CN108808266A - A kind of four-dimensional antenna array combined optimization method for irregular subarray arrangement - Google Patents
A kind of four-dimensional antenna array combined optimization method for irregular subarray arrangement Download PDFInfo
- Publication number
- CN108808266A CN108808266A CN201810600874.9A CN201810600874A CN108808266A CN 108808266 A CN108808266 A CN 108808266A CN 201810600874 A CN201810600874 A CN 201810600874A CN 108808266 A CN108808266 A CN 108808266A
- Authority
- CN
- China
- Prior art keywords
- array
- sub
- dimensional
- switch closure
- information entropy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001788 irregular Effects 0.000 title claims abstract description 31
- 238000005457 optimization Methods 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title description 10
- 230000005284 excitation Effects 0.000 claims abstract description 21
- 230000003068 static effect Effects 0.000 claims abstract description 21
- 230000002068 genetic effect Effects 0.000 claims abstract description 6
- 238000003491 array Methods 0.000 claims description 25
- 230000005484 gravity Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 22
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/0087—Apparatus or processes specially adapted for manufacturing antenna arrays
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
- G06F17/12—Simultaneous equations, e.g. systems of linear equations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/12—Computing arrangements based on biological models using genetic models
- G06N3/126—Evolutionary algorithms, e.g. genetic algorithms or genetic programming
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Data Mining & Analysis (AREA)
- Biophysics (AREA)
- Computational Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Operations Research (AREA)
- Databases & Information Systems (AREA)
- Algebra (AREA)
- Physiology (AREA)
- Genetics & Genomics (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computational Linguistics (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Manufacturing & Machinery (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本发明公开了一种不规则子阵排列的四维天线阵联合优化算法,将信息熵的定义引入到四维阵中,把原本复杂的优化问题划分为两个子问题,然后分成两步进行优化,第一步采用基于信息熵的遗传算法,根据子阵排布算法优化出信息熵值最大的阵列拓扑结构,第二步,根据低边带和低副瓣的要求,利用差分进化算法优化子阵的每个子阵的静态激励相位,开关闭合持续时间,开关闭合起始时刻等信息,从而使得整个优化问题能够更高效的求解。本发明的最大创新性在于挖掘了原优化问题的本质特性,联合基于信息熵的遗传算法和差分进化算法进行优化,降低了原优化问题的复杂度,在节省了一半T/R组件的同时,保证了大角度扫描下的低副瓣低边带特性。
The invention discloses a four-dimensional antenna array joint optimization algorithm with irregular sub-array arrangement, which introduces the definition of information entropy into the four-dimensional array, divides the original complex optimization problem into two sub-problems, and then divides it into two steps for optimization. In the first step, the genetic algorithm based on information entropy is used to optimize the array topology structure with the largest information entropy value according to the subarray arrangement algorithm. Information such as the static excitation phase of each sub-array, the duration of switch closure, and the start time of switch closure can make the entire optimization problem more efficient. The greatest innovation of the present invention lies in digging out the essential characteristics of the original optimization problem, combining the genetic algorithm based on information entropy and the differential evolution algorithm for optimization, reducing the complexity of the original optimization problem, and saving half of the T/R components. The characteristics of low sidelobe and low sideband under large-angle scanning are guaranteed.
Description
技术领域technical field
本发明属于天线技术领域,涉及到基于不规则子阵的四维天线阵综合,具体来说是利用一种联合优化方法高效地综合四维天线阵。此联合算法主要采用了信息熵的原理,将四维天线阵综合分为两个步骤,先利用遗传算法优化出不规则阵列的拓扑结构,再按需综合出目标方向图。The invention belongs to the technical field of antennas, and relates to the synthesis of four-dimensional antenna arrays based on irregular sub-arrays. Specifically, a joint optimization method is used to efficiently synthesize four-dimensional antenna arrays. This joint algorithm mainly uses the principle of information entropy, and divides the synthesis of four-dimensional antenna array into two steps. First, the topology of the irregular array is optimized by genetic algorithm, and then the target pattern is synthesized as needed.
背景技术Background technique
相控阵天线因能够实现通过改变相位以达到波束扫描的目的,在雷达和通信领域中得到了广泛的应用,但同时由于每个单元都需要连接一个移相器和T/R组件,大大增加了天线制造成本,同时常规相控阵的幅度相位加权手段很难满足天线阵低副瓣的需求,限制了天线的应用范围。Phased array antennas are widely used in the radar and communication fields because they can achieve the purpose of beam scanning by changing the phase. At the same time, the amplitude and phase weighting methods of conventional phased arrays are difficult to meet the requirements of low sidelobes of antenna arrays, which limits the application range of antennas.
