CN108822332B - 用于吸附有机溶剂的超疏水海绵的制备方法 - Google Patents

用于吸附有机溶剂的超疏水海绵的制备方法 Download PDF

Info

Publication number
CN108822332B
CN108822332B CN201810372402.2A CN201810372402A CN108822332B CN 108822332 B CN108822332 B CN 108822332B CN 201810372402 A CN201810372402 A CN 201810372402A CN 108822332 B CN108822332 B CN 108822332B
Authority
CN
China
Prior art keywords
solution
sponge
polyurethane sponge
super
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810372402.2A
Other languages
English (en)
Other versions
CN108822332A (zh
Inventor
石家福
田雨
姜忠义
李蔚然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201810372402.2A priority Critical patent/CN108822332B/zh
Publication of CN108822332A publication Critical patent/CN108822332A/zh
Application granted granted Critical
Publication of CN108822332B publication Critical patent/CN108822332B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明公开了一种用于吸附有机溶剂的超疏水海绵的制备方法,步骤是:将二氧化硅颗粒置于pH值为7.8的三羟甲基氨基甲烷缓冲溶液中,超声,静置;然后向该溶液中依次加入单宁酸溶液和硝酸银溶液,将聚氨酯海绵浸泡于该混合溶液中,室温下搅拌2h取出,用去离子水清洗数次,再用乙醇清洗数次,得到表面具有微纳结构的聚氨酯海绵;将上述处理后的聚氨酯海绵放入体积浓度为1:1000的含1H,1H,2H,2H‑全氟十二烷硫醇的乙醇溶液中,室温下搅拌12h,取出聚氨酯海绵,用乙醇清洗数次,烘干,最终得到水接触角≥150°的超疏水聚氨酯海绵。本发明制备过程简便,条件温和,通过改变制备过程中二氧化硅溶液的浓度,可实现超疏水海绵疏水性能的调控。

