CN108804854B - Tree body structure parameter estimation method and system for mechanical fruit tree pruning - Google Patents
Tree body structure parameter estimation method and system for mechanical fruit tree pruning Download PDFInfo
- Publication number
- CN108804854B CN108804854B CN201810692670.2A CN201810692670A CN108804854B CN 108804854 B CN108804854 B CN 108804854B CN 201810692670 A CN201810692670 A CN 201810692670A CN 108804854 B CN108804854 B CN 108804854B
- Authority
- CN
- China
- Prior art keywords
- tree
- signal
- tree structure
- pruning
- module
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000013138 pruning Methods 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 48
- 235000013399 edible fruits Nutrition 0.000 title claims abstract description 41
- 230000005540 biological transmission Effects 0.000 claims abstract description 10
- 239000006185 dispersion Substances 0.000 claims abstract description 10
- 238000007781 pre-processing Methods 0.000 claims abstract description 8
- 238000012545 processing Methods 0.000 claims description 24
- 238000010845 search algorithm Methods 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 11
- 244000141359 Malus pumila Species 0.000 description 6
- 235000011430 Malus pumila Nutrition 0.000 description 6
- 235000015103 Malus silvestris Nutrition 0.000 description 6
- 239000002420 orchard Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 244000144730 Amygdalus persica Species 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000001850 reproductive effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009105 vegetative growth Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Catching Or Destruction (AREA)
Abstract
本发明公开了一种果树机械修枝的树体结构参数估计方法及其系统,包括预处理;提取主干轴,并生成树体参考轴;检测树冠的轮廓点;以及,计算轮廓点对树体参考轴的离散程度;所述系统采用所述果树机械修枝的树体结构参数估计方法的扫描模块进行实施,包括,扫描模块,用于发射并接收第一信号,并将所接收的第一信号通过数据传输模块输送至控制模块。本发明通过以树干为参考轴,研究冠层边缘关键点对其的离散程度,达到对树体结构参数的详细估计,为机械修枝的刀具位置自动调整提供基准信息,从而解决围绕树体冠层的拟合曲面对树体结构估计偏差较大的问题,同时有利于机械修枝的效率,省时省力,且节约资源,满足使用需求。
The invention discloses a method and system for estimating tree structure parameters of mechanical pruning of fruit trees, including preprocessing; extracting the trunk axis, and generating a tree body reference axis; detecting the contour points of the tree crown; The degree of dispersion of the reference axis; the system adopts the scanning module of the tree structure parameter estimation method of fruit tree mechanical pruning for implementation, including the scanning module, which is used to transmit and receive the first signal, and the received first signal The signal is delivered to the control module through the data transmission module. The present invention uses the trunk as a reference axis to study the degree of dispersion of key points on the edge of the canopy to achieve detailed estimation of the tree structure parameters and provide reference information for the automatic adjustment of the position of the tool for mechanical pruning, thereby solving the problem of surrounding the canopy. The fitting surface of the layer has a large deviation in the estimation of the tree structure, and it is also conducive to the efficiency of mechanical pruning, saving time and effort, saving resources, and meeting the needs of use.
Description
技术领域technical field
本发明涉及的属于果园管理机械化应用技术领域,尤其涉及一种果树机械修枝的树体结构参数估计方法及其系统。The invention relates to the technical field of mechanized application of orchard management, in particular to a tree structure parameter estimation method and system for fruit tree mechanical pruning.
背景技术Background technique
我国是全球最大的苹果生产国,产量占全球苹果产量的一半还多。苹果树的营养生长和生殖生长相互联系,相互影响,最终将影响产量和质量的高低。为了实现果树的活力控制,修枝成为了休眠期最重要的一项作业。其目的是通过对植物的某些器官进行部分疏删和剪截,获得理想的冠层结构,以提高光能利用率。这项作业虽不像收获时所投入的劳力巨大,且时机也并不重要,但对于种植者而言,其耗时很高。机械化修枝是解决以上问题的有效途径。my country is the world's largest apple producer, accounting for more than half of the world's apple production. The vegetative growth and reproductive growth of apple trees are interrelated and affect each other, which will ultimately affect the yield and quality. In order to control the vitality of fruit trees, pruning has become the most important task during the dormant period. Its purpose is to obtain an ideal canopy structure by partially thinning and cutting some organs of the plant to improve the utilization rate of light energy. Although this operation is not as labor-intensive as harvesting, and timing is not important, it is time-consuming for growers. Mechanized pruning is an effective way to solve the above problems.