提出于二十世纪六十年代兴起于二十一世纪初的四维天线阵的概念,通过引入时间作为新的一维自由度来设计天线,利用时间加权等效的实现幅度和相位的加权,既能控制和改善天线阵的辐射特性,又能在均匀的静态激励幅度之下设计窄波束、低副瓣和各种赋形波束,这必将大大的简化对馈电网络的要求,因此把四维天线的思想引入传统天线阵中将十分有利于对天线阵馈电网络的设计,同时对天线结构加工精度,馈电网络的馈电精度和容差的需求大大减小,具有极大的设计灵活性。The concept of the four-dimensional antenna array was proposed in the 1960s and emerged in the early 21st century. The antenna is designed by introducing time as a new one-dimensional degree of freedom, and the weighting of amplitude and phase is equivalently realized by using time weighting. Both It can control and improve the radiation characteristics of the antenna array, and can design narrow beams, low sidelobes and various shaped beams under the uniform static excitation amplitude, which will greatly simplify the requirements for the feed network, so the four-dimensional The introduction of the antenna idea into the traditional antenna array will be very beneficial to the design of the antenna array feed network. At the same time, the requirements for the processing accuracy of the antenna structure, feed accuracy and tolerance of the feed network will be greatly reduced, and it will have great design flexibility. sex.
上世纪六七十年代,国外开始研究稀疏阵列天线,通过优化算法,可以使用较少的阵元数目通过不同的排列方式,实现较窄的波束及方向图扫描。但采用优化算法计算的阵列,一般阵元位置很不规则,阵元的加工和排列是非常棘手的问题。虽然周期性的大单元间距的阵列可以解决上述排列和加工的问题,但是由于单元的间距增大,引起阵列的副瓣电平升高,甚至出现栅瓣,限制阵列只能扫描很小的角度。In the 1960s and 1970s, foreign countries began to study sparse array antennas. Through optimization algorithms, a smaller number of array elements can be used to achieve narrower beams and pattern scanning through different arrangements. However, for the array calculated by the optimization algorithm, the position of the array elements is generally very irregular, and the processing and arrangement of the array elements are very difficult problems. Although a periodic array with a large unit spacing can solve the above-mentioned arrangement and processing problems, due to the increase of the unit spacing, the sidelobe level of the array increases, and even grating lobes appear, limiting the array to scan only a small angle .
从天线阵的基本原理来考虑,阵列排布的周期性是导致产生方向图栅瓣的主要原因,因此如何打破阵列的周期性就成为抑制栅瓣的主要思路,R.J.Mailloux,Andrea Massa等人提出了采用不规则子阵的方法来打破阵列的周期性,但由于优化问题过于复杂,他们的方案只能实现一维扫描,在工程上适用性较差。专利号为CN 107230843 A的专利中采用了类似的方案,实现了二维扫描,但是扫描性能不强,两个单元组成的子阵在20×20的阵面下以0.7个波长间距布阵,只能实现±20°的二维扫描,该方案还没有完全发挥不规则子阵的扫描优势,在工程上适用性较差。Considering the basic principle of the antenna array, the periodicity of the array arrangement is the main cause of the grating lobes of the pattern, so how to break the periodicity of the array becomes the main idea of suppressing the grating lobes. R.J.Mailloux, Andrea Massa et al proposed The method of using irregular sub-arrays is used to break the periodicity of the array, but because the optimization problem is too complicated, their scheme can only realize one-dimensional scanning, which is poor in engineering applicability. The patent No. CN 107230843 A adopts a similar scheme to realize two-dimensional scanning, but the scanning performance is not strong. The sub-array composed of two units is arranged at a 0.7 wavelength interval under the 20×20 array. Only two-dimensional scanning of ±20° can be realized. This solution has not fully utilized the scanning advantages of irregular sub-arrays, and its applicability in engineering is poor.
发明内容Contents of the invention
鉴于上述技术背景,本发明提出了一种不规则子阵排列的四维天线阵联合优化算法,目的在于相比于已经存在的优化技术,本发明的提出的方法能够更加快速、更加有效的综合大型不规则四维阵。In view of the above technical background, the present invention proposes a four-dimensional antenna array joint optimization algorithm with irregular sub-array arrangement, the purpose is that compared with the existing optimization technology, the proposed method of the present invention can synthesize large-scale Irregular four-dimensional array.
本发明所提出的联合方法主要针对脉冲相移时序的不规则四维阵,根据此时序下不规则四维阵的特点,整个联合优化过程可分为两步。第一步,根据信息熵的原理,利用遗传算法优化出不规则阵列的拓扑结构;第二步,在第一步的基础上,根据已知的拓扑结构,利用差分进化算法优化每个子阵的静态激励幅度,静态激励相位,开关闭合持续时间,开关闭合起始时刻来抑制副瓣电平和边带电平。The joint method proposed by the present invention is mainly aimed at the irregular four-dimensional array of pulse phase shift time sequence. According to the characteristics of the irregular four-dimensional array under this time sequence, the whole joint optimization process can be divided into two steps. The first step is to use the genetic algorithm to optimize the topological structure of the irregular array according to the principle of information entropy; the second step is to use the differential evolution algorithm to optimize the topology of each sub-array on the basis of the first step and according to the known topological structure. Static excitation amplitude, static excitation phase, switch closure duration, switch closure start time to suppress sidelobe level and sideband level.