Description

用于吸附有机溶剂的超疏水海绵的制备方法
技术领域
本发明属于纳米复合材料制备技术,涉及一种用于吸附有机溶剂超疏水海绵的制备方法。
背景技术
近年来,国内外频繁出现的石油泄露事故,给环境和生态系统带来了严重危害,快速消除及回收泄露于环境中的有机化学物质,避免更大规模的环境污染是一个亟待解决的问题。近年来,一些吸附材料如活性炭、树脂等因其吸附量大,也被用于有机物吸附回收,但这些材料存在一些问题,例如,吸油选择性不高(即吸油的同时也吸水)、吸油量低、难重复使用以及分离成本高等。超疏水修饰材料能够克服材料本身对水高吸收的问题,从而对有机物的吸收表现高的选择性。制备超疏水材料需要满足两个条件:在疏水材料表面上构建微观结构;并且是在粗糙表面上修饰低表面能物质。由于降低表面自由能在技术上容易实现,因此超疏水表面制备技术的关键在于构建合适的表面微细结构。
超疏水三维多孔材料应用于油水分离时,由于材料具有丰富的孔隙结构可提供大量存储油品的空间,因此材料的吸油能力较大,在实际应用中具明显优势。疏水海绵是一类普遍存在的三维多孔材料,一般是由商用海绵经表面疏水处理后获得,具孔容积较高,可吸附存储大量液体,且具无污染、可大规模生产和价格低廉等优点,是处理大面积油污的优选分离材料。一般而言,超疏水海绵的构筑方法主要有以下几种:共价层层组装、修饰粗糙聚合物膜、化学气相沉积、溶胶-凝胶法、水热合成、纳米粒子复合物涂层等。近年,Caruso等人基于多酚的功能化进行纳米颗粒超组装的研究,利用多酚的表面粘附及酚-金属配位的功能,在微米或更大尺度物质表面构建了具有多酚粒子、金属离子、纳米颗粒的超级结构,可实现表面纳微多级结构的简便构筑。同时,多级结构表面的多酚仍能保持多功能特性,如接枝含有硫醇或胺基的低表面能分子。这为超疏水海绵的制备简便制备提供了一条新的途径。
发明内容
本发明的目的在于提供用于吸附有机溶剂的超疏水海绵的制备方法。本发明制备原料廉价、易得,制备工艺简单易行。
为了解决上述技术问题,本发明提出一种用于吸附有机溶剂的超疏水海绵的制备方法,包括以下步骤:
步骤一、将二氧化硅颗粒置于pH值为7.8的三羟甲基氨基甲烷缓冲溶液中,所述二氧化硅颗粒与三羟甲基氨基甲烷的质量比为1:2.4~7.2,超声20~60分钟,室温下静置15~20分钟,得到溶液A;向该溶液中依次加入单宁酸溶液和硝酸银溶液得到溶液B,其中,二氧化硅与单宁酸与硝酸银的质量比为2~6:6:3;将聚氨酯海绵以体积比为2:15浸泡于该溶液B中,室温下搅拌2h,取出聚氨酯海绵用去离子水清洗数次,再用乙醇清洗数次,得到表面具有微纳结构的聚氨酯海绵;
步骤二、将步骤一处理后的聚氨酯海绵以体积比为2:15放入体积浓度为1:1000的含1H,1H,2H,2H-全氟十二烷硫醇的乙醇溶液中,室温下搅拌12h,取出聚氨酯海绵,用乙醇清洗数次,烘干,最终得到水接触角≥150°的超疏水聚氨酯海绵。
与现有技术相比,本发明提出的一种用于吸附有机溶剂超疏水海绵的制备方法,制备原料廉价、易得,制备条件简单温和,通过改变制备过程中二氧化硅溶液浓度,可调控超疏水海绵的疏水性能。
附图说明
图1为对比例1制备的超疏水聚氨酯海绵的水接触角(CA)照片;
图2中的(a)为实施例1步骤一所用聚氨酯海绵的SEM照片;图2中的(b)是实施例1制备得到的超疏水聚氨酯海绵的SEM照片;
图3为实施例1制备的超疏水聚氨酯海绵的水接触角(CA)照片;
图4为实施例2制备的超疏水聚氨酯海绵的水接触角(CA)照片;
图5为实施例3制备的超疏水聚氨酯海绵的水接触角(CA)照片。
具体实施方式
本发明公开的一种用于吸附有机溶剂超疏水海绵的制备方法,其设计思路是:首先将海绵浸入到含二氧化硅溶液、单宁酸溶液、硝酸银溶液的Tris缓冲溶液,利用单宁酸可还原贵金属离子、可与金属配位组装以及可通过氢键网络粘附于物质表面等多功能,在水溶液中将氧化硅组装于聚氨酯海绵表面,同时将银离子还原成Ag单质纳米颗粒,得到表面具有微纳结构的聚氨酯海绵。随后,以1H,1H,2H,2H-全氟十二烷硫醇为低表面能修饰剂,利用巯基与银单质及多酚间的强相互作用,实现微纳结构的低表面能处理,最终获得水接触角为150~167°的超疏水海绵。本发明制备过程简便,条件温和,通过改变制备过程中二氧化硅溶液的浓度,可实现超疏水海绵疏水性能的调控。