现代苹果园的栽培模式正在朝着更简单、成形快、易接近和更高效的方向发展。其中高纺锤形树体是目前推广的矮砧集约型高效栽培模式中的首选树形,也是苹果生产先进国家普遍采用的树形。它只需培养强壮而笔直的中干,其树形骨架培养就已完成;而且由于果树冠幅较小,主枝长度小于或接近人的手臂长度,人站在行间就可完成所有的果园作业,为实现果园机械化创造了条件。The cultivation mode of modern apple orchard is developing towards simpler, quicker to form, more accessible and more efficient. Among them, the high-spindle tree body is the preferred tree shape in the intensive high-efficiency cultivation mode of short stock currently promoted, and it is also the tree shape generally adopted by advanced countries in apple production. It only needs to cultivate a strong and straight middle trunk, and its tree-shaped skeleton cultivation has been completed; and because the crown of the fruit tree is small, the length of the main branch is less than or close to the length of a human arm, and all the orchards can be completed by standing between the rows operation, creating conditions for the realization of orchard mechanization.
典型的机械修枝操作时,切割器被安装在拖拉机上,操作人员要尽可能地直线驾驶;然而,树冠的轮廓通常沿树行变化,为了保证修枝的连续性,在修剪过程中要根据树冠轮廓调整切割器。作为自动修剪的第一步,需要由机器视觉系统估计果树的结构参数。In a typical mechanical pruning operation, the cutter is mounted on a tractor and the operator drives as straight as possible; however, the canopy profile often changes along the rows, and in order to ensure pruning continuity, pruning is done according to the Crown profile adjustment cutter. As the first step in automatic pruning, the structural parameters of fruit trees need to be estimated by a machine vision system.
在过去,人们使用了多种相关技术来感知树体结构,如立体视觉、激光扫描仪和深度照相机。其中一项研究是在葡萄园中进行的,利用安装在行进车上的融合视觉和激光扫描原理的感应系统,扫描葡萄的冠层,并提供密集的冠层性能图。但是,这种系统对于现场数据采集来说是昂贵和复杂的。Nielsen等探索了一种立体视觉的方式,重建桃树结构用于自动化疏花。然而,该技术还需要进一步降低立体匹配的复杂性,提高户外果园环境中算法的鲁棒性。近年来,深度相机利用背景光抑制技术与基于飞行时间的测距原理,在农业领域的三维重建中得到了应用。在一个商业果园,使用该相机获取高纺锤苹果树的深度图像,开发了自动识别枝干的方法,并探索构建一种智能修枝系统;然而,低分辨率图像会丢失一些重要的细节,不能为机械修枝的刀具位置自动调整提供基准信息,从而不利于机械修枝的效率,耗时耗力,不满足使用需求。In the past, various related technologies have been used to perceive tree structures, such as stereo vision, laser scanners and depth cameras. One of the studies, conducted in a vineyard, uses a sensor system that combines vision and laser scanning principles mounted on a traveling vehicle to scan the grape canopy and provide a dense map of canopy performance. However, such systems are expensive and complex for field data acquisition. Nielsen et al. explored a way of stereo vision to reconstruct peach tree structure for automatic flower thinning. However, the technique needs to further reduce the complexity of stereo matching and improve the robustness of the algorithm in the outdoor orchard environment. In recent years, depth cameras have been applied in 3D reconstruction in the agricultural field by using background light suppression technology and time-of-flight based ranging principle. In a commercial orchard, the camera was used to obtain depth images of tall-spindle apple trees, a method for automatic identification of branches was developed, and an intelligent pruning system was explored; however, low-resolution images lose some important details and cannot It provides reference information for the automatic adjustment of the tool position of mechanical pruning, which is not conducive to the efficiency of mechanical pruning, consumes time and labor, and does not meet the needs of use.
发明内容Contents of the invention
本部分的目的在于概述本发明的实施例的一些方面以及简要介绍一些较佳实施例。在本部分以及本申请的说明书摘要和发明名称中可能会做些简化或省略以避免使本部分、说明书摘要和发明名称的目的模糊,而这种简化或省略不能用于限制本发明的范围。The purpose of this section is to outline some aspects of embodiments of the invention and briefly describe some preferred embodiments. Some simplifications or omissions may be made in this section, as well as in the abstract and titles of this application, to avoid obscuring the purpose of this section, the abstract and titles, and such simplifications or omissions should not be used to limit the scope of the invention.
鉴于上述现有果树机械修枝的树体结构参数估计方法存在的问题,提出了本发明。In view of the problems existing in the tree structure parameter estimation method of the above-mentioned existing mechanical pruning of fruit trees, the present invention is proposed.