本发明具有以下内容:The present invention has the following contents:
为了定义不规则子阵排布的混乱程度,我们引入信息熵的概念。假设X为一个随机变量,n表示共有n个可能的输出,P(X)表示输出概率函数。因此X的信息熵为:In order to define the disorder degree of irregular sub-array arrangement, we introduce the concept of information entropy. Assuming that X is a random variable, n represents a total of n possible outputs, and P(X) represents the output probability function. Therefore, the information entropy of X is:
H(X)=E[-logb(P(X))] (1)H(X)=E[-log b (P(X))] (1)
如果将b设为2,可以将(1)式改写成If b is set to 2, formula (1) can be rewritten as
考虑由一个M×N的不规则阵列,仅考虑不规则子阵由两个阵列单元组成日字形的子阵,多个单元的情况类似,子阵的相位中心为其重心,天线阵由多个子阵排列组成,为了描述简单假设阵列单元为一个正方形网格,阵元的间距均为d,那么阵列的信息熵为Considering an irregular array of M×N, only the irregular sub-array is composed of two array elements. The situation of multiple elements is similar. The phase center of the sub-array is its center of gravity. The antenna array consists of multiple sub-arrays. The composition of the array arrangement, for the sake of simplicity, it is assumed that the array unit is a square grid, and the spacing between the array elements is d, then the information entropy of the array is
其中,ri表示第i列共有ri个子阵的相位重心,cj表示第j列共有cj个子阵的相位重心,T表示是阵列的子阵数,对于两个阵列单元组成的子阵来说就是MN/2个子阵。Among them, r i represents the phase center of gravity of r i sub-arrays in column i, c j represents the phase center of gravity of c j sub-arrays in column j, and T represents the number of sub-arrays in the array. For a sub-array composed of two array elements In other words, it is MN/2 subarrays.
不规则四维阵中每个子阵接一个高速的射频开关,开关函数为Uij(t)。则此时序形式的远场分布为:Each sub-array in the irregular four-dimensional array is connected to a high-speed radio frequency switch, and the switching function is U ij (t). Then the far-field distribution in this sequential form is:
i∈{0.5,1,1.5...M-0.5},j∈{0.5,1,1.5...N-0.5}i∈{0.5,1,1.5...M-0.5},j∈{0.5,1,1.5...N-0.5}
其中表示四维阵的单元方向图;表示二元子阵的阵因子方向图;Iij表示阵列的静态激励幅度;αij表示阵列的静态激励相位;β表示波数,(xi,yj)表示平面直角坐标系下子阵中心的坐标;G表示所有子阵中心坐标的集合。in Represents the element pattern of a four-dimensional array; Indicates the array factor pattern of the binary subarray ; I ij indicates the static excitation amplitude of the array; α ij indicates the static excitation phase of the array; ; G represents the collection of the center coordinates of all sub-arrays.
此不规则四维天线阵工作在中心频率f0,开关的时间调制周期Tp,时间调制频率fp=1/Tp。具有脉冲相移时间调制方式的开关函数Uij(t)表示为:The irregular four-dimensional antenna array works at the center frequency f 0 , the time modulation period of the switch is T p , and the time modulation frequency f p =1/T p . The switching function U ij (t) with pulse phase shift time modulation is expressed as:
tij表示控制单元的开关闭合起始时刻,τij表示控制单元的开关闭合持续时间。根据信号与系统理论,开关的周期性函数的时域表达式可以通过傅里叶级数在频域展开:t ij represents the start moment of the switch closure of the control unit, and τ ij represents the duration of the switch closure of the control unit. According to signal and system theory, the time-domain expression of the periodic function of the switch can be expanded in the frequency domain by Fourier series:
带入(4)(5)式得远场的第k次谐波的表达式为:The expression of the kth harmonic of the far field brought into (4) and (5) is:
因此,整个联合优化过程可分为两步。Therefore, the whole joint optimization process can be divided into two steps.
第一步,利用信息熵的原理和遗传算法对不规则子阵排布方式进行优化,其中优化变量仅有整数,以找出满足下列优化问题的解。The first step is to use the principle of information entropy and genetic algorithm to optimize the arrangement of irregular sub-arrays, in which the optimization variables are only integers, so as to find a solution that satisfies the following optimization problems.
第二步,把第一步求解得的阵列排布方式当作已知,利用差分进化算法优化非整数变量,即开关闭合起始时刻,开关闭合时间,开关闭合持续时间和静态激励相位,来抑制边带和副瓣电平。即找出满足下列问题的解W。In the second step, the array arrangement obtained in the first step is regarded as known, and the non-integer variables are optimized by using the differential evolution algorithm, that is, the start time of switch closure, the switch closure time, the switch closure duration and the static excitation phase, to Suppresses sideband and sidelobe levels. That is, find a solution W that satisfies the following questions.
其中Θsidelobe表示中心频率下归一化场分布的副瓣区域,tij表示开关闭合起始时刻,τij表示开关闭合时间,αij表示静态激励相位。Where Θ sidelobe represents the sidelobe area of the normalized field distribution at the center frequency, t ij represents the initial moment of switch closure, τ ij represents the switch closure time, and α ij represents the static excitation phase.
