CN108841814A - 基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法 - Google Patents

基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法 Download PDF

Info

Publication number
CN108841814A
CN108841814A CN201810710860.2A CN201810710860A CN108841814A CN 108841814 A CN108841814 A CN 108841814A CN 201810710860 A CN201810710860 A CN 201810710860A CN 108841814 A CN108841814 A CN 108841814A
Authority
CN
China
Prior art keywords
carbon material
sustained release
starch
polyvinyl alcohol
sodium alginate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810710860.2A
Other languages
English (en)
Inventor
郑蕾
吴晓娜
丁爱中
甄晨曦
赵荔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN201810710860.2A priority Critical patent/CN108841814A/zh
Publication of CN108841814A publication Critical patent/CN108841814A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/10Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a carbohydrate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/342Biological treatment of water, waste water, or sewage characterised by the microorganisms used characterised by the enzymes used
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/40Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/924Hydrolases (3) acting on glycosyl compounds (3.2)
    • G01N2333/926Hydrolases (3) acting on glycosyl compounds (3.2) acting on alpha -1, 4-glucosidic bonds, e.g. hyaluronidase, invertase, amylase
    • G01N2333/928Hydrolases (3) acting on glycosyl compounds (3.2) acting on alpha -1, 4-glucosidic bonds, e.g. hyaluronidase, invertase, amylase acting on alpha -1, 4-glucosidic bonds, e.g. hyaluronidase, invertase, amylase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明属于缓释碳材料技术领域,公开了一种基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法,鉴于淀粉、聚乙烯醇、海藻酸钠价格低廉,且均具有较好的亲水性,两者可充分地共混,形成良好的缓释性和生物降解性,本发明以聚乙烯醇、海藻酸钠为骨架和包埋剂,以淀粉为碳源,制备缓释碳材料,附加和调节α‑淀粉酶,控制淀粉分子的水解程度,协调释碳速率与反硝化过程。在该过程中,该缓释碳材料的有效控制可以减少释碳过程造成的有机物污染。以期获得较长的使用周期和较好的脱氮效果。在制得新型缓释碳源后,对其进行脱氮工艺的运行特性研究,为其工程应用提供技术参考。