因此,本发明目的是提供一种果树机械修枝的树体结构参数估计方法,其通过以树干为参考轴,研究冠层边缘关键点对其的离散程度,达到对树体结构参数的详细估计,为机械修枝的刀具位置自动调整提供基准信息,从而可解决围绕树体冠层的拟合曲面对树体结构估计偏差较大的问题。。Therefore, the object of the present invention is to provide a method for estimating tree structure parameters of mechanical pruning of fruit trees, which uses the trunk as a reference axis to study the degree of dispersion of key points on the edge of the canopy to achieve detailed estimation of tree structure parameters , to provide reference information for the automatic adjustment of the tool position of mechanical pruning, so as to solve the problem that the fitting surface around the tree canopy has a large deviation in the tree structure estimation. .
为解决上述技术问题,本发明提供如下技术方案:一种果树机械修枝的树体结构参数估计方法,包括预处理;提取主干轴,并生成树体参考轴;检测树冠的轮廓点;以及,计算轮廓点对树体参考轴的离散程度。In order to solve the above-mentioned technical problems, the present invention provides the following technical solutions: a method for estimating tree structure parameters of fruit tree mechanical pruning, including preprocessing; extracting the trunk axis, and generating a tree reference axis; detecting the contour points of the crown; and, Calculate how discrete the contour points are to the tree reference axis.
作为本发明所述果树机械修枝的树体结构参数估计方法的一种优选方案,其中:所述预处理包括扫描树体、确定坐标轴和有效数据范围。As a preferred solution of the method for estimating tree structure parameters of mechanical pruning of fruit trees in the present invention, wherein: the preprocessing includes scanning the tree body, determining coordinate axes and valid data ranges.
作为本发明所述果树机械修枝的树体结构参数估计方法的一种优选方案,其中:所述扫描树体采用扫描模块。As a preferred solution of the method for estimating tree structure parameters of fruit tree mechanical pruning in the present invention, the scanning module is used for scanning the tree body.
作为本发明所述果树机械修枝的树体结构参数估计方法的一种优选方案,其中:所述确定坐标轴和有效数据范围均采用处理终端进行设定显示。As a preferred solution of the method for estimating tree structure parameters of fruit tree mechanical pruning in the present invention, wherein: the determined coordinate axes and valid data ranges are both set and displayed by a processing terminal.
作为本发明所述果树机械修枝的树体结构参数估计方法的一种优选方案,其中:所述坐标轴为3D正交空间坐标轴X、Y、Z构成的空间坐标系。As a preferred solution of the method for estimating tree structure parameters of fruit tree mechanical pruning in the present invention, wherein: the coordinate axes are a space coordinate system composed of 3D orthogonal space coordinate axes X, Y, and Z.
作为本发明所述果树机械修枝的树体结构参数估计方法的一种优选方案,其中:所述提取主干轴采用自动搜索的算法;As a preferred scheme of the method for estimating tree structure parameters of fruit tree mechanical pruning in the present invention, wherein: the extraction of the trunk axis adopts an automatic search algorithm;
其中,所述自动搜索的算法步骤:(1)确定兴趣点区域;(2)生成圆柱累加器;(3)确定主干位;(4)拟合主干线。Wherein, the algorithm steps of the automatic search: (1) determine the interest point area; (2) generate a cylinder accumulator; (3) determine the backbone position; (4) fit the backbone.
作为本发明所述果树机械修枝的树体结构参数估计方法的一种优选方案,其中:所述拟合主干线的预测值采用空间直线方程为:As a preferred scheme of the tree structure parameter estimation method of mechanical pruning of fruit trees in the present invention, wherein: the predicted value of the fitted main line adopts the spatial straight line equation as:
其中,(x,y,z)表示空间直线上的点,a与c代表直线的斜率,b与d代表直线的截距;Among them, (x, y, z) represents the point on the space line, a and c represent the slope of the line, b and d represent the intercept of the line;
根据空间最小二乘法原理,得预测值与真实值之间差值平方和为εx,εy:According to the principle of the spatial least squares method, the sum of the squares of the difference between the predicted value and the real value is ε x , ε y :
当差值平方和εx,εy为最小值时,εx,εy需满足以下公式:When the difference square sum ε x , ε y is the minimum value, ε x , ε y must satisfy the following formula:
即可求得最优a、b、c、d。The optimal a, b, c, d can be obtained.
作为本发明所述果树机械修枝的树体结构参数估计方法的一种优选方案,其中:所述检测树冠的轮廓点利用凸包原理。As a preferred solution of the tree structure parameter estimation method for mechanical pruning of fruit trees in the present invention, wherein: the detection of the contour points of the tree crown utilizes the convex hull principle.
