CN1088559A - 聚乙二醇凝胶法合成稳定的立方系纳米晶陶瓷粉技术 - Google Patents

聚乙二醇凝胶法合成稳定的立方系纳米晶陶瓷粉技术 Download PDF

Info

Publication number
CN1088559A
CN1088559A CN93117484A CN93117484A CN1088559A CN 1088559 A CN1088559 A CN 1088559A CN 93117484 A CN93117484 A CN 93117484A CN 93117484 A CN93117484 A CN 93117484A CN 1088559 A CN1088559 A CN 1088559A
Authority
CN
China
Prior art keywords
polyoxyethylene glycol
ceramics powder
calcination
cubic system
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN93117484A
Other languages
English (en)
Inventor
李熙
徐宝琨
赵慕愚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN93117484A priority Critical patent/CN1088559A/zh
Publication of CN1088559A publication Critical patent/CN1088559A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

聚乙二醇凝胶法合成Y2O3稳定的立方系ZrO2 纳米晶陶瓷粉,以分子量M=1540~20000的聚乙 二醇作为胶体颗粒的保护剂,通过加热脱水形成凝 胶。经过500~1000℃,0.5~2h,空气气氛下灼烧, 可得到用Y2O3稳定的立方系ZrO2纳米晶陶瓷粉。 其平均晶粒尺寸随灼烧条件不同,可达4nm至 30nm之间。本发明所制备的纳米晶陶瓷粉,主要用 于在功能材料领域中热敏、固体电解质燃料电池、氧 传感器及结构陶瓷器件制造过程中所用的陶瓷粉。