Description

基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法
技术领域
本发明属于缓释碳材料技术领域,尤其涉及一种基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法。
背景技术
目前,业内常用的现有技术是这样的:异养反硝化是常见的反硝化过程,也是去除硝酸盐最有效的一种方法。异养反硝化过程需要充足的有机碳作为电子供体,需要外加碳源。现有常用的外加碳源,主要有两大类:以甲醇、乙醇、乙酸、葡萄糖为主的传统碳源,以及以天然纤维素类物质为主的可生物降解的聚合物以及合成聚合物,如PHB(聚β-羟基丁酸)、PHBV(聚β-羟基丁酸戊酸醋)等。但是,传统碳源存在投加过量的隐患,会影响出水水质,需要精确控制投加量以及投加过程,合成的聚合物费用较高,且碳源释放不能得到有效控制,会带来较高的DOC溶解问题。常用的液态有机碳源如甲醇、乙醇等虽然有良好的供碳效果,但是其在经济性和安全性方面均存在不足,并且甲醇的毒性会造成二次污染。因此,制备价格低廉、性能优越的新型固体缓释碳源成为污水反硝化脱氮的关键环节。
综上所述,现有技术存在的问题是:
(1)液相碳源的消耗快,耗损大,必须经常增补从而花费高,若不慎添加过量的有机碳,导致反应不完全而造成二次污染,在实际应用中造成诸多不便;
(2)现有的释碳材料,大多以聚乙烯醇或者海藻酸钠为单独的碳源载体,本项技术中采用聚乙烯醇和海藻酸钠为碳源载体,在保证其释碳材料稳定性的同时,进一步保证其材料的制备;
(3)在现有的释碳材料制备中,大多以淀粉为碳源,但是释碳材料的速率不能得到很好的控制,在本发明中,添加α-淀粉酶,用于控制和调节释碳材料的释放速率。
解决上述技术问题的难度和意义:
(1)为释碳材料的进一步研究提供数据支撑和理论知识;
(2)在现有基础上,添加α-淀粉酶,控制和调节释碳材料的释放速率,为实际工程中精准化应用提供数据支撑。
(3)研制出合适稳定的有机碳源载体,能高效、持续地应用于污水中硝酸盐的污染修复。
发明内容
针对现有技术存在的问题,本发明提供了一种基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法。
本发明是这样实现的,一种基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法,所述基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法以聚乙烯醇、海藻酸钠为骨架和包埋剂,以淀粉为碳源,制备缓释碳材料,附加和调节α-淀粉酶,控制淀粉分子的水解程度,协调释碳速率与反硝化过程。
进一步,所述基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法包括以下步骤:
步骤一,将海藻酸钠、聚乙烯醇、无菌水水浴加热65~75摄氏度溶解;
步骤二,粘稠状固定化材料混合液,添加α-淀粉酶,得到缓释碳材料混合体系;
步骤三,使用注射器,得到饱和硼酸溶液,形成均匀小球。
本发明的另一目的在于提供一种由所述基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法制备的基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料。
本发明的另一目的在于提供一种所述基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的测定方法,所述测定方法使用的拟合模型公式为:
K=3.34-1.55A+1.01B-2.12C-1.07AB-0.53AC-0.50BC+4.26A2+1.44B2+2.59C2
式中:A为聚乙烯醇的浓度;B为淀粉的浓度;C为淀粉酶的浓度。
综上所述,本发明的优点及积极效果为:
(1)用此技术制备的缓释碳材料具有一定硬度和稳定性,在实验运行中保持稳定,不易发生溶解分离等现象;
(2)用此技术制备的缓释碳材料具有较高的释碳效果,其中10号实验制备缓释碳材料可以在运行10h,其体系中COD为98.78mg/(g·L),运行20h后,体系中COD达到122.36mg/(g·L),之后稳定在此水平。17号实验制备的缓释碳材料在运行70h后,体系中COD达到130.23mg/(g·L),并稳定在此水平。除此之外,在实验运行60h以内,10号实验制备缓释碳材料效率最高;60h以后,17号实验制备缓释碳材料效率最高。具体各组实验结果如下图2所示,10号和17号实验缓释碳材料释碳效果图及对比图分别为图3、图4和图5。
(3)利用响应曲面法对材料进行分析,将聚乙烯醇浓度、淀粉浓度和α-淀粉酶活性作为自变量,材料传质系数作为因变量,对模型进行拟合,发现模型拟合度高,同时对三维立体图进行分析,发现随着浓度的升高,聚乙烯醇浓度、淀粉浓度和α-淀粉酶的活性都对释碳材料的释碳性能产生影响,利用DesignExpert软件优化筛选,得到的最优配比为:聚乙烯醇浓度为4.22%,淀粉浓度为9.29%,α-淀粉酶活性为0.03U/g,传质系数值为2.92mg/(h·g·L),该数值与实验17组相吻合。具体响应曲面分析图如下,拟合模型公式为:
K=3.34-1.55A+1.01B-2.12C-1.07AB-0.53AC-0.50BC+4.26A2+1.44B2+2.59C2
式中:A为聚乙烯醇的浓度;B为淀粉的浓度;C为淀粉酶的浓度。