本发明的创新性在于开发了一种联合优化算法对不规则子阵形式的四维天线阵低副瓣、低边带方向图进行了快速高效的综合。与现有技术相比,本发明具有以下优点:The innovation of the present invention lies in the development of a joint optimization algorithm to quickly and efficiently synthesize the low-sidelobe and low-sideband pattern of the four-dimensional antenna array in the form of irregular sub-arrays. Compared with the prior art, the present invention has the following advantages:
1.通过对中心频率处和边带处场的约束条件合理分析,采取分步处理的方法,把一个原本十分复杂的综合问题分解成两个相对简单的综合问题,在不失问题一般性的前提下减小了综合的难度。1. Through a reasonable analysis of the constraint conditions of the center frequency and sideband fields, a step-by-step approach is adopted to decompose an originally very complicated comprehensive problem into two relatively simple comprehensive problems, without losing the generality of the problem Under the premise, the difficulty of synthesis is reduced.
2.采用不规则子阵的形式在减少了一半T/R组件的条件下,仍能够保证天线阵列具有低副瓣,低旁瓣,高增益的特性,节约了成本,降低了馈电复杂度。2. The use of irregular sub-arrays can still ensure that the antenna array has the characteristics of low sidelobe, low sidelobe, and high gain under the condition of reducing half of the T/R components, saving costs and reducing the complexity of feeding .
3.天线单元仍然周期性的排布在阵面上,没有破坏天线阵列的一致性,使得天线阵列更易于批量化生产和加工。3. The antenna elements are still periodically arranged on the front surface without destroying the consistency of the antenna array, making the antenna array easier to mass produce and process.
4.本方案能够最大程度的发挥不规则子阵的扫描优势,在大阵列环境下可以实现±65°的二维扫描°。4. This solution can maximize the scanning advantages of irregular sub-arrays, and can realize two-dimensional scanning of ±65° in a large array environment.
附图说明Description of drawings
图1为不规则子阵的四维阵列结构图。Figure 1 is a four-dimensional array structure diagram of an irregular sub-array.
图2为示例一中不规则子阵阵列排布图(M×N=16×16)。FIG. 2 is an arrangement diagram of the irregular sub-arrays in Example 1 (M×N=16×16).
图3为示例一中在相控阵体制下侧射时归一化三维方向图。Fig. 3 is the normalized three-dimensional pattern of side-firing under the phased array system in Example 1.
图4为示例一中在相控阵体制下侧射时静态幅度激励分布图。Fig. 4 is a diagram of static amplitude excitation distribution in side-fire under the phased array system in Example 1.
图5为示例一中在相控阵体制下扫描俯仰面30时度归一化三维方向图。Fig. 5 is a normalized three-dimensional pattern when the elevation plane is scanned for 30 degrees under the phased array system in Example 1.
图6为示例一中在相控阵体制下扫描俯仰面30度静态幅度激励分布图。Fig. 6 is an excitation distribution diagram of a 30-degree static amplitude scanning on the elevation plane under the phased array system in Example 1.
图7为示例一中在相控阵体制下扫描俯仰面30度静态相位激励分布图Figure 7 is the static phase excitation distribution diagram of scanning the elevation plane at 30 degrees in the phased array system in Example 1
图8为示例一中在相控阵体制下扫描方位面30度时归一化三维方向图。Fig. 8 is a normalized three-dimensional pattern when scanning the azimuth plane at 30 degrees under the phased array system in Example 1.
图9为示例一中在相控阵体制下扫描方位面30度时静态幅度激励分布图。Fig. 9 is a static amplitude excitation distribution diagram when the azimuth plane is scanned at 30 degrees under the phased array system in Example 1.
图10为示例一中在相控阵体制下扫描方位面30度时静态相位激励分布图Figure 10 is the distribution diagram of the static phase excitation when scanning the azimuth plane at 30 degrees under the phased array system in Example 1
图11为示例一中在四维阵体制下侧射时中心频率归一化三维方向图。Fig. 11 is a three-dimensional direction diagram normalized by the center frequency when shooting sideways under the four-dimensional array system in Example 1.
图12为示例一中在四维阵体制下侧射时第一边带频率归一化三维方向图。Fig. 12 is a three-dimensional pattern normalized by the frequency of the first sideband when shooting sideways under the four-dimensional array system in Example 1.
图13为示例一中在四维阵体制下侧射时部分开关时序图。Fig. 13 is a timing diagram of partial switching when shooting sideways under the four-dimensional array system in Example 1.
图14为示例一中在四维阵体制下扫描D面45度中心频率三维方向图。Fig. 14 is a three-dimensional direction diagram of the 45-degree center frequency of scanning D plane under the four-dimensional array system in Example 1.
图15为示例一中在四维阵体制下扫描D面45度第一边带三维方向图。Fig. 15 is a three-dimensional direction diagram of the first sideband at 45 degrees of scanning D plane under the four-dimensional array system in Example 1.
图16为示例一中在四维阵体制下扫描D面45度时静态幅度激励分布图。Fig. 16 is a static amplitude excitation distribution diagram when scanning the D surface at 45 degrees under the four-dimensional array system in Example 1.
图17为示例一中在四维阵体制下扫描D面45度时部分开关时序图。FIG. 17 is a partial switch timing diagram when scanning the D surface at 45 degrees in the four-dimensional array system in Example 1.
