CN108831836A - 一种纳米级Ag/Ag2S异质结的制备方法 - Google Patents

一种纳米级Ag/Ag2S异质结的制备方法 Download PDF

Info

Publication number
CN108831836A
CN108831836A CN201810640183.1A CN201810640183A CN108831836A CN 108831836 A CN108831836 A CN 108831836A CN 201810640183 A CN201810640183 A CN 201810640183A CN 108831836 A CN108831836 A CN 108831836A
Authority
CN
China
Prior art keywords
reaction kettle
junctions
hetero
nanoscale
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810640183.1A
Other languages
English (en)
Inventor
胡俊青
彭璇
邹儒佳
崔哲
何书昂
徐超霆
关国强
张文龙
曹晴
雷子玉
邾金奇
许明东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201810640183.1A priority Critical patent/CN108831836A/zh
Publication of CN108831836A publication Critical patent/CN108831836A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种纳米级Ag/Ag2S异质结的制备方法,其特征在于,将N,N‑二甲基甲酰胺加入到反应釜中,搅拌条件下,加入聚乙烯吡咯烷酮,继续搅拌,使其完全溶解;加入二乙基二硫代氨基甲酸钠,搅拌,使其溶解均匀;加入硝酸银,避光搅拌0.5~4h;将反应釜置于惰性气体氛围中,使用泵抽气通气3~5次,使反应釜内充满惰性气体,然后在惰性气体保护下将反应釜的盖子封闭;将反应釜放入150~180℃的恒温鼓风干燥箱中保温2~5h,再自然降温;将反应釜中的液体离心后,在冷冻干燥箱中干燥即可。本发明简单易行,制得的材料具备多种功能相结合,是一种在光电子、光学成像和生物医疗领域有广阔前景的材料。