作为本发明所述果树机械修枝的树体结构参数估计方法的一种优选方案,其中:所述轮廓点为(xki,yki,zki)。As a preferred solution of the tree structure parameter estimation method for fruit tree mechanical pruning in the present invention, wherein: the contour points are (x ki , y ki , z ki ).
所述轮廓点到树体参考轴的离散程度为Li:The degree of dispersion from the outline point to the tree body reference axis is L i :
其中,x’ki和y’ki表示参考轴上与轮廓点同一高度的点的横坐标与纵坐标。Among them, x' ki and y' ki represent the abscissa and ordinate of the point on the reference axis at the same height as the contour point.
一种适用于果树机械修枝的树体结构参数估计的系统,所述系统采用所述果树机械修枝的树体结构参数估计方法的扫描模块进行实施,包括,扫描模块,用于发射并接收第一信号,并将所接收的第一信号通过数据传输模块输送至控制模块;控制模块,读取接收的第一信号并将所述第一信号解码为第二信号,并与处理模块建立连接;处理模块,用于接收控制模块的第二信号并对接收到的第二信号进行处理,形成扫描数据场景显示至显示屏上。A system for estimating tree structure parameters suitable for mechanical pruning of fruit trees, the system adopts the scanning module of the method for estimating tree structure parameters of mechanical pruning of fruit trees for implementation, including a scanning module for transmitting and receiving The first signal, and the received first signal is sent to the control module through the data transmission module; the control module reads the received first signal and decodes the first signal into a second signal, and establishes a connection with the processing module ; A processing module, configured to receive the second signal from the control module and process the received second signal to form a scanned data scene and display it on the display screen.
本发明的有益效果:本发明通过以树干为参考轴,研究冠层边缘关键点对其的离散程度,达到对树体结构参数的详细估计,为机械修枝的刀具位置自动调整提供基准信息,从而解决围绕树体冠层的拟合曲面对树体结构估计偏差较大的问题,同时有利于机械修枝的效率,省时省力,且节约资源,满足使用需求。Beneficial effects of the present invention: the present invention uses the trunk as the reference axis to study the degree of dispersion of key points on the edge of the canopy to achieve detailed estimation of the tree structure parameters and provide benchmark information for the automatic adjustment of the position of the tool for mechanical pruning. In this way, the problem that the fitting surface around the tree canopy has a large deviation in the estimation of the tree structure is beneficial to the efficiency of mechanical pruning, saving time and effort, and saving resources to meet the needs of use.
附图说明Description of drawings
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。其中:In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only some embodiments of the present invention. For Those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort. in:
图1为本发明果树机械修枝的树体结构参数估计方法及其系统第一和二个实施例的整体结构示意图。FIG. 1 is a schematic diagram of the overall structure of the first and second embodiments of the method for estimating tree structure parameters of mechanical pruning of fruit trees and the system thereof according to the present invention.
图2为本发明果树机械修枝的树体结构参数估计方法及其系统第一个实施例所述的扫描数据场景图。Fig. 2 is a scene diagram of scanned data described in the first embodiment of the method for estimating tree structure parameters of mechanical pruning of fruit trees and the system thereof according to the present invention.
图3为本发明果树机械修枝的树体结构参数估计方法及其系统第一个实施例的树体的3D数据显示示意图。Fig. 3 is a schematic diagram showing the 3D data display of the tree body in the first embodiment of the method for estimating tree body structure parameters of mechanical pruning of fruit trees and the system thereof according to the present invention.
图4为本发明果树机械修枝的树体结构参数估计方法及其系统第一个实施例的包含最多数据点的圆柱累加器结构示意图。Fig. 4 is a structural diagram of a cylindrical accumulator containing the most data points of the first embodiment of the method for estimating tree structure parameters of fruit tree mechanical pruning and the system thereof.
图5为本发明果树机械修枝的树体结构参数估计方法及其系统第一个实施例提取的树体主干散点图。Fig. 5 is a tree trunk scatter diagram extracted by the first embodiment of the method for estimating tree structure parameters of mechanical pruning of fruit trees and the system thereof according to the present invention.
图6为本发明果树机械修枝的树体结构参数估计方法及其系统第一个实施例的拟合树体主干线。Fig. 6 is a fitting tree trunk line of the first embodiment of the method for estimating tree structure parameters of mechanical pruning of fruit trees and the system thereof according to the present invention.