图18为示例二中不规则子阵阵列排布图(M×N=36×36)。FIG. 18 is an arrangement diagram of the irregular sub-arrays in Example 2 (M×N=36×36).
图19为示例二中在四维阵体制下扫描俯仰面65度中心频率三维方向图。FIG. 19 is a three-dimensional direction diagram of the center frequency at 65 degrees of the scanning elevation plane in Example 2 under the four-dimensional array system.
图20为示例二中在四维阵体制下扫描俯仰面65度第一边带三维方向图。FIG. 20 is a three-dimensional direction diagram of the first sideband of the scanning elevation plane at 65 degrees under the four-dimensional array system in the second example.
图21为示例二中在四维阵体制下扫描方位面65度中心频率三维方向图。Fig. 21 is a three-dimensional direction diagram of the center frequency of the scanning azimuth plane at 65 degrees under the four-dimensional array system in Example 2.
图22为示例二中在四维阵体制下扫描方位面65度第一边带三维方向图。Fig. 22 is a three-dimensional direction diagram of the first sideband of the scanning azimuth plane at 65 degrees under the four-dimensional array system in Example 2.
具体实施方式一Specific implementation mode one
考虑一个不规则子阵的四维阵,阵面大小为M×N=16×16,仅考虑不规则子阵由两个阵列单元组合而成,因此共有16×16/2=128个子阵,子阵内的天线单元静态激励幅度,静态激励相位,开关闭合起始时刻和开关闭合持续时间都相同。开关时序选用脉冲平移时序。参考阵列为一个16×16=256个单元的切比雪夫平面阵。Considering a four-dimensional array of irregular sub-arrays, the size of the array is M×N=16×16, only considering that the irregular sub-array is composed of two array units, so there are 16×16/2=128 sub-arrays in total, and the sub-arrays The antenna units in the array have the same static excitation amplitude, static excitation phase, switch closing start time and switch closing duration. The switch sequence selects the pulse translation sequence. The reference array is a Chebyshev planar array with 16×16=256 units.
其他主要参数如下:Other main parameters are as follows:
d=dx=dy=0.5λd = d x = d y = 0.5λ
第一步,优化不规则子阵的排布方式,如图1,得到一个子阵总数为128的不规则阵列,该阵列的信息熵为H=5.9114,其中Hr和Hc分别为:The first step is to optimize the arrangement of irregular sub-arrays, as shown in Figure 1, an irregular array with a total of 128 sub-arrays is obtained, and the information entropy of this array is H=5.9114, where H r and H c are respectively:
由于Hr和Hc的值几乎相同,这意味着,该阵列在俯仰面和方位面的扫描性能是大致相同的,图3-图10为该阵列排布在相控阵体制下的扫描性能情况以及相应的静态激励幅度分布,静态激励相位分布。可以看到利用信息熵的算法能够合理的分配自由度,保证阵列在各个角度的扫描性能。Since the values of H r and H c are almost the same, it means that the scanning performance of the array in the elevation plane and the azimuth plane is roughly the same. Figure 3-Figure 10 shows the scanning performance of the array arranged under the phased array system situation and the corresponding static excitation amplitude distribution, static excitation phase distribution. It can be seen that the algorithm using information entropy can reasonably allocate degrees of freedom to ensure the scanning performance of the array at various angles.
第二步,利用差分进化算法开关闭合起始时刻和开关闭合持续时间等信息,最终得到了一个副瓣为-29.5dB,方向性系数为22.61dB,第一边带为-31.0dB的方向图,如图11-图13所示。其中图13为部分开关时序图,编号1的子阵对应的阵元位置为(1,1)(2,1),编号2的子阵对应的阵元位置为(1,2)(1,3),编号3的子阵对应的阵元位置为(3,10)(3,11),编号4的子阵对应的阵元位置为(3,12)(4,12),编号5的子阵对应的阵元位置为(8,8)(9,8),编号6的子阵对应的阵元位置为(8,9)(9,9),编号7的子阵对应的阵元位置为(11,5)(12v5),编号8的子阵对应的阵元位置为(14,4)(14,5),编号9的子阵对应的阵元位置为(16,13)(16,14),编号10的子阵对应的阵元位置为(16,15)(16,16).In the second step, using the differential evolution algorithm switch closure start time and switch closure duration and other information, a directivity pattern with a side lobe of -29.5dB, a directivity coefficient of 22.61dB, and a first sideband of -31.0dB is finally obtained. , as shown in Figure 11-Figure 13. Among them, Figure 13 is a partial switch timing diagram. The array element position corresponding to the sub-array number 1 is (1,1)(2,1), and the array element position corresponding to the sub-array number 2 is (1,2)(1, 3), the array element position corresponding to the number 3 sub-array is (3,10)(3,11), the array element position corresponding to the number 4 sub-array is (3,12)(4,12), and the array element position corresponding to the number 5 The array element position corresponding to the sub-array is (8,8)(9,8), the array element position corresponding to the number 6 sub-array is (8,9)(9,9), and the array element corresponding to the number 7 sub-array The position is (11,5)(12v5), the element position corresponding to the sub-array numbered 8 is (14,4)(14,5), and the element position corresponding to the sub-array numbered 9 is (16,13)( 16,14), the array element position corresponding to the number 10 sub-array is (16,15)(16,16).