响应面二次模型的方差分析如表1所示。可知,模型的F值为108.73,P值小于0.0001,表示回归模型显著,回归效果比较理想,表明该模型是有效的,回归决定系数R2的值为0.9929,表示回归方差预测的可靠性达99.29%,校正决定系数R2(Adj)的值为0.9838,R2和R2(Adj)的值非常相近,与1相比差距很小,说明该方程拟合效果好。变异系数CV的值为6.15%,精密度(AdeqPrecision)的值为29.262,表明了该实验的变异数概率小,精确度相较来说高,模型的拟合度好。
因此,通过实验数据及模型拟合,最终确定最佳缓释碳材料配比为17号实验。但是,在实际应用中,可以根据反应器运行时间的长短以及规模选择10号或17号合适的缓释碳材料作为碳源。
表1响应面二次模型的方差分析表
附图说明
图1是本发明实施例提供的缓释碳材料制备方法流程图;
图2是本发明实施例提供的17组缓释碳材料在不同运行时间的释碳情况;
图3是本发明实施例提供的试验10号缓释碳材料效果图;
图4是本发明实施例提供的17号实验缓释碳材料效果图;
图5是本发明实施例提供的10号和17号缓释碳材料效果对比图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
下面结合附图对本发明的应用原理作详细的描述。
如图1所示,本发明实施例提供的基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法包括以下步骤:
步骤一,将海藻酸钠、聚乙烯醇、无菌水水浴加热65~75摄氏度溶解;
步骤二,粘稠状固定化材料混合液,添加α-淀粉酶,得到缓释碳材料混合体系;
步骤三,使用注射器,得到饱和硼酸溶液,形成均匀小球。
下面结合实验对本发明的应用效果做详细的描述。
(1)实验设计
选择PVA浓度、淀粉浓度以及α-淀粉酶浓度三因素,通过查阅国内外文献和预实验,设定SA浓度为0.4%,PVA(浓度水平2%、4%和6%),淀粉(8%、10%和12%)以及α-淀粉酶(0、0.03、0.06),利用响应曲面法(Response surfacemethodology,RSM)进行试验设计,研究分析各个因素之间联系、确定最佳缓释碳材料配比,并研究三因素对缓释碳材料效率的影响。具体实验参数设计见表2和实验设计见表3如下:
表2三因素选择与水平
表3RSM三因素三水平实验设计安排
(2)17组缓释碳材料小球的制备
首先,配置含4%CaCl2的饱和硼酸溶液备用,然后按照实验设计称取一定量的聚乙烯醇、海藻酸钠、淀粉和α-淀粉酶,并加入定量的二次蒸馏水配制成溶液,混合均匀后置于60℃~80℃水浴锅中加热,当搅拌混合均匀后,用注射器滴加到盛装4%CaCl2的饱和硼酸溶液的玻璃器皿中浸泡至少24h,使其充分与饱和溶液接触,吸附其中的钙离子,形成球状颗粒,并用封口膜将其密封。当吸收了充足的钙离子后,用二次蒸馏水将其洗净后置于贴好标签的玻璃器皿,在4℃的冰箱中保存备用。实施流程为图1。
(3)17组缓释碳材料小球的性能评定:
具体实验结果如图2-“17组缓释碳材料在不同运行时间的释碳情况”所示,从实验结果中,可得到试验10号和17号实验制备的缓释碳材料的释碳性能较好。具体释碳材料配比见表4和释碳情况见图3、图4.
表4实验结果优选缓释碳材料配比
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法,其特征在于,所述基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法以聚乙烯醇、海藻酸钠为骨架和包埋剂,以淀粉为碳源,制备缓释碳材料,附加和调节α-淀粉酶,控制淀粉分子的水解程度,协调释碳速率与反硝化过程。
2.如权利要求1所述的基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法,其特征在于,所述基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法包括以下步骤:
步骤一,将海藻酸钠、聚乙烯醇、无菌水水浴加热65~75摄氏度溶解;
步骤二,粘稠状固定化材料混合液,添加α-淀粉酶,得到缓释碳材料混合体系;
步骤三,使用注射器,得到饱和硼酸溶液,形成均匀小球。
3.一种由权利要求1~2任意一项所述基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法制备的缓释碳材料。
4.一种如权利要求3所述缓释碳材料的测定方法,其特征在于,所述测定方法使用的拟合模型公式为:
K=3.34-1.55A+1.01B-2.12C-1.07AB-0.53AC-0.50BC+4.26A2+1.44B2+2.59C2
式中:A为聚乙烯醇的浓度;B为淀粉的浓度;C为淀粉酶的浓度。
CN201810710860.2A 2018-07-03 2018-07-03 基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法 Pending CN108841814A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810710860.2A CN108841814A (zh) 2018-07-03 2018-07-03 基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810710860.2A CN108841814A (zh) 2018-07-03 2018-07-03 基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法

