0,54.0,38.8,37.91,37.87,27.3,25.6,20.7,14.2。

Claims (7)

1.一种3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化的方法,其特征在于在手性螺环吡啶胺基膦配体的铱催化剂以及碱存在的条件下,对3-烷基-2-乙氧羰基取代环状共轭烯酮进行不对称催化氢化,得到具有一定光学纯度的含有三个连续手性中心的环状醇。
2.按照权利要求1所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化的方法,其特征在于通过如下的氢化反应过程:
其中,R1为C1~C20烷基、C1~C20卤代烷基、C2~C20链烯基、C5~C25芳基烷基、C6~C26芳基烯基、-(C1~C8烷基)-OR2、-(C1~C8烷基)-SR3、或-(C1~C8烷基)-NR4R5,其中:R3、R4和R5分别是C1~C8烷基、C5~C14芳基烷基或C4~C15芳基,R4和R5还可以是4-20个碳原子的环状氨基;
所得通式为II的手性醇的构型既可以是(1R,2S,5S)-构型也可以是(1S,2R,5R)-构型。
所得通式为IV的手性醇的构型既可以是(1S,2R,6S)-构型也可以是(1R,2S,6R)-构型。
3.按照权利要求1或2所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化的方法,其特征在于所述的手性催化剂是具有通式为V的手性螺环吡啶胺基膦配体与铱金属前体现场络合所得;
其中,R1为C1~C8的烃基、苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C8的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基;
R2、R3、R4、R5为H、C1~C8烷基、苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C8的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基;或C1~C8烷氧基;或R2~R3、R4~R5并为C3~C7脂肪环、芳香环;R2、R3、R4、R5可以相同也可以不同;
R6、R7为H、C1~C8烷基、C1~C8烷氧基、C1~C8脂肪胺基,n=0~3;或当n≥2时,两个相邻的R6、R7可并为C3~C7脂肪环或芳香环,R6、R7可以相同也可以不同;
R8、R9为H、C1~C8烷基、C1~C8烷氧基,苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C8的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基,m=0~3;或当m≥2时,相邻的R9或R8和R9可并为C3~C7脂肪环或芳香环,R8、R9可以相同也可以不同;
R10为H、C1~C8烷基、苯基、取代苯基、1-萘基、2-萘基、杂芳基或苄基,所述的苯基上的取代基为C1~C8的烃基、烷氧基,取代基数量为1~5,杂芳基为呋喃基、噻吩基或吡啶基;
适宜的手性催化剂中的手性螺环胺基吡啶膦配体包括如下结构式所示:
其中DTB为3,5-二叔丁基苯基;Xy1为3,5-二甲基苯基;tBu为叔丁基;手性螺环胺基吡啶膦配体的结构既可是(R)-构型也可以是(S)-构型。
铱金属前体为[Ir(cod)Cl]2(cod=环辛二烯)、[Ir(cod)2]BF4、[Ir(cod)2]PF6、[Ir(cod)2]SbF6、[Ir(cod)2]OTf等。
4.按照权利要求1或2所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化的方法,其特征在于所述的催化氢化反应步骤为:在有机溶剂中,加入3-烷基-2-乙氧羰基取代环状共轭烯酮、催化剂、碱,并在1~50atm压力的氢气氛围中搅拌反应0.5~16小时得到具有一定光学纯度的含有三个连续手性中心的环状醇。
5.按照权利要求1或4所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化的方法,其特征在于所述的碱包括:醇的碱金属盐(如叔丁醇钾、叔丁醇钠、异丙醇钾、异丙醇钠)、碱金属氢氧化物(如氢氧化钾、氢氧化钠)、碱金属碳酸盐(如碳酸钾、碳酸钠)。
6.按照权利要求1或4所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化的方法,其特征在于所述的溶剂为甲醇、乙醇、丙醇、异丙醇、丁醇、四氢呋喃、甲苯、甲基叔丁基醚、二氧六环、DMF、DMSO中的一种或其中几种的混合溶剂。
7.按照权利要求1所述的3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化的方法,所得到的光学纯的含有三个连续手性中心的环状醇可以作为手性起始原料,用于药物罗沙前列醇和(-)-茉莉酸的光学异构体的不对称合成。
CN201710345475.8A 2017-05-12 2017-05-12 3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化及其应用 Pending CN108863787A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710345475.8A CN108863787A (zh) 2017-05-12 2017-05-12 3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710345475.8A CN108863787A (zh) 2017-05-12 2017-05-12 3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化及其应用

Publications (1)

Publication Number Publication Date
CN108863787A true CN108863787A (zh) 2018-11-23

Family

ID=64320544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710345475.8A Pending CN108863787A (zh) 2017-05-12 2017-05-12 3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化及其应用

Country Status (1)