下面结合附图和具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
对比例1:超疏水聚氨酯海绵的制备,步骤如下:
步骤一、向24ml 50mM且pH值为7.8的三羟甲基氨基甲烷(Tris)缓冲溶液中依次加入3mL 20mg mL-1单宁酸溶液和3mL 10mg mL-1硝酸银溶液,将4块聚氨酯海绵(1*1*1cm)浸泡于该溶液中,室温搅拌2h,取出聚氨酯海绵用去离子水清洗3次,再用乙醇清洗3次,烘干得到颗粒改性的聚氨酯海绵。
步骤二、将经过步骤一改性后的4块聚氨酯海绵放入30mL乙醇溶液中,并且向该溶液中添加30μL 1H,1H,2H,2H-全氟十二烷硫醇溶液,室温搅拌12h,取出聚氨酯海绵,用乙醇清洗3次,烘干,得到超疏水聚氨酯海绵。图1是对比例1制备得到的超疏水聚氨酯海绵的水接触角照片,水接触角为148.58°。
实施例1:超疏水聚氨酯海绵的制备,步骤如下:
步骤一、将50mg径约约为200nm的二氧化硅颗粒置于30mL 50mM pH值为7.8的三羟甲基氨基甲烷(Tris)缓冲溶液中(即所述二氧化硅颗粒与三羟甲基氨基甲烷的质量比为1:3.6),超声20分钟,静置放至20分钟。称取24mL上述溶液,依次像此溶液中依次加入3mL20mg mL-1单宁酸溶液和3mL 10mg mL-1硝酸银溶液(即二氧化硅与单宁酸与硝酸银的质量比为4:6:3),将4块聚氨酯海绵(1*1*1cm)浸泡于该溶液中,室温搅拌2h,取出聚氨酯海绵用去离子水清洗3次,再用乙醇清洗3次,烘干,得到表面具有微纳结构的聚氨酯海绵。
步骤二、将上述步骤一处理后的四块聚氨酯海绵放入30mL乙醇溶液中,并且向该乙醇溶液中添加30μL 1H,1H,2H,2H-全氟十二烷硫醇溶液(即体积浓度为1:1000的含1H,1H,2H,2H-全氟十二烷硫醇的乙醇溶液,三聚氰胺海绵与含1H,1H,2H,2H-全氟十二烷硫醇的乙醇溶液的体积比为2:15,),室温下搅拌12h,取出聚氨酯海绵,用乙醇清洗3次,烘干,最终得到超疏水聚氨酯海绵。
图2中的(a)是实施例1中所用聚氨酯海绵的SEM图片,图2中的(b)是实施例1制得的超疏水聚氨酯海绵的SEM图片,图3是实施例1制得的超疏水聚氨酯海绵的水接触角(CA)照片;综合图2和图3,说明成功得到超疏水聚氨酯海绵。本实施例1中,超疏水聚氨酯海绵的水接触角达到155.23o。
实施例2:超疏水聚氨酯海绵的制备,步骤如下:
本实施例2与实施例1步骤基本相同,与其不同的是:步骤一中,将加入的二氧化硅颗粒的质量由50mg改变为25mg(即所述二氧化硅颗粒与三羟甲基氨基甲烷的质量比为1:7.2,二氧化硅与单宁酸与硝酸银的质量比为2:6:3)。图4为实施例2制备的超疏水聚氨酯海绵的水接触角(CA)照片。经过二氧化硅颗粒修饰后,增加了聚氨酯海绵表面的粗糙程度。当二氧化硅浓度增加时,获得的超疏水聚氨酯海绵的水接触角有所增加,此时水接触角为154.32o。
实施例3:超疏水聚氨酯海绵的制备,步骤如下:
本实施例3与实施例1步骤基本相同,与其不同的是:步骤一中,将加入的二氧化硅颗粒的质量由50mg改变为75mg(即所述二氧化硅颗粒与三羟甲基氨基甲烷的质量比为1:2.4,二氧化硅与单宁酸与硝酸银的质量比为2:2:1)。图5为实施例3制备的超疏水聚氨酯海绵的水接触角(CA)照片。当二氧化硅浓度不断增加,在聚氨酯海绵表面构建微纳结构的程度增加,使得其粗糙度增加时,获得的超疏水聚氨酯海绵的水接触角有所增加,此时水接触角为167.78o。
综上,通过上述实施例与对比例及其对应的水接触角图发现,以聚氨酯海绵为模板,利用功能化颗粒去构建海绵表面的微观微纳结构,并且在粗糙结构表面上接枝1H,1H,2H,2H-全氟十二烷硫醇,通过SEM和水接触角测量验证了超疏水聚氨酯海绵的成功合成,通过改变制备过程中二氧化硅浓度可调节形成的超疏水海绵的水接触角,进而获得不同超疏水性能的聚氨酯海绵。特别是,二氧化硅浓度越高,超疏水性能越好。

