CN1088182C - 低温精馏系统产量的控制方法 - Google Patents

低温精馏系统产量的控制方法 Download PDF

Info

Publication number
CN1088182C
CN1088182C CN95105528A CN95105528A CN1088182C CN 1088182 C CN1088182 C CN 1088182C CN 95105528 A CN95105528 A CN 95105528A CN 95105528 A CN95105528 A CN 95105528A CN 1088182 C CN1088182 C CN 1088182C
Authority
CN
China
Prior art keywords
tower
liquid
fluid
pressure column
lower pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN95105528A
Other languages
English (en)
Other versions
CN1122440A (zh
Inventor
D·P·邦纳奎斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=22946921&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1088182(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Publication of CN1122440A publication Critical patent/CN1122440A/zh
Application granted granted Critical
Publication of CN1088182C publication Critical patent/CN1088182C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • F25J3/04836Variable air feed, i.e. "load" or product demand during specified periods, e.g. during periods with high respectively low power costs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04848Control strategy, e.g. advanced process control or dynamic modeling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Flow Control (AREA)

Abstract

一种用于操作低温精馏装置的方法,此法不需增设储存或暂存容器,而是根据进料流量的改变,改变塔釜和/或塔顶冷凝器的液位设定点,以控制装置的运转,避免产物纯度偏离额定值。