Publications (1)

Publication Number Publication Date
CN108841814A true CN108841814A (zh) 2018-11-20

Family

ID=64201065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810710860.2A Pending CN108841814A (zh) 2018-07-03 2018-07-03 基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法

Country Status (1)

Country Link
CN (1) CN108841814A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892156A (zh) * 2020-07-03 2020-11-06 广州博嵩生物环保科技有限公司 一种多孔可降解材料及其制备方法和应用
CN111961659A (zh) * 2020-08-27 2020-11-20 电子科技大学中山学院 固定化材料、生物脱氮材料、制备方法、应用
CN113456804A (zh) * 2021-05-28 2021-10-01 上海理工大学 pH和α-淀粉酶双响应的胰岛素包埋传递体系及其制备方法
CN114524505A (zh) * 2022-01-28 2022-05-24 哈尔滨工业大学 一种基于缓释碳源耦合生物电化学系统精准完全脱氯氯代烃的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090083750A (ko) * 2008-01-30 2009-08-04 주식회사 제닉 피부 가용성 터치 필름
CN102583742A (zh) * 2012-03-01 2012-07-18 南京大学 一种聚乙烯醇缓释碳源材料及其制备方法
CN102583741A (zh) * 2012-03-01 2012-07-18 南京大学 一种以海藻酸钠为基材的缓释碳源材料及其制备方法
CN106420631A (zh) * 2016-11-17 2017-02-22 青岛悦海医药科技有限公司 一种微孔海藻酸钠‑淀粉复合颗粒的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090083750A (ko) * 2008-01-30 2009-08-04 주식회사 제닉 피부 가용성 터치 필름
CN102583742A (zh) * 2012-03-01 2012-07-18 南京大学 一种聚乙烯醇缓释碳源材料及其制备方法
CN102583741A (zh) * 2012-03-01 2012-07-18 南京大学 一种以海藻酸钠为基材的缓释碳源材料及其制备方法
CN106420631A (zh) * 2016-11-17 2017-02-22 青岛悦海医药科技有限公司 一种微孔海藻酸钠‑淀粉复合颗粒的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王允等: "用于地下水原位生物脱氮的缓释碳源材料性能研究", 《环境科学》 *
闫续: "释碳材料的制备及作为曝气生物滤池填料的脱氮研究", 《中国硕士学位论文全文数据库》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892156A (zh) * 2020-07-03 2020-11-06 广州博嵩生物环保科技有限公司 一种多孔可降解材料及其制备方法和应用
CN111892156B (zh) * 2020-07-03 2022-05-03 广州博嵩生物环保科技有限公司 一种多孔可降解材料及其制备方法和应用
CN111961659A (zh) * 2020-08-27 2020-11-20 电子科技大学中山学院 固定化材料、生物脱氮材料、制备方法、应用
CN113456804A (zh) * 2021-05-28 2021-10-01 上海理工大学 pH和α-淀粉酶双响应的胰岛素包埋传递体系及其制备方法
CN113456804B (zh) * 2021-05-28 2023-02-10 上海理工大学 pH和α-淀粉酶双响应的胰岛素包埋传递体系及其制备方法
CN114524505A (zh) * 2022-01-28 2022-05-24 哈尔滨工业大学 一种基于缓释碳源耦合生物电化学系统精准完全脱氯氯代烃的方法
CN114524505B (zh) * 2022-01-28 2023-05-09 哈尔滨工业大学 一种基于缓释碳源耦合生物电化学系统精准完全脱氯氯代烃的方法

Similar Documents

Publication Publication Date Title
CN108841814A (zh) 基于聚乙烯醇、海藻酸钠和淀粉制备缓释碳材料的方法
Emmermacher et al. Engineering considerations on extrusion-based bioprinting: interactions of material behavior, mechanical forces and cells in the printing needle
CN103193315B (zh) 一种厌氧氨氧化细菌固定化制备生物活性填料的方法
Scheidle et al. Controlling pH in shake flasks using polymer-based controlled-release discs with pre-determined release kinetics
Bancroft et al. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner
Wang et al. An innovative reactor-type biosensor for BOD rapid measurement
Cuervo-López et al. Effect of nitrogen loading rate and carbon source on denitrification and sludge settleability in upflow anaerobic sludge blanket (UASB) reactors
Li et al. Performance and kinetics of ANAMMOX granular sludge with pH shock in a sequencing batch reactor
Schmidt et al. Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in upflow anaerobic sludge blanket reactors
Miranda et al. A full-scale UASB reactor for treatment of pig and cattle slaughterhouse wastewater with a high oil and grease content
Guo et al. Fermentation and kinetics characteristics of a bioflocculant from potato starch wastewater and its application
Zaushitsyna et al. Cryostructured and crosslinked viable cells forming monoliths suitable for bioreactor applications
Wakadikar et al. Influence of sewage sludge and leachate on biochemical methane potential of waste biomass
CN107475239B (zh) 一种辣根过氧化物酶的固定化方法及其应用
Hörber et al. Improved dechlorinating performance of upflow anaerobic sludge blanket reactors by incorporation of Dehalospirillum multivorans into granular sludge
Xing et al. An innovative double-layer microsphere used as slow-release carbon source for biological denitrification
Zhang et al. Transient polymer hydrogels based on dynamic covalent borate ester bonds
CN106809835B (zh) 一种制备超疏水活性炭的方法
Insel et al. Modeling of simultaneous growth and storage kinetics variation under unsteady feast conditions for aerobic heterotrophic biomass
Zhao et al. Dynamic modeling the anaerobic reactor startup process
Gliwicz Metalimnetic gradients and trophic state of lake epilimnia
Jiang et al. A novel ZnONPs/PVA-functionalized biomaterials for bacterial cells immobilization and its strengthening effects on quinoline biodegradation
Teo Unified theory and model for anaerobic hydrolysis in municipal wastewater treatment: Review of enzymological aspects and hydrolysis assessments
Liang et al. Upgrading of postconsumer absorbent hygiene products for bioethanol production
Laocharoen et al. Selection of support materials for immobilization of Burkholderia cepacia PCL3 in treatment of carbofuran-contaminated water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination