CN108837849B - 一种配合物稳定SiC点复合材料的制备方法及应用 - Google Patents

一种配合物稳定SiC点复合材料的制备方法及应用 Download PDF

Info

Publication number
CN108837849B
CN108837849B CN201810716635.XA CN201810716635A CN108837849B CN 108837849 B CN108837849 B CN 108837849B CN 201810716635 A CN201810716635 A CN 201810716635A CN 108837849 B CN108837849 B CN 108837849B
Authority
CN
China
Prior art keywords
sic
adm
composite material
complex
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810716635.XA
Other languages
English (en)
Other versions
CN108837849A (zh
Inventor
匡芮
魏长宝
赵万峰
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jiaotong University
Original Assignee
Shandong Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jiaotong University filed Critical Shandong Jiaotong University
Priority to CN201810716635.XA priority Critical patent/CN108837849B/zh
Publication of CN108837849A publication Critical patent/CN108837849A/zh
Application granted granted Critical
Publication of CN108837849B publication Critical patent/CN108837849B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Composite Materials (AREA)
  • Catalysts (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种配合物稳定SiC点复合材料的制备方法及应用,属于纳米材料、金属有机配合物与电化学检测技术领域。具体是基于配合物稳定的SiC点复合材料SiC@Cu(II)‑ADM/Cu,制备化学传感器,用于检测炔雌醇。具体步骤包括:(1)制备金刚烷胺基配体ADM‑BP,(2)采用电化学沉积的方法制备配合物复合材料Cu(II)‑ADM/Cu,(3)制备SiC量子点,(4)采用电化学沉积的方法制备配合物稳定SiC点复合材料SiC@Cu(II)‑ADM/Cu电化学传感器。由于Cu(II)‑ADM/Cu具有大的比表面积和更多的活性位点、优异的吸附性能,制备的化学传感器,具有检测炔雌醇灵敏度高、检测限低、稳定性好,易操作等优势。