Description

低温精馏系统产量的控制方法
一般地说,本发明涉及低温精馏,更具体地说,涉及低温精馏系统当产量变化时,即至少一种产物流的需要量变化时,的高效运行问题。
在实施低温精馏过程中,一种进料流,譬如进料空气,被送入低温精馏装置,例如一个双塔装置,进行分离。从低温精馏装置抽出一种或多种产物流并加以回收。进料流的流量是固定的,以便不断产出所需流量的产物。
在低温精馏装置运行当中,对一种或多种产物所要求的流量可以变化。这就要求改变装置的产量,此时也要相应改变进料流量。除非采取特定的控制措施,进料流量的改变会引起一至多塔内液-汽(L/V)比暂时的变化,直到系统恢复平衡或稳定状态为止。造成这种暂时性L/V改变的原因是,进料流量变化引起塔内汽相流量(V)和塔内液相流量(L)变化规律上的差异。这种L/V比变化,因对产物纯度有不利影响,所以是不希望的。由于这个原因,人们希望进料流量改变时以及改交以后,L/V比都始终保持所要求的数值。
低温精馏工业世界为解决这个问题的办法是,为低温精馏装置增设液体贮罐或中间罐,以期以一种可控的方式来改变低温精馏装置的产量,即向塔内加入液体和/或收容塔中流出的液体来调整塔内的L/V比。虽说这样的系统是有效的,但是却增加了容器和伴随管路这一项基本投资。
鉴于这种情况,本发明的一个目的就是,提供一种既能以可控的方式改变低温精馏装置产量,又不需要用贮罐或中间罐来调整塔的L/V比的方法。
本发明能达到上述和其他目的这一点,对于熟悉此项技术的人在读过本公开之后,就变得很清楚了,本发明的一个方面包括:
一种改变低温精馏装置产量的方法,包括:
(a)以第一流量将进料加入到包括一高压塔和一低压塔的低温精馏装置中的所述高压塔中;
(b)把来自高压塔釜的液体送入低压塔;
(c)利用设定于所要求液位的塔釜液位控制器,使高压塔釜内液位保持在所要求的高度;
(d)把进料流量改变到第二流量;以及
(e)根据进料流量的改变量,改变塔釜液位控制器的设定点。
本发明的另一个方面包括:
一种改变低温空分装置产量的方法,包括:
(a)以第一流量将进料空气加入到包括高压塔、低压塔和一个带塔顶冷凝器的氩气塔的低温空分装置中的所述高压塔中;
(b)把来自高压塔釜的液体送入上述塔顶冷凝器,把来自塔顶冷凝器的液体送入低压塔,再把出自低压塔的流体送入氩气塔;
(c)利用设定于所要求液位的塔顶冷凝器液位控制器,使塔顶冷凝器的液位保持在所要求的高度;
(d)把进料空气流量改变到第二流量;以及
(e)根据进料空气流量的改变量,改变塔顶冷凝器液位控制器的设定点。
这里所用“进料空气”一词,系指主要包括含氮、氧及氩等气体的混合物,例如空气。
这里所用“透平膨胀”和“透平膨胀机”二个术语,分别指,让高压气体流经透平以使气体减压、降温从而产生致冷的方法和设备。
这里所用“塔”一词,系指蒸馏或分馏塔或区,即接触塔或区,其中液、汽相呈逆流接触以实现流体混合物的分离,举例说,通过汽、液相在塔内一系列竖向间隔设置的塔盘或塔板,或者填料表面接触。有关蒸馏塔的进一步讨论,可参见<化学工程师手册·第5版>,R.H.Perry和C.H.Chilton编,Mc Graw-Hill Book Company,纽约,第13部分,“连续蒸馏过程”。“双落”一词用以指,一个高压塔,其顶部与一低压塔的底部处于热交换关系。有关双塔的进一步讨论,见Ruheman的<气体的分离>,牛津大学出版社,1949,第VII章,“工业空气分离”。
汽、液接触分离过程依靠组分间蒸汽压的差异。高蒸汽压(或易挥发、低沸点)组分趋于富集在汽相,而低蒸汽压(或难挥发、高沸点)组分趋于富集在液相。部分冷凝是一种分离过程,即通过冷却蒸汽混合物,使易挥发组分浓集在汽相,相应地,难挥发组分浓集在液相。精馏或连续蒸馏是这样一种分离过程,它结合了连续不断的部分蒸发和部分冷凝过程,正如让汽、液相逆流接触而实现的那样。汽、液相逆流接触是一种绝热过程,既可以包括相间整体接触也可以包括局部接触。用精馏原理分离混合物的分离工艺设备叫精馏塔、蒸馏塔或者分馏塔,常常相互通用不加区分。低温精馏是一种至少一部分在150°K或更低的温度下进行的精馏过程。
这里所用“间接换热”一词,系指让两股流体处于热交换关系,而不发生流体间相互的物理接触或相混。
这里所用“氩气塔”一词,系指一种处理包含氩的进料并产出一种氩浓度超过进料浓度产物的塔。
这里所用“塔项冷凝器”一词,系指一种热交换器,它从塔顶蒸汽中产生出塔的下流液。
这里所用“釜”一词,系指蒸馏塔的底部,位于塔盘或填料的下方,用以收集液体的部分。该液体既可以作为产物流抽出,也可以转送到另一塔去。
这里所用“液位控制器”一词,系指一种机械、气动或电子装置,也可以指一种编制在电脑内的数学算法程序,它们用于象罐或塔釜之类的存储容器内的液位反馈控制。
这里所用“设定点”一词,系指处于反馈控制下的过程的应变量(过程输出)的要求值或目标值,设定点是通过手工或由另一控制器或是由编程于电脑中的数字算法输入到控制器中去的。