Claims (4)

1.一种用于吸附有机溶剂的超疏水海绵的制备方法,其特征在于,包括以下步骤:
步骤一、将二氧化硅颗粒置于pH值为7.8的三羟甲基氨基甲烷缓冲溶液中,所述二氧化硅颗粒与三羟甲基氨基甲烷的质量比为1:2.4~7.2,超声20~60分钟,室温下静置15~20分钟,得到溶液A;向该溶液中依次加入单宁酸溶液和硝酸银溶液得到溶液B,其中,二氧化硅与单宁酸与硝酸银的质量比为2~6:6:3;将聚氨酯海绵以体积比为2:15浸泡于该溶液B中,室温下搅拌2h,取出聚氨酯海绵用去离子水清洗数次,再用乙醇清洗数次,得到表面具有微纳结构的聚氨酯海绵;
步骤二、将步骤一处理后的聚氨酯海绵以体积比为2:15放入体积浓度为1:1000的含1H,1H,2H,2H-全氟十二烷硫醇的乙醇溶液中,室温下搅拌12h,取出聚氨酯海绵,用乙醇清洗数次,烘干,最终得到水接触角≥150°的超疏水聚氨酯海绵。
2.根据权利要求1所述用于吸附有机溶剂的超疏水海绵的制备方法,其特征在于,步骤一中,所述二氧化硅颗粒与三羟甲基氨基甲烷的质量比为1:2.4。
3.根据权利要求1所述用于吸附有机溶剂的超疏水海绵的制备方法,其特征在于,步骤一中,所述二氧化硅颗粒与三羟甲基氨基甲烷的质量比为1:3.6。
4.根据权利要求1所述用于吸附有机溶剂的超疏水海绵的制备方法,其特征在于,步骤一中,所述二氧化硅颗粒与三羟甲基氨基甲烷的质量比为1:7.2。
CN201810372402.2A 2018-04-24 2018-04-24 用于吸附有机溶剂的超疏水海绵的制备方法 Active CN108822332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810372402.2A CN108822332B (zh) 2018-04-24 2018-04-24 用于吸附有机溶剂的超疏水海绵的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810372402.2A CN108822332B (zh) 2018-04-24 2018-04-24 用于吸附有机溶剂的超疏水海绵的制备方法

Publications (2)

Publication Number Publication Date
CN108822332A CN108822332A (zh) 2018-11-16
CN108822332B true CN108822332B (zh) 2020-12-11

Family

ID=64154708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810372402.2A Active CN108822332B (zh) 2018-04-24 2018-04-24 用于吸附有机溶剂的超疏水海绵的制备方法

Country Status (1)

Country Link
CN (1) CN108822332B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925555A (zh) * 2020-08-10 2020-11-13 南通大学 一种基于金属协同配合物构建超疏水涂层的方法
CN114318858B (zh) * 2022-01-13 2023-02-28 西安交通大学 一种二氧化硅/超高分子量聚乙烯无纬布的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214690A (zh) * 2013-03-22 2013-07-24 哈尔滨工业大学 一种耐用性超疏水材料的制备方法
CN104069750A (zh) * 2013-03-26 2014-10-01 中国科学院宁波材料技术与工程研究所 一种超疏水仿生膜材料及其制备方法和用途
CN104607654A (zh) * 2015-02-10 2015-05-13 济南大学 一种基于银纳米颗粒的自组装材料及其制备方法
KR20170129336A (ko) * 2016-05-16 2017-11-27 단국대학교 산학협력단 나노 조성물이 코팅된 초소수성 알루미늄 판 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103214690A (zh) * 2013-03-22 2013-07-24 哈尔滨工业大学 一种耐用性超疏水材料的制备方法
CN104069750A (zh) * 2013-03-26 2014-10-01 中国科学院宁波材料技术与工程研究所 一种超疏水仿生膜材料及其制备方法和用途
CN104607654A (zh) * 2015-02-10 2015-05-13 济南大学 一种基于银纳米颗粒的自组装材料及其制备方法
KR20170129336A (ko) * 2016-05-16 2017-11-27 단국대학교 산학협력단 나노 조성물이 코팅된 초소수성 알루미늄 판 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Durable Superhydrophobic/Superoleophilic Polyurethane Sponges Inspired by Mussel and Lotus Leaf for the Selective Removal of Organic Pollutants from Water";B.Li,et al.;《ChemPlusChem》;20140630(第79期);850-856 *
"超疏水聚氨酯(PU)海绵的制备及油水分离特性研究";祝青;《中国博士学位论文全文数据库 工程科技I辑》;20150115;B016-4 *