对于同样的布阵形式,优化开关闭合起始时刻和开关闭合持续时间以及静态激励相位分布,可以得到一个副瓣为-17.5dB,方向性系数为20dB,第一边带为-22.1dB,扫描到D面45度时的方向图,如图14-图17所示。其中图17为部分开关时序图,编号1的子阵对应的阵元位置为(2,9)(2,10),编号2的子阵对应的阵元位置为(1,0)(1,1),编号3的子阵对应的阵元位置为(2,5)(2,6),编号4的子阵对应的阵元位置为(3,7)(3,6),编号5的子阵对应的阵元位置为(7,4)(8,4),编号6的子阵对应的阵元位置为(7,8)(7,9),编号7的子阵对应的阵元位置为(8,12)(8,13),编号8的子阵对应的阵元位置为(11,1)(11,2),编号9的子阵对应的阵元位置为(12,2)(12,3),编号10的子阵对应的阵元位置为(16,15)(16,16).For the same array arrangement, optimize the switch closing start time, switch closing duration and static excitation phase distribution, you can get a side lobe of -17.5dB, directivity coefficient of 20dB, first sideband of -22.1dB, scanning The direction diagram at 45 degrees to the D plane is shown in Figure 14-Figure 17. Among them, Figure 17 is a partial switch timing diagram. The array element position corresponding to the sub-array number 1 is (2,9)(2,10), and the array element position corresponding to the sub-array number 2 is (1,0)(1, 1), the array element position corresponding to the number 3 sub-array is (2,5)(2,6), the array element position corresponding to the number 4 sub-array is (3,7)(3,6), and the array element position corresponding to the number 5 The array element position corresponding to the sub-array is (7,4)(8,4), the array element position corresponding to the number 6 sub-array is (7,8)(7,9), and the array element corresponding to the number 7 sub-array The position is (8,12)(8,13), the element position corresponding to the sub-array numbered 8 is (11,1)(11,2), and the element position corresponding to the sub-array numbered 9 is (12,2 )(12,3), the array element position corresponding to the number 10 sub-array is (16,15)(16,16).
具体实施方式二Specific implementation mode two
考虑一个大型的不规则子阵的四维阵,阵面大小为M×N=36×36,仅考虑不规则子阵由两个阵列单元组合而成,阵元间距d=dx=dy=0.5λ,开关的闭合时长限制在[0.1μs,1μs]。Consider a large four-dimensional array of irregular sub-arrays, the size of the array is M×N=36×36, only considering that the irregular sub-array is composed of two array elements, and the distance between array elements is d=d x =d y = 0.5λ, the closing time of the switch is limited to [0.1μs, 1μs].
通过本方案进行阵列综合,该四维阵主要的性能指标为:俯仰面扫描到65°,副瓣为-19.72dB,方向性系数为29.51dB,第一边带为-26.24dB;方位面扫描到65°,副瓣为-20.35dB,方向性系数为29.52dB,第一边带为-26.06dB,具体的方向图及排布方案如图18-图22所示。Through the array synthesis of this scheme, the main performance indicators of the four-dimensional array are: the pitch plane scans to 65°, the side lobe is -19.72dB, the directivity coefficient is 29.51dB, and the first sideband is -26.24dB; the azimuth plane scans to 65°, the side lobe is -20.35dB, the directivity coefficient is 29.52dB, and the first sideband is -26.06dB. The specific direction diagram and arrangement scheme are shown in Figure 18-22.
以上是向熟悉本发明领域的工程技术人员提供的对本发明及其实施方案的描述,这些描述应被视为是说明性的,而非限定性的。工程技术人员可据此发明权利要求书中的思想结合具体问题做具体的操作实施,自然也可以据以上所述对实施方案做一系列的变更。上述这些都应被视为本发明的涉及范围。The foregoing descriptions of the present invention and its embodiments are provided to those skilled in the art of the invention and are to be considered illustrative rather than restrictive. Engineers and technicians can implement specific operations based on the idea in the invention claims combined with specific problems, and naturally can also make a series of changes to the implementation plan according to the above. All of the above should be considered as the scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810600874.9A CN108808266B (en) | 2018-06-12 | 2018-06-12 | A joint optimization method of four-dimensional antenna array for irregular sub-array arrangement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810600874.9A CN108808266B (en) | 2018-06-12 | 2018-06-12 | A joint optimization method of four-dimensional antenna array for irregular sub-array arrangement |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108808266A true CN108808266A (en) | 2018-11-13 |
CN108808266B CN108808266B (en) | 2019-07-05 |
Family
ID=64085294
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810600874.9A Active CN108808266B (en) | 2018-06-12 | 2018-06-12 | A joint optimization method of four-dimensional antenna array for irregular sub-array arrangement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108808266B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109818157A (en) * | 2019-01-25 | 2019-05-28 | 电子科技大学 | A Construction Method of Tightly Coupled UWB Antenna Array Based on Irregular Subarray |
CN110190390A (en) * | 2019-06-13 | 2019-08-30 | 湖北汽车工业学院 | K-Band Metamaterial Microstrip Antenna Based on Redundant Design and Its Design Method |
CN111209670A (en) * | 2020-01-06 | 2020-05-29 | 电子科技大学 | An optimization method for irregular sub-array arrangement that can achieve high gain |