Description

一种纳米级Ag/Ag2S异质结的制备方法
技术领域
本发明涉及一种纳米级Ag/Ag2S异质结的制备方法,该材料是一种在光电子和生物医疗领域有广阔前景的材料,属于异质结的制备技术领域。
背景技术
近年来,制备纳米复合材料的合成方法已引起纳米化学界的重大研究兴趣。所研究的纳米复合材料由两种或更多种材料相组成,它们的不同物理化学功能有望在医学领域发挥潜在的应用前景。这些合成的异质结材料,已经实现了结合磁性,电学,光学,和催化等性质的多功能纳米结构,在光电子和医疗领域具有多种探测、成像与治疗相结合的应用前景。所研究的纳米复合材料中,双功能异二聚体多由半导体相或磁性相和贵金属组成,由于其各个组件的已知特性和应用,金属对应物受到特别关注。但是目前所制备的异质结中,三元及多元材料占据了主导地位,这些材料往往需要制备前驱体,用其他材料作为模板,并且往往需要多步才可以制备,应用于生物领域常常还需要用生物相容性材料对所制备的产品进行表面修饰,因此一步制备无需进行表面修饰的多功能的异质结可以使制备工艺得到大大的简化。
Ag/Ag2S这对功能材料的制备在未来在许多应用中都有重要的发展潜能,主要包括纳米级光电子和医疗器械方面。例如,Ag2S是直接窄带隙半导体材料,由于其具备良好的光电和热电性能,并且具有良好的化学稳定性,Ag2S在许多商业上已经被用在了光学和电子器件中,并且近年来加强了对Ag2S的近红外区成像方面的研究,在生物医学成像方面具有重大意义。纳米结构Ag的尺寸和形状合成也被研究,它在纳米技术中也起到了重要的作用,例如光学,催化,表面增强拉曼光谱,生物标记,抗菌和过去两年的成像。本发明通过简单的制备工艺,通过一步法合成纳米级别具有表面活性基团的Ag/Ag2S异质结,在材料制备工艺的简化和结构的构造上具有重要意义。
发明内容
本发明所要解决的问题是:如何提升单纯的Ag和Ag2S材料应用于生物医用方面的性能,以及多功能异质结材料制备过程繁琐的问题。
为了解决上述问题,本发明提供了一种纳米级Ag/Ag2S异质结的制备方法,其特征在于,包括以下步骤:
步骤1):将N,N-二甲基甲酰胺加入到反应釜中,搅拌条件下,加入聚乙烯吡咯烷酮,继续搅拌,使其完全溶解;
步骤2):在步骤1)得到的混合物中加入二乙基二硫代氨基甲酸钠,搅拌,使其溶解均匀;
步骤3):在步骤2)得到的混合物中加入硝酸银,避光搅拌0.5~4h;
步骤4):将反应釜置于惰性气体氛围中,使用泵抽气通气3~5次,使反应釜内充满惰性气体,然后在惰性气体保护下将反应釜的盖子封闭;
步骤5):将反应釜放入150~180℃的恒温鼓风干燥箱中保温2~5h,再自然降温;
步骤6):将反应釜中的液体离心后,在冷冻干燥箱中干燥,即得纳米级Ag/Ag2S异质结。
优选地,所述N,N-二甲基甲酰胺、聚乙烯吡咯烷酮、二乙基二硫代氨基甲酸钠、硝酸银的质量比为(3000~5000)∶(400~800)∶(10~30)∶(10~30)。
优选地,所述步骤1)中的搅拌时间为10~60min。
优选地,所述步骤中的搅拌时间为5~60min。
优选地,所述步骤3)中的搅拌时间为0.5~4h。
优选地,所述步骤4)中的惰性气体为高纯氮气或氩气。
优选地,所述步骤5)得到的纳米级Ag/Ag2S异质结的直径为20~100nm。
与现有技术相比,本发明的有益效果在于:
(1)本发明以市售硝酸银、N,N-二甲基甲酰胺等试剂作为材料的前驱体,原料来源方便,制备方法简单,制备过程安全;
(2)仅用一步法就制备出纳米级Ag/Ag2S异质结,工艺简单,易操作;
(3)使用聚乙烯吡咯烷酮作为表面活性剂及进行形貌控制,使得合成的材料粒径小且分布均匀,两种物质紧密结合,可以发挥各自的功效,实现功能的组合,并且该材料表面具有一定的活性基团,对于生物领域的应用有广阔的前景,并且表面的活性基团也有利于应用在其他方面的后续处理。
附图说明
图1为实施例1制备的Ag/Ag2S异质结低倍场发射透射电镜图片;
图2为实施例1制备的Ag/Ag2S异质结中倍场发射透射电镜图片;
图3为实施例1制备的Ag/Ag2S异质结高倍场发射透射电镜图片;
图4为实施例1制备的Ag/Ag2S异质结的红外吸收光谱。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1
一种纳米级Ag/Ag2S异质结的制备方法:
(1)量取40mL N,N-二甲基甲酰胺加入到反应釜中,在搅拌的条件下,称取600mg的聚乙烯吡咯烷酮K-30加入其中搅拌10min使其完全溶解;
(2)称取26mg的二乙基二硫代氨基甲酸钠,加入后搅拌10min,使其溶解均匀;
(3)称取17mg硝酸银,加入后避光搅拌1h;
(4)将装有溶液的反应釜置于惰性气体氛围中,使用泵抽气通气3次,惰性气体保护中将反应釜的盖子封闭;
(5)将反应釜放入真空干燥箱中,在温度为150℃下保温3h;
(6)将自然降温得到的液体离心后,在冷冻干燥箱中干燥,最终所获得的异质结材料如图1-4所示。
实施例2
一种纳米级Ag/Ag2S异质结的制备方法:
(1)量取40mL N,N-二甲基甲酰胺加入到反应釜中,在搅拌的条件下,称取700mg的聚乙烯吡咯烷酮K-30加入其中搅拌10min使其完全溶解;
(2)称取50mg的二乙基二硫代氨基甲酸钠,加入后搅拌10min,使其溶解均匀;
(3)称取34mg硝酸银,加入后避光搅拌1h;
(4)将装有溶液的反应釜置于惰性气体氛围中,使用泵抽气通气3次,惰性气体保护中将反应釜的盖子封闭;
(5)将反应釜放入真空干燥箱中,在温度为180℃下保温3h;
(6)将自然降温得到的液体离心后,在冷冻干燥箱中干燥,最终获得异质结材料。
实施例3
一种纳米级Ag/Ag2S异质结的制备方法:
(1)量取40mL N,N-二甲基甲酰胺加入到反应釜中,在搅拌的条件下,称取650mg的聚乙烯吡咯烷酮K-30加入其中搅拌20min使其完全溶解;
(2)称取75mg的二乙基二硫代氨基甲酸钠,加入后搅拌10min,使其溶解均匀;
(3)称取48mg硝酸银,加入后避光搅拌1h;
(4)将装有溶液的反应釜置于惰性气体氛围中,使用泵抽气通气3次,惰性气体保护中将反应釜的盖子封闭;
(5)将反应釜放入真空干燥箱中,在温度为150℃下保温2.5h;
(6)将自然降温得到的液体离心后,在冷冻干燥箱中干燥,最终获得的异质结材料。