Also Published As

Publication number Publication date
CN108822332A (zh) 2018-11-16

Similar Documents

Publication Publication Date Title
Zhou et al. Silk fibroin-graphene oxide functionalized melamine sponge for efficient oil absorption and oil/water separation
Liu et al. Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI)
You et al. Direct coating of a DKGM hydrogel on glass fabric for multifunctional oil-water separation in harsh environments
Chen et al. A multifunctional superhydrophobic melamine sponge decorated with Fe3O4/Ag nanocomposites for high efficient oil-water separation and antibacterial application
CN109261127B (zh) 一种无选择性疏油亲水材料及其制备方法和应用
CN104194066B (zh) 氧化硅-壳聚糖复合气凝胶及其制备方法
Janwery et al. Lamellar graphene oxide-based composite membranes for efficient separation of heavy metal ions and desalination of water
CN111229157B (zh) 一种无机聚合物改性膨润土吸附材料的制备方法
Bai et al. Kaolin/CaAlg hydrogel thin membrane with controlled thickness, high mechanical strength, and good repetitive adsorption performance for dyes
CN108822332B (zh) 用于吸附有机溶剂的超疏水海绵的制备方法
WO2011034327A2 (ko) 키토산을 함유하는 수처리용 흡착제 및 이의 제조방법
Gao et al. Removal of chromium (VI) and orange II from aqueous solution using magnetic polyetherimide/sugarcane bagasse
Ma et al. Electrospun nanofibrous polyethylenimine mat: A potential adsorbent for the removal of chromate and arsenate from drinking water
Zhang et al. Polymer-decorated filter material for wastewater treatment: in situ ultrafast oil/water emulsion separation and azo dye adsorption
Lahiri et al. Fabrication of a nanoporous silica hydrogel by cross-linking of SiO2–H3BO3–hexadecyltrimethoxysilane for excellent adsorption of azo dyes from wastewater
CN109821511A (zh) 一种聚乙烯胺功能化磁性碳基纳米吸附剂的制备及应用
Wang et al. Silver-modified porous polystyrene sulfonate derived from Pickering high internal phase emulsions for capturing lithium-ion
Zhang et al. Synthesis of polyethyleneimine modified polyurethane foam for removal of Pb (II) ion from aqueous solution
CN108707248B (zh) 一种阻燃的超疏水三聚氰胺海绵的制备方法
CN110606980A (zh) 一种超疏水ldh/三聚氰胺海绵的制备方法
Qiu et al. Degradable Superhydrophilic Iron‐Pillared Bentonite Doped with Polybutylene Adipate/Terephthalate Open‐Cell Foam: Its Application in Dye Degradation, Removal of Heavy Metal Ions, and Oil–Water Separation
CN113351181A (zh) 一种多吸附且具有油水分离功能的生物可降解泡沫
CN112791716A (zh) 一种基于离子凝胶的重金属去除制剂及其制备方法
Liu et al. Adsorption behaviors of acidic and basic dyes by thiourea-modified nanocomposite aerogels based on nanofibrillated cellulose
Shen et al. Highly efficient and sustainable cationic polyvinyl chloride nanofibrous membranes for removal of E. coli and Cr (VI): Filtration and adsorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 300452 Binhai Industrial Research Institute Campus of Tianjin University, No. 48 Jialingjiang Road, Binhai New Area, Tianjin

Patentee after: Tianjin University

Address before: 300350 Haijing garden, Haihe Education Park, Jinnan, Tianjin, 135, Tianjin University.

Patentee before: Tianjin University