这里所用“反馈控制”一词,系指根据过程变量偏离其设定点的数值,调整一种或多种过程自变量(过程输入)以便把过程应变量(过程输出)控制在设定点附近。
图1是可以用来实施本发明的低温精馏装置的示意图,它包括一个双塔和一个氩气塔。
图2是可以用来实施本发明的低温精馏装置的示意图,它包括一个双塔,没有氩气塔。
对双塔低温精馏装置,尤其是对备有回收氩气的侧臂塔的此种装置,由于同高压塔内液体流动有关的液流滞后,其产量控制变得困难。进入高压塔底的进料流量的增加立即反映在沿全塔身上升蒸汽量的增加。这是因为,伴随流量改变的压力变化是很轻微的,故不存在因储存在该塔内蒸汽积集或损失而造成的滞后。由于同样原因,高压塔顶部存在的额外蒸汽量立即造成主冷凝器蒸出量和沿低压塔身上升蒸汽量的增加。伴随上述流量改变的低压塔内压力变化也很微小。但是,在高压塔顶冷凝成液体回流并沿整个塔身下降的额外蒸汽物料,需要一段时间才能从高压塔顶到塔釜,再流过连结该塔釜到低压塔中部的回路。此回路还可能包括氩气塔顶冷凝器。由于此种液流延迟效应,和改变产量期间,低压塔内的L/V比将经历一个不稳定或偏离过程,导致不希望出现的产物纯度变化。而且,对应于主冷凝器的额外蒸出,因尚未由低压塔内额外的降液所补偿,主冷凝器液位便下降。为运行安全和高效起见,主冷凝器液位必须维持在较窄的范围内。液位过高,会降低传热效率。液位过低时就得停车,因为可能出现主冷凝器蒸干,而蒸干被认为是一种不安全的做法。当进高压塔釜的进料流量减少时,则出现与上述相反的效果。
本发明针对并解决上述问题,不需要在低温精馏系统中添加额外的容器。本发明在同高压塔釜和/或氩气塔顶冷凝器内的液位控制相关的液位控制设定点上作文章。当进入高压塔釜的进料流量增加时,就降低液位设定点,借此立即向低压塔中部提供额外的液量,以减轻高压塔液流滞后造成的后果。这部分额外的液量起着补偿改变产量期间低压塔内L/V不稳的作用,还为维持主冷凝器液位恒定提供所需要的额外液量。鉴于上述塔釜和氩气塔顶冷凝器是低温精馏装置的标准组成部分,这样做就免去了额外(通常是昂贵的)容器以及附带的控制部分和管线的需要。
较好的是,本发明还利用内部流体组成读数来调整控制器,而不必等待检测产品组成的结果再进行上述调整。在此种较好实例中,本发明利用中间物料组成变量(或者是直接的组成分析,或者是根据温度和温差的推理分析),该分析点位于液体进料点以下同时又高于(当使用氩气塔时)与氩气塔连接处的低压塔中部。经验表明,从这点取得的变量比一般从控制系统反馈部分测得和采用的其他组成变量其响应速度更快。采用该变量,提供了低压塔中部内L/V比值的指示,故允许更大、更快地改变产量。由于其响应快,反馈系统就能够在产品纯度变化尚未被实际测出时就已经纠正了任何可能导致产品纯度不利改变的L/V改变。
下面,将参考附图更详细地讨论本发明。图1表示的是一个采用双塔和氩气塔的空分装置。先看图1,诸如进料空气的进料20,以一般在5660-339600立方米/小时(200,000-12,000,000标准立方英尺/小时)之间的流量流经压缩机1被压缩到一般为482.3-1722.5kPa(70-250psia)绝压。压缩进料空气流21,随后被送过净化器2以去除象CO2和水蒸汽之类的高沸点杂质,得到的流22再送至主换热器3。控制器100测量并通过操纵压缩机导叶101控制进料空气流22的流量,以便使流22的被测空气流量维持在要求的设定点。
进料空气流经主换热器3而被冷却。通常含有进入低温空分装置进料空气总量的3~20%的部分流24,在部分通过主换热器3之后被抽出,经透平膨胀机5透平膨胀以产生冷量,然后作为流25进入双塔系统的低压塔—塔6,该双塔系统还包括高压塔4。进料空气的主要部分,即流23,从主换热器3出来进入高压塔4,塔4一般操作在447.85-1688.05kPa(65~245psia)的压力之间。
进料空气在高压塔4内低温精馏,分离成氮增浓汽和氧增浓液。氮增浓汽以流41进入主冷凝器11,在此,通过与塔6的塔底液间接换热而冷凝。生成的氮增浓液以流42进入塔4作为回流。生成的氮增浓液的另一部分流28,流经换热器9被过冷,然后得到的流29经阀111节流进入低压塔6,塔6的操作压力低于高压塔4,一般介于110.24-413.4kPa(16-60psia)之间。
从高压塔4的塔釜流出的液体被送入低压塔6。在如图1所示的实例中,从高压塔4塔釜出来的液体在进入低压塔6之前,先流过塔顶冷凝器8。从塔4塔釜流出的氧增浓液以流26流经换热器10而过冷。流出的流27随后通过阀105进入塔顶冷凝器8。塔釜液位控制器104通过调节阀105使塔4的釜内液位保持在该液位设定点所规定的要求液位高度。
在塔顶冷凝器8内,氧增浓液与(管内的)渐渐冷凝的氩气塔顶汽换热而部分汽化。产生的氧增浓汽从塔顶冷凝器8出来,以流38通过阀109继而进入低压塔6。剩余的氧增浓液从塔顶冷凝器8出来,经过阀119继而进入低压塔6。塔顶冷凝器液位控制器118通过调节阀119,使塔顶冷凝器的液位保持在该液位设定点规定的液位高度。