Description

一种配合物稳定SiC点复合材料的制备方法及应用
技术领域
本发明涉及一种配合物稳定SiC点复合材料的制备方法及应用,属于纳米材料、金属有机配合物与电化学检测技术领域。
背景技术
污水中携带着大量的污染物质,例如,雌酮、雌二醇、雌三醇,还有大量有毒有害、易燃易爆的气体,致使我国的自然环境遭受到严重的破坏和污染,需要我们加强对废水的处理和检测。
近十几年来,半导体材料如Si、Ge、GaAs、GaP、InP、InAs,对人们的生活产生了巨大的影响。但随着人们对科技发展的要求不断提高,传统的半导体材料表现出了明显的不足,如无法耐高温、功率不大、辐射不强等缺陷。C作为新型半导体材料,与以往半导体材料相比,具有宽带隙、高热导率、良好的物理化学性质与生物相容性等优点,这使其在光电领域具有广泛的应用前景。
目前来说,国内外量子点的研究热点集中在镉系量子点材料上,如CdTe、CdSe、CdS等。然而,众多研究表明,镉系量子点细胞毒性较大,虽然经过表面处理后形成的一种核壳类结构可以在一定程度上降低其细胞毒性,但科学家进一步研究表明,长时间受到激发光照射下,量子点表面会发生氧化、光解反应,导致结构破坏,使毒性较大的镉离子解离出来,因此镉系量子点的细胞毒性不可忽视。
电化学沉积法是一种低温制备涂层的方法。这种技术将中含有所需要的生长元素的溶液作为电解液,所需要沉积的基底作为阳极,惰性耐腐蚀材料作为阴极,在外加电场的作用下,阴阳离子在电极附近发生化学反应并形成沉淀的过程。电沉积法的模板现在用的比较多的是多孔铝阳极氧化膜(AAO),ITO导电玻璃等。采用电沉积方法制备半导体薄膜,可以通过对沉积条件的控制来控制薄膜的组成、厚度及粒子的粒度大小等,而且电化学沉积法具有设备简单、操作方便等优点。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种配合物稳定SiC点复合材料的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供所述配合物稳定SiC点复合材料的用途,即将配合物稳定SiC点复合材料用于检测环境雌激素炔雌醇,具有良好的电化学活性和稳定性。
为实现上述目的,本发明采用的技术方案如下:
1.一种配合物稳定SiC点复合材料的制备方法,步骤如下:
(1)制备金刚烷胺基配体ADM-BP
将1.8771-2.8157g金刚烷胺盐酸盐,2-3g碳酸钾与60-80mL乙腈共混,加入1.3203-2.2005g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于20-30mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为70-75%;
所述金刚烷胺盐酸盐,构造式如下:
Figure 100002_DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure 100002_DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure 100002_DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5-1.5%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积8-12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V-1.60V;
(3)制备SiC量子点溶液
将30mL氢氟酸、10mL硝酸和10mL水混合,制得腐蚀液;
在冰水浴中,将8-12g立方碳化硅3C-SiC溶解在腐蚀液中,搅拌20min后,移至水浴锅,将温度调至80 ℃,回流加热3-5h,得到的腐蚀物用超纯水洗涤离心,反复三次后得到的产物,溶解在20mL超纯水中,超声处理半个小时,得到SiC量子点溶液;
(4)制备配合物稳定的SiC点复合材料
采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,SiC量子点溶液为底液,采用循环伏安法电沉积,制得配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积50圈,扫速为0.05V/s。
2. 如上1所述的制备方法制备的配合物稳定的SiC点复合材料用于电化学检测炔雌醇的应用,步骤如下:
(1)制备电化学传感器
将上1制备的配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu作为工作电极、Hg/HgO电极为参比电极、铂片电极为对电极连接在电化学工作站上,制得了配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu电化学传感器;
(2)电化学检测炔雌醇
采用乙醇溶解并定容,分别配制浓度为10-6-102µg/mL范围内不同浓度的炔雌醇溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的炔雌醇溶液进行扫描,在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与炔雌醇浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替炔雌醇标准溶液,进行样品的检测,检测结果从工作曲线中查得;
实验结果表明,本传感器的差分脉冲伏安氧化峰电流与炔雌醇在10-6-102µg/mL范围内保持良好的线性关系,相关系数在0.9923以上,检测限为3.2 ng/mL。
本发明的有益的技术效果:
(1)本发明配合物稳定SiC点复合材料的制备,是以泡沫铜为工作电极,仅仅加入金刚烷胺基配体ADM-BP,采用恒电位沉积,泡沫铜表面铜原子部分失去电子生成Cu(II)正离子,该正离子与溶液中的金刚烷胺基配体ADM-BP反应,生成粒径为小于100nm的配合物复合材料Cu(II)-ADM/Cu;该方法生成的复合材料均匀;沉积时间8-12min,时间短,效率高;制得的配合物复合材料Cu(II)-ADM/Cu比表面积高;电催化活性高。
(2)本发明SiC点的制备,没有加入其他的稳定剂,是采用恒电位沉积法,将化学腐蚀方法制得的SiC量子点,在线锚固到金刚烷胺基复合材料Cu(II)-ADM/Cu上;与其他Cd系量子点相比,SiC量子点具有无细胞毒性,生物相容性良好,高度分散等优点;电化学沉积法能够通过循环伏安曲线的扫描次数控制SiC量子点锚固在金刚烷胺基复合材料上的量,是一种低成本化的技术;本方法制得的配合物稳定SiC点复合材料SiC@Cu(II)-ADM/Cu电化学传感器,化学稳定性高,比表面积高;由于具有两种纳米材料,即SiC量子点和金刚烷胺基复合材料Cu(II)-ADM的协同效应,电催化活性高。
(3)本发明制得的配合物稳定SiC点复合材料SiC@Cu(II)-ADM/Cu电化学传感器,电极修饰均匀,免除了传统工作电极采用全氟化树脂或其它胶黏剂黏结催化剂粉末,可以直接用于电化学检测炔雌醇,因此保留了更多的活性位点,使得基于该复合材料制得的传感器,具有检测炔雌醇灵敏度高、检测限低、稳定性好,操作简单等优势。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1一种配合物稳定SiC点复合材料的制备方法