Claims (7)

1.一种纳米级Ag/Ag2S异质结的制备方法,其特征在于,包括以下步骤:
步骤1):将N,N-二甲基甲酰胺加入到反应釜中,搅拌条件下,加入聚乙烯吡咯烷酮,继续搅拌,使其完全溶解;
步骤2):在步骤1)得到的混合物中加入二乙基二硫代氨基甲酸钠,搅拌,使其溶解均匀;
步骤3):在步骤2)得到的混合物中加入硝酸银,避光搅拌0.5~4h;
步骤4):将反应釜置于惰性气体氛围中,使用泵抽气通气3~5次,使反应釜内充满惰性气体,然后在惰性气体保护下将反应釜的盖子封闭;
步骤5):将反应釜放入150~180℃的恒温鼓风干燥箱中保温2~5h,再自然降温;
步骤6):将反应釜中的液体离心后,在冷冻干燥箱中干燥,即得纳米级Ag/Ag2S异质结。
2.如权利要求1所述纳米级Ag/Ag2S异质结的制备方法,其特征在于,所述N,N-二甲基甲酰胺、聚乙烯吡咯烷酮、二乙基二硫代氨基甲酸钠、硝酸银的质量比为(3000~5000)∶(400~800)∶(10~30)∶(10~30)。
3.如权利要求1所述纳米级Ag/Ag2S异质结的制备方法,其特征在于,所述步骤1)中的搅拌时间为10~60min。
4.如权利要求1所述纳米级Ag/Ag2S异质结的制备方法,其特征在于,所述步骤中的搅拌时间为5~60min。
5.如权利要求1所述纳米级Ag/Ag2S异质结的制备方法,其特征在于,所述步骤3)中的搅拌时间为0.5~4h。
6.如权利要求1所述纳米级Ag/Ag2S异质结的制备方法,其特征在于,所述步骤4)中的惰性气体为高纯氮气或氩气。
7.如权利要求1-6任意一项所述纳米级Ag/Ag2S异质结的制备方法,其特征在于,所述步骤5)得到的纳米级Ag/Ag2S异质结的直径为20~100nm。
CN201810640183.1A 2018-06-20 2018-06-20 一种纳米级Ag/Ag2S异质结的制备方法 Pending CN108831836A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810640183.1A CN108831836A (zh) 2018-06-20 2018-06-20 一种纳米级Ag/Ag2S异质结的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810640183.1A CN108831836A (zh) 2018-06-20 2018-06-20 一种纳米级Ag/Ag2S异质结的制备方法

Publications (1)

Publication Number Publication Date
CN108831836A true CN108831836A (zh) 2018-11-16

Family

ID=64142604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810640183.1A Pending CN108831836A (zh) 2018-06-20 2018-06-20 一种纳米级Ag/Ag2S异质结的制备方法

Country Status (1)