在低压塔6里,各路进料经过低温精馏分离成富氮和富氧流体。富氮汽以流30从塔6抽出,经过换热器9、10和3后变热,然后以流33被抽出。可以把流33的全部或一部分作为产物氮回收,其纯度一般高达98%(摩尔)以上。富氧汽以流34从塔6抽出,流经换热器3变暖,然后以流35被抽出。可以把流35的全部或一部分作为产物氧回收,其纯度一般在99-99.9%(摩尔)范围。在由物流35回收蒸汽产物的同时,抑或作为替换由物流35回收蒸汽产物的措施,还可从塔6以物流40抽出富氧液,其全部或一部分可作为液相产物氧回收,纯度一般在99-99.9%(摩尔)范围之间。若不用氩气塔,象图2所表示的实例那样,则氧纯度一般在90-99.9%(摩尔)范围内。
一股主要含有氧和氩的流体以流36从塔6抽出并进入氩气塔7,在塔7中经低温精馏分离成氩更富汽和氧更富液。氧更富液以流37从氩气塔7流出,进入低压塔6。氩更富汽以流43进入塔顶冷凝器8,在此,与上述的部分汽化、氧增浓液间接换热而冷凝。生成的氩更富液以流44进入氩气塔7作为回流。可以把该氩更富液的部分流45作为产物回收,其氩浓渡一般在95-99.9%(摩尔)之间或更高。
图2表示一个不带氩气塔的双塔低温精馏装置。就本公开目的而言,除上面提到的之外,图2表示的双塔装置操作情况与图1类似,故不再一一赘述。图2中的数字代号与图1中相同部分相对应。在图2表示的实例中,从高压塔4塔釜出来的液流27,不经氩气塔顶冷凝器直接经阀105进入低压塔6。
在低温精馏装置运转期间,可以根据需要改变装置的产量,即增加或减少一种或多种产物流的流量。这种改变可能要求改变进料流量。在实施本发明时,为适应进料流量的改变要改变塔釜液位控制器和/或塔顶冷凝器液位控制器的设定点。若进料流量变成高于第一流量的第二流量,则塔釜液位控制器和/或塔顶冷凝器液位控制器的设定点就改变到较低的液位高度。这样一来,迅速提高了高压塔釜进入低压塔的液流量,从而起到在进料流量增加引起蒸汽流量增加时仍维持低压塔内L/V比稳定的作用。若进料流量变到低于第一流量的第二流量,塔釜液位控制器和/或塔顶冷凝器液位控制器的设定点就改变到较高的数值。这样一来,就迅速减少从高压塔釜进入低压塔的液流量,从而起到,尽管因进料流量减少引起蒸汽流量减少,仍维持低压塔内L/V比稳定的作用。稳定的L/V比保证了产物纯度维持在要求的水平。
在本发明的一个较好实例中,事先测定低压塔内的流体(液或汽)组成,再用这种中间产物组成的测定结果对塔釜液位控制器和/或塔顶冷凝器液位控制器进行微小调节。确定组成的被测流体是来自低压塔内低于高压塔釜液进入低压塔的加入点的流体。如果采用了氩气塔,该流体位置还应高于流体自低压塔流向氩气塔的引出点。上述过程表示于图1和图2中,组成传感器150测定由低压塔抽出的液体或蒸汽的样品组成,例如氧或氮的分数。另一种方案是,可以用一个温度传感器代替组成传感器,来感知流体温度,根据这个温度靠推理可确定流体的组成。
本申请人发现,测定该处流体的组成能做到比测定产物流组成更能及时地对L/V比进行调整,同时准确性并不降低。这是因为,中间产物组成对L/V比值变化更为敏感,且一般对该比值变化的响应更快,尤其当氧纯度在98%以上时更是如此。如果不对低压塔设计做一翻巨大而昂贵的改动,是无法直接测定L/V比值本身的。而且,中间产物组成的数值与稳态下氧产物流的组成更为相关。
当中间物料组成的氮摩尔分数高过某一已知能给出某种纯度的氧产品的设定点时,则说明低压塔的下部L/V比值过高,应该降低以防止氧产物纯度继续下降。类似地,当中间产物组成的氮摩尔分数低到某一已知能给出某种纯度的产物氧的设定点时,则说明低压塔下部L/V比值过低,需要提高以防止氧纯度继续升高。为使中间物料组成恢复到其设定点所需要的L/V改变,可以通过调整液位控制器104、118的设定点以及其他过程流量,例如流35、29和36的流量来达到。调整上述物流流量的方法是熟知的。调整这些液位控制器的设定点可以通过反馈回路来达到,该回路利用一个液位控制器调节液位控制器104和118的全部设定点,使测得的中间物料组成维持在所希望的规定设定点。或者,通过调整液位控制器104和118的设定点,使用同一反馈回路来防止中间物料组成持续上升或下滑,而不需尽力将其维持在任何具体的设定点。
调整液位控制器设定点的较好方法是将中间物料组成的测量值纳入一个多变量控制器,它能综合考虑产物氧、氮和氩的测量值以及塔进料组成测定值,并能够调节液位控制器104和118的设定点以及流35、29和36的流量。
这样,就可以通过实施本发明,改变低温精馏装置的产量,同时控制装置的运行以减少或消除产物纯度偏离额定值,而不需要附加储罐或中间罐系统。虽然本发明是结合了某些较好实例加以详细说明的,但熟悉此项技术的人会认识到,此外尚有其他的本发明实例,仍属本文权利要求的原则和范围之内。