(1)制备金刚烷胺基配体ADM-BP
将1.8771g金刚烷胺盐酸盐,2g碳酸钾与60mL乙腈共混,加入1.3203g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于20mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为70%;
所述金刚烷胺盐酸盐,构造式如下:
Figure 277508DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure 929069DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure 708806DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积8min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V-1.60V;
(3)制备SiC量子点溶液
将30mL氢氟酸、10mL硝酸和10mL水混合,制得腐蚀液;
在冰水浴中,将8g立方碳化硅3C-SiC溶解在腐蚀液中,搅拌20min后,移至水浴锅,将温度调至80℃,回流加热3h,得到的腐蚀物用超纯水洗涤离心,反复三次后得到的产物,溶解在20mL超纯水中,超声处理半个小时,得到SiC量子点溶液;
(4)制备配合物稳定的SiC点复合材料
采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,SiC量子点溶液为底液,采用循环伏安法电沉积,制得配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V-0.60V,沉积50圈,扫速为0.05V/s。
实施例2一种配合物稳定SiC点复合材料的制备方法
(1)制备金刚烷胺基配体ADM-BP
将2.3464g金刚烷胺盐酸盐,2.5g碳酸钾与70mL乙腈共混,加入1.7604g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于25mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为75%;
所述金刚烷胺盐酸盐,构造式如下:
Figure 244961DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure 997016DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure 819479DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为1%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积10min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V-1.60V;
(3)制备SiC量子点溶液
将30mL氢氟酸、10mL硝酸和10mL水混合,制得腐蚀液;
在冰水浴中,将10g立方碳化硅3C-SiC溶解在腐蚀液中,搅拌20min后,移至水浴锅,将温度调至80 ℃,回流加热4h,得到的腐蚀物用超纯水洗涤离心,反复三次后得到的产物,溶解在20mL超纯水中,超声处理半个小时,得到SiC量子点溶液;
(4)制备配合物稳定的SiC点复合材料
采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,SiC量子点溶液为底液,采用循环伏安法电沉积,制得配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积50圈,扫速为0.05V/s。
实施例3一种配合物稳定SiC点复合材料的制备方法
(1)制备金刚烷胺基配体ADM-BP
将2.8157g金刚烷胺盐酸盐,3g碳酸钾与80mL乙腈共混,加入2.2005g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于30mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为72%;
所述金刚烷胺盐酸盐,构造式如下:
Figure 319468DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure 518368DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure 328192DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为1.5%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V-1.60V;
(3)制备SiC量子点溶液
将30mL氢氟酸、10mL硝酸和10mL水混合,制得腐蚀液;
在冰水浴中,将12g立方碳化硅3C-SiC溶解在腐蚀液中,搅拌20min后,移至水浴锅,将温度调至80℃,回流加热5h,得到的腐蚀物用超纯水洗涤离心,反复三次后得到的产物,溶解在20mL超纯水中,超声处理半个小时,得到SiC量子点溶液;
(4)制备配合物稳定的SiC点复合材料
采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,SiC量子点溶液为底液,采用循环伏安法电沉积,制得配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积50圈,扫速为0.05V/s。
实施例4 实施例1-3所述的配合物稳定的SiC点复合材料用于电化学检测炔雌醇的应用
(1)制备电化学传感器
将实施例1、实施例2或实施例3制备的配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu作为工作电极、Hg/HgO电极为参比电极、铂片电极为对电极连接在电化学工作站上,制得了配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu电化学传感器;
(2)电化学检测炔雌醇
采用乙醇溶解并定容,分别配制浓度为10-6-102µg/mL范围内不同浓度的炔雌醇溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的炔雌醇溶液进行扫描,在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与炔雌醇浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替炔雌醇标准溶液,进行样品的检测,检测结果从工作曲线中查得;
实验结果表明,本传感器的差分脉冲伏安氧化峰电流与炔雌醇在10-6-102µg/mL范围内保持良好的线性关系,相关系数在0.9923以上,检测限为3.2ng/mL。