CN111276823A (en) * | 2020-02-18 | 2020-06-12 | 电子科技大学 | A low-side lobe scanning method for a low-cost four-dimensional transmissive array antenna |
CN111551908A (en) * | 2020-03-30 | 2020-08-18 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Method for reducing complexity of array element activation algorithm of phased array system |
CN112134032A (en) * | 2020-09-25 | 2020-12-25 | 重庆两江卫星移动通信有限公司 | Phased array antenna based on subarray arrangement and system thereof |
CN112182953A (en) * | 2020-09-04 | 2021-01-05 | 中国电子科技集团公司第三十八研究所 | Modular planar array sparse optimization method and system |
CN113067168A (en) * | 2021-03-24 | 2021-07-02 | 电子科技大学 | Non-adjacent irregular subarray framework for low-cost phased array |
CN113098574A (en) * | 2021-03-29 | 2021-07-09 | 电子科技大学 | Irregular subarray efficient solving method for large-scale MIMO system |
WO2022061937A1 (en) * | 2020-09-28 | 2022-03-31 | 华为技术有限公司 | Antenna array, apparatus, and wireless communication device |
CN114510879A (en) * | 2022-03-25 | 2022-05-17 | 电子科技大学 | Phase configuration method for arbitrary interval linear array end-fire enhancement |
CN114552237A (en) * | 2022-04-25 | 2022-05-27 | 杭州洛微科技有限公司 | Two-dimensional phased array antenna design method and device and two-dimensional phased array antenna |
WO2022133856A1 (en) * | 2020-12-24 | 2022-06-30 | 深圳市大疆创新科技有限公司 | Array element layout determination method and apparatus for ultrasonic phased array, and storage medium |
CN115549733A (en) * | 2022-09-16 | 2022-12-30 | 国家工业信息安全发展研究中心 | Asymmetric communication array, system and signal processing method |
CN115566446A (en) * | 2022-11-23 | 2023-01-03 | 广东越新微系统研究院 | Optimization method of irregular binary subarray antenna array |
CN118536463A (en) * | 2024-05-31 | 2024-08-23 | 电子科技大学 | A fast optimization method for grating sidelobe suppression of irregular phased array antennas |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106329153A (en) * | 2016-08-31 | 2017-01-11 | 电子科技大学 | Combined optimization method used for synthesis of large-scale heterogeneous four-dimensional antenna array |
CN108008346A (en) * | 2017-10-10 | 2018-05-08 | 上海交通大学 | A kind of radar system based on two unit time-modulation arrays |
-
2018
- 2018-06-12 CN CN201810600874.9A patent/CN108808266B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106329153A (en) * | 2016-08-31 | 2017-01-11 | 电子科技大学 | Combined optimization method used for synthesis of large-scale heterogeneous four-dimensional antenna array |
CN108008346A (en) * | 2017-10-10 | 2018-05-08 | 上海交通大学 | A kind of radar system based on two unit time-modulation arrays |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109818157A (en) * | 2019-01-25 | 2019-05-28 | 电子科技大学 | A Construction Method of Tightly Coupled UWB Antenna Array Based on Irregular Subarray |
CN110190390A (en) * | 2019-06-13 | 2019-08-30 | 湖北汽车工业学院 | K-Band Metamaterial Microstrip Antenna Based on Redundant Design and Its Design Method |
CN111209670A (en) * | 2020-01-06 | 2020-05-29 | 电子科技大学 | An optimization method for irregular sub-array arrangement that can achieve high gain |
CN111276823A (en) * | 2020-02-18 | 2020-06-12 | 电子科技大学 | A low-side lobe scanning method for a low-cost four-dimensional transmissive array antenna |
CN111276823B (en) * | 2020-02-18 | 2020-10-16 | 电子科技大学 | A low-side lobe scanning method for a low-cost four-dimensional transmissive array antenna |
CN111551908A (en) * | 2020-03-30 | 2020-08-18 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Method for reducing complexity of array element activation algorithm of phased array system |
CN111551908B (en) * | 2020-03-30 | 2022-07-29 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Method for reducing complexity of phased array system array element activation algorithm |
CN112182953A (en) * | 2020-09-04 | 2021-01-05 | 中国电子科技集团公司第三十八研究所 | Modular planar array sparse optimization method and system |
CN112182953B (en) * | 2020-09-04 | 2023-06-13 | 中国电子科技集团公司第三十八研究所 | Modularized planar array sparse optimization method and system |
CN112134032A (en) * | 2020-09-25 | 2020-12-25 | 重庆两江卫星移动通信有限公司 | Phased array antenna based on subarray arrangement and system thereof |
WO2022061937A1 (en) * | 2020-09-28 | 2022-03-31 | 华为技术有限公司 | Antenna array, apparatus, and wireless communication device |
WO2022133856A1 (en) * | 2020-12-24 | 2022-06-30 | 深圳市大疆创新科技有限公司 | Array element layout determination method and apparatus for ultrasonic phased array, and storage medium |
CN113067168B (en) * | 2021-03-24 | 2022-01-14 | 电子科技大学 | Non-adjacent irregular subarray framework for low-cost phased array |
CN113067168A (en) * | 2021-03-24 | 2021-07-02 | 电子科技大学 | Non-adjacent irregular subarray framework for low-cost phased array |