Claims (3)

1.一种用于改变低温精馏装置产量的方法,包括:
(A)以第一流量将流体(23)加入到包括一高压塔(4)和一低压塔(6)的低温精馏装置中的所述高压塔(4)中;
(B)把来自高压塔(4)釜的液体送入低压塔(6);
(C)使高压塔(4)釜内液位保持在所要求的高度;其特征在于,
(D)利用设定于所要求液位的塔釜液位控制器(104),使高压塔(4)塔釜的液位保持在要求的高度,
(E)当进料流量改变为超过第一进料流量的第二进料流量时,将塔釜液位控制器(104)的设定点改变到较低的数值;以及
(F)当进料流量改变为低于第一进料流量的第二进料流量时,将塔釜液位控制器(104)的设定点改变到较高的数值;
(K)测定低压塔(6)内低于自高压塔(4)釜来的液体加入到低压塔(6)的加入点处的流体组成,并根据该测定结果调整塔釜液位控制器(104)的设定点。
2.权利要求1的方法,其中,
——所述低温精馏装置除高压塔(4)和低压塔(6)之外,还包括一个带塔顶冷凝器(8)的氩气塔(7);
——步骤(A)的流体包括进料空气;
——在步骤(B)中,把来自高压塔(4)釜的液体送入上述塔顶冷凝器(8),并把来自所述塔顶冷凝器的液体送入低压塔(6),并且所述方法还包括
(G)把出自低压塔(6)的流体送入氩气塔(7);
(H)利用设定于所要求液位的塔顶冷凝器(8)液位控制器(118),使塔顶冷凝器(8)的液位保持在所要求的高度;
(I)当进料空气流量改变为超过第一进料空气流量的第二进料流量时,将塔顶冷凝器液位控制器(118)的设定点改变到较低的数值;以及
(J)当进料空气流量改变为低于第一进料空气流量的第二进料流量时,将塔顶冷凝器液位控制器(118)的设定点改变到较高的数值。
3.权利要求2的方法,进一步包括测定低压塔(6)内一点处流体的组成,该点低于从塔顶冷凝器(8)来的液体加入到低压塔(6)的加入点,同时又高于从低压塔送往氩气塔(7)流体的引出点,并且根据上述测定结果调整塔顶冷凝器液位控制器(118)的设定点。
CN95105528A 1994-05-27 1995-05-26 低温精馏系统产量的控制方法 Expired - Lifetime CN1088182C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/250,240 US5406800A (en) 1994-05-27 1994-05-27 Cryogenic rectification system capacity control method
US250,240 1994-05-27
US250240 1994-05-27