Claims (3)

1.一种配合物稳定SiC点复合材料的制备方法,其特征在于,步骤如下:
(1)制备金刚烷胺基配体ADM-BP
将1.8771-2.8157g金刚烷胺盐酸盐,2-3g碳酸钾与60-80mL乙腈共混,加入1.3203-2.2005g 2,6-双(氯甲基)吡啶,剧烈搅拌;加热到80℃,反应24小时后,冷却到室温,过滤,依次用乙腈和水洗涤,60℃干燥;将得到的固体溶于20-30mL二氯甲烷中,再加入15mL水,充分振摇,静置,分离;将得到的有机层加入硫酸钠干燥,蒸馏,去除溶剂,得到金刚烷胺基配体ADM-BP粉末,产率为70-75%;
所述金刚烷胺盐酸盐,构造式如下:
Figure DEST_PATH_IMAGE002
所述2,6-双(氯甲基)吡啶,构造式如下:
Figure DEST_PATH_IMAGE004
所述金刚烷胺基配体ADM-BP,构造式如下:
Figure DEST_PATH_IMAGE006
(2)制备配合物复合材料Cu(II)-ADM/Cu
将泡沫铜依次在超纯水、稀盐酸、超纯水和乙醇中超声清洗,室温晾干后备用;
采用三电极体系,以泡沫铜为工作电极,铂片为对电极,Hg/HgO电极为参比电极,在10mL、质量分数为0.5-1.5%金刚烷胺基配体ADM-BP的N,N-二甲基甲酰胺溶液中,采用恒电位法沉积,沉积8-12min后,将工作电极用超纯水洗涤、室温干燥,得到配合物复合材料Cu(II)-ADM/Cu;
所述泡沫铜,厚度为0.5mm,面积为1cm×1cm;
所述恒电位法,沉积电位为1.20V-1.60V;
(3)制备SiC量子点溶液
将30mL氢氟酸、10mL硝酸和10mL水混合,制得腐蚀液;
在冰水浴中,将8-12g立方碳化硅3C-SiC溶解在腐蚀液中,搅拌20min后,移至水浴锅,将温度调至80 ℃,回流加热3-5h,得到的腐蚀物用超纯水洗涤离心,反复三次后得到的产物,溶解在20mL超纯水中,超声处理半个小时,得到SiC量子点溶液;
(4)制备配合物稳定的SiC点复合材料
采用三电极体系,以配合物复合材料Cu(II)-ADM/Cu为工作电极,铂片为对电极,Hg/HgO电极为参比电极,SiC量子点溶液为底液,采用循环伏安法电沉积,制得配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu;
所述循环伏安法,沉积电位为-0.20V~-0.60V,沉积50圈,扫速为0.05V/s。
2.如权利要求1所述的制备方法制备的配合物稳定的SiC点复合材料用于电化学检测炔雌醇的应用。
3.如权利要求2所述的用于电化学检测炔雌醇的应用,其特征在于,步骤如下:
(1)制备电化学传感器
将权利要求1制备的配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu作为工作电极、Hg/HgO电极为参比电极、铂片电极为对电极连接在电化学工作站上,制得了配合物稳定的SiC点复合材料SiC@Cu(II)-ADM/Cu电化学传感器;
(2)电化学检测炔雌醇
采用乙醇溶解并定容,分别配制浓度为10-6-102µg/mL范围内不同浓度的炔雌醇溶液;
使用步骤(1)制得的电化学传感器,采用差分脉冲伏安法,分别对该不同浓度的炔雌醇溶液进行扫描,在-0.6-0.0V下进行扫描,记录电流变化;
根据所得电流值与炔雌醇浓度呈线性关系,绘制工作曲线;
将待测样品溶液代替炔雌醇标准溶液,进行样品的检测,检测结果从工作曲线中查得。
CN201810716635.XA 2018-07-03 2018-07-03 一种配合物稳定SiC点复合材料的制备方法及应用 Expired - Fee Related CN108837849B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810716635.XA CN108837849B (zh) 2018-07-03 2018-07-03 一种配合物稳定SiC点复合材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810716635.XA CN108837849B (zh) 2018-07-03 2018-07-03 一种配合物稳定SiC点复合材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN108837849A CN108837849A (zh) 2018-11-20
CN108837849B true CN108837849B (zh) 2020-11-03

Family

ID=64200286

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810716635.XA Expired - Fee Related CN108837849B (zh) 2018-07-03 2018-07-03 一种配合物稳定SiC点复合材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108837849B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109772397A (zh) * 2019-03-11 2019-05-21 扬州大学 液相激光烧蚀制备氧化物-碳化硅量子点复合纳米结构可见光催化材料的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101191794A (zh) * 2007-08-27 2008-06-04 中国科学院理化技术研究所 一维纳米结构的荧光化学生物传感器及其制备方法和用途
CN102539493A (zh) * 2011-12-27 2012-07-04 南京医科大学 还原态石墨烯与铂纳米粒子复合材料修饰分子印记膜电化学传感器的制备方法
US8404313B1 (en) * 2006-03-22 2013-03-26 University Of South Florida Synthesis of nanocrystalline diamond fibers
CN103194224A (zh) * 2013-04-10 2013-07-10 中国人民解放军国防科学技术大学 碳化硅量子点及其制备方法
CN103641944A (zh) * 2013-12-13 2014-03-19 天津工业大学 雌激素类内分泌干扰物的分子印迹杂化材料的制备和应用
CN103923107A (zh) * 2014-04-11 2014-07-16 安徽师范大学 金刚烷基吡啶配合物、中间体及其制备方法和应用
CN104132934A (zh) * 2014-07-31 2014-11-05 济南大学 一种多样品检测农残的分子印迹电致发光纸芯片的制备
CN105327714A (zh) * 2015-11-30 2016-02-17 山东师范大学 一种纳米Cu-有机配合物/Ag复合材料的制备方法和应用
CN105738443A (zh) * 2016-04-21 2016-07-06 天津科技大学 一种金刚烷胺分子印迹膜电化学传感器的制备方法
CN107091872A (zh) * 2017-06-06 2017-08-25 云南省产品质量监督检验研究院 一种基于铂/碳化硅纳米材料的生物传感器及其应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8404313B1 (en) * 2006-03-22 2013-03-26 University Of South Florida Synthesis of nanocrystalline diamond fibers
CN101191794A (zh) * 2007-08-27 2008-06-04 中国科学院理化技术研究所 一维纳米结构的荧光化学生物传感器及其制备方法和用途
CN102539493A (zh) * 2011-12-27 2012-07-04 南京医科大学 还原态石墨烯与铂纳米粒子复合材料修饰分子印记膜电化学传感器的制备方法
CN103194224A (zh) * 2013-04-10 2013-07-10 中国人民解放军国防科学技术大学 碳化硅量子点及其制备方法
CN103641944A (zh) * 2013-12-13 2014-03-19 天津工业大学 雌激素类内分泌干扰物的分子印迹杂化材料的制备和应用
CN103923107A (zh) * 2014-04-11 2014-07-16 安徽师范大学 金刚烷基吡啶配合物、中间体及其制备方法和应用
CN104132934A (zh) * 2014-07-31 2014-11-05 济南大学 一种多样品检测农残的分子印迹电致发光纸芯片的制备
CN105327714A (zh) * 2015-11-30 2016-02-17 山东师范大学 一种纳米Cu-有机配合物/Ag复合材料的制备方法和应用
CN105738443A (zh) * 2016-04-21 2016-07-06 天津科技大学 一种金刚烷胺分子印迹膜电化学传感器的制备方法
CN107091872A (zh) * 2017-06-06 2017-08-25 云南省产品质量监督检验研究院 一种基于铂/碳化硅纳米材料的生物传感器及其应用