Country Link
CN (1) CN108831836A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211200A (zh) * 2011-06-14 2011-10-12 东华大学 一种一步合成茄子状Ag-Ag2S纳米异质结的方法
CN103194888A (zh) * 2013-04-17 2013-07-10 东华大学 一种高效可见光催化功能织物的制备方法
US20130306927A1 (en) * 2012-05-21 2013-11-21 Micron Technology, Inc. Atomic layer deposition of a metal chalcogenide material and related memory cells and methods of forming memory cells
US8716690B2 (en) * 2011-11-29 2014-05-06 SK Hynic Inc. Variable resistor, non-volatile memory device using the same, and methods of fabricating the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211200A (zh) * 2011-06-14 2011-10-12 东华大学 一种一步合成茄子状Ag-Ag2S纳米异质结的方法
US8716690B2 (en) * 2011-11-29 2014-05-06 SK Hynic Inc. Variable resistor, non-volatile memory device using the same, and methods of fabricating the same
US20130306927A1 (en) * 2012-05-21 2013-11-21 Micron Technology, Inc. Atomic layer deposition of a metal chalcogenide material and related memory cells and methods of forming memory cells
CN103194888A (zh) * 2013-04-17 2013-07-10 东华大学 一种高效可见光催化功能织物的制备方法

Similar Documents

Publication Publication Date Title
Zhou et al. Synthesis of silver nanoparticles and their antiproliferation against human lung cancer cells in vitro
Luque et al. Green synthesis of zinc oxide nanoparticles using Citrus sinensis extract
Huong et al. Green synthesis, characterization and antibacterial activity of silver nanoparticles using Sapindus mukorossi fruit pericarp extract
Yuan et al. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity
Li et al. Facile and controllable one-step fabrication of selenium nanoparticles assisted by L-cysteine
Devi et al. Green synthesis of zinc oxide nanoparticles by using Hibiscus rosa-sinensis
Courrol et al. A simple method to synthesize silver nanoparticles by photo-reduction
Ahmed Mohamed et al. Phyto-fabricated Cr2O3 nanoparticle for multifunctional biomedical applications
Uda et al. Production and characterization of silica nanoparticles from fly ash: Conversion of agro-waste into resource
Abualrejal et al. Rational synthesis of three-dimensional core–double shell upconversion nanodendrites with ultrabright luminescence for bioimaging application
Arasu et al. Synthesis and characterization of ZnO nanoflakes anchored carbon nanoplates for antioxidant and anticancer activity in MCF7 cell lines
Liu et al. Morphology and phase controlled synthesis of CsxWO3 powders by solvothermal method and their optical properties
Ahmad et al. Pseudo-SILAR assisted unique synthesis of ZnO/Ag2O nanocomposites for improved photocatalytic and antibacterial performance without cytotoxic effect
Qingquan et al. Green synthesis and formation mechanism of Ag nanoflowers using l-cysteine and the assessment of Ag nanoflowers as SERS substrates
CN107350468B (zh) 一种三维多孔金-银合金纳米材料及其制备方法与应用
Yang et al. Orange photoluminescence emission and multi-photon Raman scattering from microscale Zn2SnO4 tetrapods
CN108831836A (zh) 一种纳米级Ag/Ag2S异质结的制备方法
CN107162026A (zh) 一种纳米氧化镁的制备方法
CN101270128A (zh) 8-羟基喹啉铝纳米晶的制备方法
Chaudhari et al. Silver nanoparticles-A review with focus on green synthesis
Murugan et al. Synthesis of Ag nanoparticles decorated CeO2 nanocomposite material for effective SERS analysis
Harisha et al. Synthesis of silver nanoparticles using Bombyx mori silk fibroin and antibacterial activity
Soundar et al. Eu2O3/ZnO/Ga2O3 ternary nanocomposites: Optical and latent finger print analysis
Rashid et al. Nano-ZnO decorated on gold nanoparticles as a core-shell via pulse laser ablation in liquid
Patel et al. Green synthesis of silver nano-sols by leaf extract of ocimum sanctum and their efficacy against human pathogenic bacterium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181116

RJ01 Rejection of invention patent application after publication