Publications (2)

Publication Number Publication Date
CN1122440A CN1122440A (zh) 1996-05-15
CN1088182C true CN1088182C (zh) 2002-07-24

Family

ID=22946921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95105528A Expired - Lifetime CN1088182C (zh) 1994-05-27 1995-05-26 低温精馏系统产量的控制方法

Country Status (9)

Country Link
US (1) US5406800A (zh)
EP (2) EP0798523B1 (zh)
JP (1) JP3065229B2 (zh)
KR (1) KR100212873B1 (zh)
CN (1) CN1088182C (zh)
BR (1) BR9502566A (zh)
CA (1) CA2150284C (zh)
DE (2) DE69501287T2 (zh)
ES (2) ES2153144T3 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595356B (zh) * 2006-12-22 2012-11-28 乔治洛德方法研究和开发液化空气有限公司 通过低温蒸馏分离气体混合物的方法和装置

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2704632B1 (fr) * 1993-04-29 1995-06-23 Air Liquide Procede et installation pour la separation de l'air.
FR2716816B1 (fr) * 1994-03-02 1996-05-03 Air Liquide Procédé de redémarrage d'une colonne auxiliaire de séparation argon/oxygène par distillation, et installation correspondante.
GB9617642D0 (en) * 1996-08-22 1996-10-02 Boc Group Plc Fractionation column
US5778700A (en) * 1997-04-30 1998-07-14 The Boc Group, Inc. Method of producing gaseous oxygen at variable rate
US6073463A (en) * 1998-10-09 2000-06-13 Air Products And Chemicals, Inc. Operation of a cryogenic air separation unit which intermittently uses air feed as the repressurization gas for a two bed PSA system
DE19921949A1 (de) * 1999-05-12 2000-11-16 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
US6182471B1 (en) 1999-06-28 2001-02-06 Praxair Technology, Inc. Cryogenic rectification system for producing oxygen product at a non-constant rate
US20030213688A1 (en) * 2002-03-26 2003-11-20 Wang Baechen Benson Process control of a distillation column
US6647745B1 (en) 2002-12-05 2003-11-18 Praxair Technology, Inc. Method for controlling the operation of a cryogenic rectification plant
US6988370B2 (en) * 2003-06-12 2006-01-24 Michael Iarocci Cryogenic storage system with improved temperature control
FR2855872A1 (fr) * 2004-06-25 2004-12-10 Air Liquide Appareil de distillation, procede et appareil de separation d'air par distillation cryogenique
FR2896860A1 (fr) * 2006-01-31 2007-08-03 Air Liquide Procede de separation d'air par distillation cryogenique et installation correspondante
FR2916039B1 (fr) * 2007-05-11 2013-11-01 Air Liquide Procede de regulation d'une unite de distillation cryogenique.
US7789939B2 (en) * 2008-07-29 2010-09-07 Praxair Technology, Inc. Adsorbent bed repressurization control method
US9291388B2 (en) * 2009-06-16 2016-03-22 Praxair Technology, Inc. Method and system for air separation using a supplemental refrigeration cycle
JP6130567B1 (ja) * 2016-08-25 2017-05-17 神鋼エア・ウォーター・クライオプラント株式会社 酸素ガスの製造方法、およびその装置
JP7378695B2 (ja) * 2020-01-06 2023-11-14 日本エア・リキード合同会社 空気分離システム
JP7460973B2 (ja) 2020-03-05 2024-04-03 日本エア・リキード合同会社 空気分離装置
KR20220021253A (ko) 2020-08-13 2022-02-22 주식회사 엘지화학 에스터의 제조방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB890342A (en) * 1960-04-25 1962-02-28 Union Carbide Corp Low temperature air separation with improved argon recovery
JPS4846387A (zh) * 1971-10-13 1973-07-02
JPS5419165B2 (zh) * 1973-03-01 1979-07-13
US4566887A (en) * 1982-09-15 1986-01-28 Costain Petrocarbon Limited Production of pure nitrogen
WO1987001185A1 (en) * 1985-08-23 1987-02-26 Daidousanso Co., Ltd. Oxygen gas production unit
US4784677A (en) * 1987-07-16 1988-11-15 The Boc Group, Inc. Process and apparatus for controlling argon column feedstreams
DE3913880A1 (de) * 1989-04-27 1990-10-31 Linde Ag Verfahren und vorrichtung zur tieftemperaturzerlegung von luft
US5129932A (en) * 1990-06-12 1992-07-14 Air Products And Chemicals, Inc. Cryogenic process for the separation of air to produce moderate pressure nitrogen
US5148680A (en) * 1990-06-27 1992-09-22 Union Carbide Industrial Gases Technology Corporation Cryogenic air separation system with dual product side condenser
US5224336A (en) * 1991-06-20 1993-07-06 Air Products And Chemicals, Inc. Process and system for controlling a cryogenic air separation unit during rapid changes in production
CN1071444C (zh) * 1992-02-21 2001-09-19 普拉塞尔技术有限公司 生产气体氧的低温空气分离系统
US5351492A (en) * 1992-09-23 1994-10-04 Air Products And Chemicals, Inc. Distillation strategies for the production of carbon monoxide-free nitrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595356B (zh) * 2006-12-22 2012-11-28 乔治洛德方法研究和开发液化空气有限公司 通过低温蒸馏分离气体混合物的方法和装置