Description

本发明涉及到用聚乙二醇作为胶体保护剂,制备Y2O3稳定的立方系ZrO2纳米晶纳瓷粉的制备技术。
纳米晶陶瓷粉是现代高技术领域中的一类先进材料。在现有的技术中主要是以沉淀法A·Benedetti等,J·Marer·Sci,25(1990)1473水热法(Y·CZhang等,J    Less-Common    Metals,116(1986)301及锆醇盐法(W、F、M、    Groot    zevert等,J、MaterSci,25(1990)1449)来制备陶瓷的生坯材料,然后通过灼烧而得陶瓷粉。在这些技术中存在着工艺复杂,制备周期长或耗能高等缺点。例如,采用共沉淀法,难以得到晶粒尺寸小的陶瓷粉,而且沉淀物与液相分离较困难,原料损失大。灼烧出的粉体易产生硬团聚。采用水热合成法虽然能得到较小粒径的粉体,但合成周期长(一般需24小时以上),且需要高温、高压,因此能耗较大。又如,采用锆醇盐溶胶一凝胶法,不仅所用的锆醇盐相对较贵,不易得,而且合成陶瓷生坯的条件较严,如需在不含水的气氛环境中合成,这就增加了合成的难度。此外,合成周期也较本发明的技术要长些(约需6-8小时)以上的凝胶化过程)。
本发明较好地解决了上述技术的缺点,与现有的技术相比较,具有如下优点:
①原料易得;②工艺简单;③合成周期短;④能耗低(可低温灼烧);⑤得到的粉体粒径小(根据不同的灼烧温度与时间,最小可达4nm的平均粒径);⑥粉体不发生硬团聚。因此具有较高的经济效益和使用效益。
本发明所制备的纳米陶瓷粉体,主要用于功能材料中的制造热敏,固体电解质燃料电池,氧传感器及结构陶瓷元器件的粉体材料。
首先将分子量为M=10000~20000的聚乙二醇在玻璃敞口容器内用水溶解。另外将二氯氧锆加入到用硝酸溶解的氧化钇溶液中并搅拌溶解。然后加入聚乙二醇水溶液中。
开动搅拌,并加热脱水。保持加热温度为60~80℃。搅拌转速不小于120转/分。随着脱水溶液成为白色凝胶后,停止搅拌及加热,自然降温至室温。
将凝胶进一步置于红外灯下干燥,干燥温度保持在50~60℃,使其进一步脱水至干块状。即为陶瓷粉生坯体。
将生坯体置于陶瓷器皿中,放入马福炉内在500~1000℃,0.5~2h空气气氛中灼烧,根据不同灼烧条件,即可得到不同平均粒径的陶瓷粉。
在制备凝胶过程中,聚乙二醇的加入量为:
聚乙二醇质量:氧化钇+二氯氧锆=0.8~1.2∶1
聚乙二醇加入的作用是使在脱水过程中,使其形成脱粒的保护剂,当聚乙二醇的加入量过少,高分子长链对胶粒形成的是吸附作用,这样易使胶粒接触长大。当加入量适中,形成的是包复作用,此时可有效地防止胶粒的聚集长大。从而在灼烧后得到粒径较小的粉体,并避免粉体的硬团聚。当加入聚乙二醇过多,则形成多层包复,使吸附在胶粒表面的水层不易在干燥时脱掉,至使干燥困难。
在立方相纳米晶粉体中钇的mol%数为1%~15%,或表示Y1-xZrxO3(x=0.85~0.99)。
在灼烧过程中,经差热分析表明,聚乙二醇在280℃进行氧化热分解,结合X-射,线衍射,在500℃生成立方相的灼烧产物。
实施例如下:
实施例1、称分子量为20000的聚乙二醇167克,在玻璃容器内用50ml水溶解。按钇在锆中15m。中的摩尔比率另将氧化钇16.21克用30ml,60%的硝酸溶解,然后加入151.4克二氯氧锆,待溶解后,加入聚乙二醇水溶液中。搅拌并加热至60~80℃使其脱水。当体系形成白色凝胶后,停止搅拌和加热,自然降温至室温。将凝胶置于红外灯下,进一步干燥,控制温度50~60℃得到干固体物。即陶瓷粉生坯料。
将该干固体物置于陶瓷器皿中,放入马福炉。在空气气氛下550℃灼烧2小时,得到含钇15mol%的立方相ZrO2。其平均粒径为4nm。
实施例2:重复实施例1的制备陶瓷粉生坯料过程。在600℃,1小时条件下灼烧。得平均晶粒尺寸为8nm的15mol%钇稳定的立方相ZrO2
实例3:重复实施例1的制陶瓷生坯过程,在800℃,1h灼烧得到10nm的15mol%钇稳定的立方相ZrO2。下表列出不同摩尔百分含量的Y稳定的立方相ZrO2在不同灼烧温度时间的结果。
Y含量mol% 聚乙二醇分子量 聚乙二醇钇十锆 灼烧温度℃ 灼烧时间小时 粉体平均粒径nm
1515151212 2000020000200001000020000 1:11:11:10.8:11:1 5506008008001000 21126 4810828

Claims (5)

1、一种制备Y2O3稳定的立方ZrO2纳米晶陶瓷粉的方法。其特点是该方法使用聚乙二醇,作为二氯氧锆、氧化钇硝酸水溶液的保护剂以保护在凝胶化过程中胶粒的聚集以及利用该陶瓷粉生坯在较低温及较短时间的灼烧。
2、根据权利要求1的方法,其特征是聚乙二醇的分子量为10000~20000。
3、根据权利要求1的方法其特征是聚乙二醇的加入量与总盐量(二氯氧锆+氧化钇)之质量比为0.8~1.2。
4、根据权利要求1的方法,其特征是二氯氧锆与氧化钇硝酸水溶液中,水的重量百分数为10~20%。
5、根据权利要求1的方法,其特征是粉体的灼烧条件为500~1000℃,0.5~2h空气气氛。
CN93117484A 1993-09-18 1993-09-18 聚乙二醇凝胶法合成稳定的立方系纳米晶陶瓷粉技术 Pending CN1088559A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN93117484A CN1088559A (zh) 1993-09-18 1993-09-18 聚乙二醇凝胶法合成稳定的立方系纳米晶陶瓷粉技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN93117484A CN1088559A (zh) 1993-09-18 1993-09-18 聚乙二醇凝胶法合成稳定的立方系纳米晶陶瓷粉技术