Country Link
CN (1) CN108863787A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970795A (zh) * 2019-05-05 2019-07-05 南开大学 吡啶环上4-位取代手性螺环胺基膦配体制备方法及其应用
CN110724164A (zh) * 2019-10-30 2020-01-24 南开大学 吡啶环上3-位取代手性螺环胺基膦配体制备方法及其应用
CN115477581A (zh) * 2022-09-13 2022-12-16 安徽金禾化学材料研究所有限公司 一种高顺式二氢茉莉酮酸甲酯的制备方法
WO2023112033A3 (en) * 2021-12-15 2023-08-03 Adama Agan Ltd. Compounds useful for the preparation of various agrochemicals and markers thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970795A (zh) * 2019-05-05 2019-07-05 南开大学 吡啶环上4-位取代手性螺环胺基膦配体制备方法及其应用
CN109970795B (zh) * 2019-05-05 2022-03-04 浙江九洲药业股份有限公司 吡啶环上4-位取代手性螺环胺基膦配体制备方法及其应用
CN110724164A (zh) * 2019-10-30 2020-01-24 南开大学 吡啶环上3-位取代手性螺环胺基膦配体制备方法及其应用
CN110724164B (zh) * 2019-10-30 2022-06-28 浙江九洲药业股份有限公司 吡啶环上3-位取代手性螺环胺基膦配体制备方法及其应用
WO2023112033A3 (en) * 2021-12-15 2023-08-03 Adama Agan Ltd. Compounds useful for the preparation of various agrochemicals and markers thereof
CN115477581A (zh) * 2022-09-13 2022-12-16 安徽金禾化学材料研究所有限公司 一种高顺式二氢茉莉酮酸甲酯的制备方法

Similar Documents

Publication Publication Date Title
Roh et al. Transition metal vinylidene-and allenylidene-mediated catalysis in organic synthesis
CN108863787A (zh) 3-烷基-2-乙氧羰基取代环状共轭烯酮的不对称催化氢化及其应用
Widegren et al. Manganese catalyzed hydrogenation of enantiomerically pure esters
JP5671456B2 (ja) 3座配位子を有する新規ルテニウムカルボニル錯体、並びにその製造法及び用途
Liu et al. AgAsF6/Sm (OTf) 3 Promoted Reversal of Enantioselectivity for the Asymmetric Friedel− Crafts Alkylations of Indoles with β, γ-Unsaturated α-Ketoesters
CN107722068B (zh) 三齿氮膦配体与其配合物、及其在酮的不对称催化氢化中的应用
Takahashi et al. A catalytic enantioselective reaction using a C2-symmetric disulfonamide as a chiral ligand: Simmons-Smith cyclopropanation of allylic alcohols by the Et2Zn-CH2I2-disulfonamide system
JP5477557B2 (ja) エステル又はラクトン類の水素還元によるアルコール類の製造方法
Jiang et al. Ligand relay catalysis enables asymmetric migratory reductive acylation of olefins or alkyl halides
CN101671365A (zh) 手性螺环胺基膦配体化合物与合成方法及其应用
Yang et al. Highly efficient asymmetric hydrogenation catalyzed by iridium complexes with tridentate chiral spiro aminophosphine ligands
Ding et al. Enantioselective synthesis of medium-sized-ring lactones via iridium-catalyzed Z-retentive asymmetric allylic substitution reaction
CN104355997B (zh) 消旋δ-羟基酯的不对称催化氢化动力学拆分及其应用
Haibach et al. Recent advances in nonprecious metal catalysis
CN109970795A (zh) 吡啶环上4-位取代手性螺环胺基膦配体制备方法及其应用
CN109575060B (zh) 螺环双硼催化剂的合成及其在氢化反应中的应用
Shi et al. Copper-Catalyzed Enantioselective 1, 2-Reduction of Cycloalkenones
Niu et al. Enantioselective addition of alkynylzinc to arylaldehydes catalyzed by azetidino amino alcohols bearing an additional stereogenic center
Chen et al. Synthesis of γ-Lactones by TBAI-Promoted Intermolecular Carboesterification of Carboxylic Acids with Alkenes and Alcohols
CN112430228B (zh) 一种手性2,3-二氢苯并[b]噻吩1,1-二氧化物、衍生物及制备方法
Paquette et al. Kinetic resolution during condensation of chiral (racemic) cyclopentenyllithiums with (R)-(-)-isopiperitenone. A short route to optically active annulated germacranolides
CN114349648A (zh) 一种手性胺类化合物的制备方法
CN110218136B (zh) 烯烃和醛一步偶联高效合成e-烯丙醇类化合物
CN109134462A (zh) 一种不对称合成文殊兰类生物碱的方法
Zhou et al. Enantioselective hydroalkylation of α, β-unsaturated amides through reversed syn-hydrometallation of NiH

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181123

WD01 Invention patent application deemed withdrawn after publication