CN113098574A (en) * | 2021-03-29 | 2021-07-09 | 电子科技大学 | Irregular subarray efficient solving method for large-scale MIMO system |
CN114510879A (en) * | 2022-03-25 | 2022-05-17 | 电子科技大学 | Phase configuration method for arbitrary interval linear array end-fire enhancement |
CN114510879B (en) * | 2022-03-25 | 2023-03-24 | 电子科技大学 | Phase configuration method for arbitrary interval linear array end-fire enhancement |
CN114552237B (en) * | 2022-04-25 | 2023-04-07 | 杭州洛微科技有限公司 | Two-dimensional phased array antenna design method and device and two-dimensional phased array antenna |
CN114552237A (en) * | 2022-04-25 | 2022-05-27 | 杭州洛微科技有限公司 | Two-dimensional phased array antenna design method and device and two-dimensional phased array antenna |
CN115549733A (en) * | 2022-09-16 | 2022-12-30 | 国家工业信息安全发展研究中心 | Asymmetric communication array, system and signal processing method |
CN115549733B (en) * | 2022-09-16 | 2023-10-03 | 国家工业信息安全发展研究中心 | Asymmetric communication array, system and signal processing method |
CN115566446A (en) * | 2022-11-23 | 2023-01-03 | 广东越新微系统研究院 | Optimization method of irregular binary subarray antenna array |
CN115566446B (en) * | 2022-11-23 | 2023-03-24 | 广东越新微系统研究院 | Optimization method of irregular binary subarray antenna array |
CN118536463A (en) * | 2024-05-31 | 2024-08-23 | 电子科技大学 | A fast optimization method for grating sidelobe suppression of irregular phased array antennas |
CN118536463B (en) * | 2024-05-31 | 2024-12-27 | 电子科技大学 | Rapid optimization method for suppression of irregular phased array antenna grating side lobes |
Also Published As
Publication number | Publication date |
---|---|
CN108808266B (en) | 2019-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108808266B (en) | A joint optimization method of four-dimensional antenna array for irregular sub-array arrangement | |
Ma et al. | Pattern synthesis of 4-D irregular antenna arrays based on maximum-entropy model | |
CN109818157B (en) | Construction method of tightly-coupled ultra-wideband antenna array based on irregular subarrays | |
CN106329153B (en) | A Joint Optimization Method for Synthesis of Large Heterogeneous 4D Antenna Arrays | |
CN107230843B (en) | Phased array antenna based on irregular subarray arrangement | |
CN106096218B (en) | An Optimization Method of Sparse Planar Antenna Array for Mobile Satellite Communication | |
CN110988868B (en) | Equivalent fractional order mode vortex electromagnetic wave generation and imaging method | |
Yang et al. | A novel method for maximum directivity synthesis of irregular phased arrays | |
CN106772256A (en) | A kind of Connectors for Active Phased Array Radar antenna Antenna Subarray Division | |
Miao et al. | Improved algorithm X for subarray partition with acceleration and sidelobe suppression | |
CN111209670B (en) | Irregular subarray arrangement optimization method capable of achieving high gain | |
CN112949193A (en) | Numerical method and system for directional diagram of subarray-level sparse array antenna | |
CN116387853B (en) | A Design Method of Random Radiating Antenna Array with Frequency Sweeping and Digital Coding Phase Control | |
CN104866662B (en) | A kind of electromagnetism cutter implementation method based on time reversal transmission | |
CN215834727U (en) | Multiple-input multiple-output antenna subarray and sparse antenna | |
CN111211425B (en) | Irregular subarray arrangement optimization method for ultra-large scanning angle | |
CN217428121U (en) | Reconfigurable intelligent surface beamforming system based on perception assistance | |
CN113067168B (en) | Non-adjacent irregular subarray framework for low-cost phased array | |
CN115133291A (en) | Irregular antenna subarray, phased array antenna and design method of phased array antenna | |
Feng et al. | A hybrid algorithm for sparse antenna array optimization of MIMO radar | |
Wu et al. | Design of beam-steerable dual-beam reflectarray | |
Chakraborty et al. | Multi-pattern synthesis in fourth-dimensional antenna arrays using BGM-based quasi-Newton memetic optimization method | |
CN113820665A (en) | Time diversity array subarray division-based airspace coverage enhancement method | |
CN111291493A (en) | Design method for airborne early warning conformal array pitching detection beam forming | |
CN113690590B (en) | A Multi-Input Multi-Output Sparse Antenna |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220125 Address after: 225819 Anyi industrial concentration zone, Baoying County, Yangzhou City, Jiangsu Province Patentee after: Yangzhou Yinan Technology Co.,Ltd. Address before: 610000 No. 2006 West Yuan Road, Chengdu high tech Zone (West District), Sichuan Patentee before: University of Electronic Science and Technology of China |
|
TR01 | Transfer of patent right |