Also Published As

Publication number Publication date
CN108837849A (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
Jian et al. A nanostructured NiO/cubic SiC p–n heterojunction photoanode for enhanced solar water splitting
Mishra et al. Electrodeposition and characterization of SnS thin films
Raoof et al. An electrochemical investigation of methanol oxidation on nickel hydroxide nanoparticles
Cataldi et al. Study of the nickel‐based chemically modified electrode obtained by electrochemical deposition of an NiII‐tetramethyl‐dibenzo‐tetraaza [14] annulene complex. Redox catalysis of carbohydrates in alkaline solutions. II
Shyamal et al. Amplification of PEC hydrogen production through synergistic modification of Cu2O using cadmium as buffer layer and dopant
Xue et al. Tuning α-Fe 2 O 3 nanotube arrays for the oxygen reduction reaction in alkaline media
CN109046427A (zh) 一种可控边缘活性位点的Fe-N-C催化材料的制备方法
Aliyev et al. Electrochemical Studies on the Cathodic Electrodeposition of n-type semiconductor CdS thin film from Thiosulfate Acidic Aqueous Solution
Wang et al. Effect of Ni doping on electrocatalytic hydrogen evolution activity of MoS2
JP5642459B2 (ja) 光触媒電極および水素生成装置、並びに水素生成方法
CN108837849B (zh) 一种配合物稳定SiC点复合材料的制备方法及应用
Esmaeili-Zare et al. CIS/CdS/ZnO/ZnO: Al modified photocathode for enhanced photoelectrochemical behavior under visible irradiation: Effects of pH and concentration of electrolyte solution
CN106024403B (zh) 一种超级电容器碳管/碳化钼复合电极材料及其制备方法
Chen et al. Electrochemical investigation of the energetics of irradiated FeS2 (pyrite) particles
Yu et al. Hematite homojunctions without foreign element doping for efficient and stable overall water splitting
CN108841378B (zh) 一种功能化修饰碳量子点的制备方法及应用
Raoof et al. Nickel particles dispersed into poly (o-anisidine) and poly (o-anisidine)/multi-walled carbon nanotube modified glassy carbon electrodes for electrocatalytic oxidation of methanol
Matsumoto et al. A new preparation method of LaMnO3 perovskite film on SrTiO3 electrode
CN108842175B (zh) 一种CdS量子点-配合物复合材料的制备方法及应用
Zhang et al. Tuning band gaps and photoelectrochemical properties of electrodeposited CuO films by annealing in different atmospheres
Fan et al. Effects of illumination on the electrochemical behavior of selenium electrodeposition on ITO substrates
Kashyout et al. Electrochemical deposition of ZnFeS thin film semiconductors on tin oxide substrates
Zheng et al. Effects of deposition parameters on the electrochemical behaviour of ZnO thin film
Sato et al. Electrochemical formation of selenium nanoparticle in an amide-type ionic liquid
CN108913143B (zh) 一种金属有机聚合物负载Au掺杂量子点复合材料的制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201103

Termination date: 20210703