Also Published As

Publication number Publication date
US5406800A (en) 1995-04-18
CA2150284C (en) 1997-10-14
JPH07332845A (ja) 1995-12-22
EP0798523A2 (en) 1997-10-01
EP0798523B1 (en) 2001-01-10
DE69501287D1 (de) 1998-02-05
JP3065229B2 (ja) 2000-07-17
CN1122440A (zh) 1996-05-15
EP0684436A1 (en) 1995-11-29
KR100212873B1 (ko) 1999-08-02
DE69501287T2 (de) 1998-07-09
ES2153144T3 (es) 2001-02-16
DE69519875D1 (de) 2001-02-15
CA2150284A1 (en) 1995-11-28
BR9502566A (pt) 1996-03-05
ES2110800T3 (es) 1998-02-16
DE69519875T2 (de) 2001-05-31
KR950031154A (ko) 1995-12-18
EP0684436B1 (en) 1997-12-29
EP0798523A3 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
CN1088182C (zh) 低温精馏系统产量的控制方法
CN1071444C (zh) 生产气体氧的低温空气分离系统
CA2071123C (en) Process and system for controlling a cryogenic air separation unit during rapid changes in production
US5431023A (en) Process for the recovery of oxygen from a cryogenic air separation system
JPH0861844A (ja) 蒸留によるアルゴン/酸素分離のための副カラムの再始動方法、およびその装置
CN1231417A (zh) 生产高纯氧或低纯氧用的低温精馏装置
CN100397012C (zh) 使空分单元中的氩回收最佳化的方法和系统
KR20140070557A (ko) 공기 분리 플랜트 제어
EP0182620A2 (en) Nitrogen generation
CN1286387A (zh) 生产甚高纯氧的低温精馏系统
EP3845848A1 (en) Air separation system
EP0949475A2 (en) Separation of air
EP0301514B1 (en) Process and apparatus to produce ultra high purity oxygen from a liquid feed
CN1175233C (zh) 以非恒产率生产氧产品的深冷精馏系统
US2990689A (en) Method and apparatus for the production of argon
CN1077276C (zh) 分段进料空气冷凝的低温精馏系统
CN1135351C (zh) 生产氩的塔结构和氩的生产方法
KR100782153B1 (ko) 공기의 저온 분류 방법 및 장치
JP4104726B2 (ja) 空気液化分離装置の運転方法
JPH0213779A (ja) 酸素・窒素液化設備における窒素精留塔の制御方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CX01 Expiry of patent term

Expiration termination date: 20150526

Granted publication date: 20020724