Publications (1)

Publication Number Publication Date
CN1088559A true CN1088559A (zh) 1994-06-29

Family

ID=4992033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN93117484A Pending CN1088559A (zh) 1993-09-18 1993-09-18 聚乙二醇凝胶法合成稳定的立方系纳米晶陶瓷粉技术

Country Status (1)

Country Link
CN (1) CN1088559A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112044A1 (en) * 2004-05-13 2005-11-24 Hua Qiao University A polyhydric polymer-based solid electrolyte, methods of preparing the same and the use thereof
CN101550001B (zh) * 2009-04-09 2012-10-31 上海交通大学 钇锆复合纳米陶瓷粉体及其制备方法
CN105347789A (zh) * 2015-11-24 2016-02-24 东莞信柏结构陶瓷有限公司 氧化锆多孔陶瓷工艺品制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005112044A1 (en) * 2004-05-13 2005-11-24 Hua Qiao University A polyhydric polymer-based solid electrolyte, methods of preparing the same and the use thereof
CN101550001B (zh) * 2009-04-09 2012-10-31 上海交通大学 钇锆复合纳米陶瓷粉体及其制备方法
CN105347789A (zh) * 2015-11-24 2016-02-24 东莞信柏结构陶瓷有限公司 氧化锆多孔陶瓷工艺品制备方法

Similar Documents

Publication Publication Date Title
Okubo et al. Low-temperature preparation of nanostructured zirconia and YSZ by sol-gel processing
CN106824163B (zh) 复合氧化物及其制备方法
Wen et al. Preparation of nanosized yttria-stabilized zirconia powders and their characterization
JPH0679965B2 (ja) ジルコニアゾルの製造方法およびジルコニア成形体の製造方法
CN108511797A (zh) 一种Li7La3Zr2O12固体电解质制备方法
Khani et al. New synthesis of nanopowders of proton conducting materials. A route to densified proton ceramics
US5523065A (en) Process for making ultra-fine barium titanate particles
CN100336730C (zh) 氧化锆超细粉体的制备方法
US5660774A (en) Process for making a sintered body from ultra-fine superconductive particles
CN110745851B (zh) 球形α-氧化铝阻燃剂及其制备方法
CN113173787B (zh) 一种锆酸钆/钽酸钆复合陶瓷及其制备方法
CN1088559A (zh) 聚乙二醇凝胶法合成稳定的立方系纳米晶陶瓷粉技术
CN103130271A (zh) 超低密度块状全稳定氧化锆气凝胶及其制备方法
CN1281498C (zh) 均匀沉淀-超临界二氧化碳干燥法制备纳米氧化镁的方法
CN104973624B (zh) 一种网状四方相氧化锆纳米粉体的制备方法
CN112607773A (zh) 一种钇稳定氧化锆气凝胶的绿色制备方法
Chen et al. Preparation of alumina-zirconia materials by the sol-gel method from metal alkoxides
Lee et al. Preparation of ceramic powders by a solution‐polymerization route employing PVA solution
Bhattacharyya et al. Preparation of tetragonal ZrO 2-Gd 2 O 3 powders
JP5690372B2 (ja) 酸化鉄−ジルコニア系複合酸化物およびその製造方法
JP2006225178A (ja) 含炭素金属酸化物の製造方法
Kido et al. Hydrothermal processing of zircon
JP3190060B2 (ja) セリア固溶正方晶ジルコニア微粉末の製造方法
CN113620329A (zh) 一种氧化铝-氧化锆纳米复合粉的制备方法
CN1064713A (zh) 高纯莫来石晶须的制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C01 Deemed withdrawal of patent application (patent law 1993)
WD01 Invention patent application deemed withdrawn after publication