图7为本发明果树机械修枝的树体结构参数估计方法及其系统第一个实施例的冠层关键边缘点提取效果示意图。Fig. 7 is a schematic diagram of the extraction effect of key edge points of the canopy in the first embodiment of the method for estimating tree body structure parameters of mechanical pruning of fruit trees and the system thereof according to the present invention.
图8为本发明果树机械修枝的树体结构参数估计方法及其系统第一个实施例的关键边缘点投影参考轴效果示意图。Fig. 8 is a schematic diagram of the effect of the key edge point projection reference axis of the first embodiment of the tree structure parameter estimation method and system of fruit tree mechanical pruning according to the present invention.
图9为本发明果树机械修枝的树体结构参数估计方法及其系统第二个实施例的系统流程示意图。Fig. 9 is a schematic flowchart of the second embodiment of the method for estimating tree structure parameters of mechanical pruning of fruit trees and the system thereof according to the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合说明书附图对本发明的具体实施方式做详细的说明。In order to make the above objects, features and advantages of the present invention more obvious and comprehensible, specific implementations of the present invention will be described in detail below in conjunction with the accompanying drawings.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, a lot of specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways different from those described here, and those skilled in the art can do it without departing from the meaning of the present invention. By analogy, the present invention is therefore not limited to the specific examples disclosed below.
其次,此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。Second, "one embodiment" or "an embodiment" referred to herein refers to a specific feature, structure or characteristic that may be included in at least one implementation of the present invention. "In one embodiment" appearing in different places in this specification does not all refer to the same embodiment, nor is it a separate or selective embodiment that is mutually exclusive with other embodiments.
再其次,本发明结合示意图进行详细描述,在详述本发明实施例时,为便于说明,表示器件结构的剖面图会不依一般比例作局部放大,而且所述示意图只是示例,其在此不应限制本发明保护的范围。此外,在实际制作中应包含长度、宽度及深度的三维空间尺寸。Secondly, the present invention is described in detail in conjunction with schematic diagrams. When describing the embodiments of the present invention in detail, for the convenience of explanation, the cross-sectional view showing the device structure will not be partially enlarged according to the general scale, and the schematic diagram is only an example, and it should not be used here. Limit the scope of protection of the present invention. In addition, the three-dimensional space dimensions of length, width and depth should be included in actual production.
参照图1~8,为本发明第一个实施例,提供了一种果树机械修枝的树体结构参数估计方法的整体结构示意图,如图1,一种果树机械修枝的树体结构参数估计方法包括预处理;提取主干轴,并生成树体参考轴;检测树冠的轮廓点;以及,计算轮廓点对树体参考轴的离散程度。Referring to Figs. 1 to 8, the first embodiment of the present invention provides a schematic diagram of the overall structure of a tree structure parameter estimation method for mechanical pruning of fruit trees, as shown in Fig. 1, a tree structure parameter for mechanical pruning of fruit trees The estimation method includes preprocessing; extracting the main axis and generating the reference axis of the tree body; detecting the contour points of the tree crown; and calculating the degree of dispersion of the contour points to the reference axis of the tree body.
具体的,本发明方法包括预处理;提取主干轴,并生成树体参考轴;检测树冠的轮廓点;以及,计算轮廓点对树体参考轴的离散程度,以上方法循序渐进,可有效对树体结构参数进行估计,从而有利于为机械修枝的刀具位置自动调整提供基准信息,进而有利于机械修枝的效率,省时省力,且节约资源,满足使用需求。Specifically, the method of the present invention includes preprocessing; extracting the main axis, and generating the tree body reference axis; detecting the contour points of the tree crown; The structural parameters are estimated, which is beneficial to provide benchmark information for the automatic adjustment of the tool position of mechanical pruning, which is conducive to the efficiency of mechanical pruning, saves time and effort, saves resources, and meets the needs of use.
进一步的,预处理包括扫描树体、确定坐标轴和有效数据范围,其中,扫描树体采用扫描模块100,较好的,扫描模块为VLP-16扫描器,VLP-16扫描器又称VLP-16激光雷达传感器,其具有实时数据、360°视场角、三维坐标和校准反射率测量,且外形小、功耗低、成本合理,其作为生成高分辨率3D模型的主要设备,使用时,根据高纺锤形树体的株高和株距,特将VLP-16扫描器旋转90度置于距离地面一定高度(1.7米)的三角架上,进行单株树体的扫描,为了适于处理环境的正常显示,来确定坐标轴,特将Y轴转变为Z轴,X轴转变为Y轴,Z轴转变为X轴,其中,X轴代表扫描物体距离扫描器坐标中心的左右位移,Y代表扫描物体距离扫描器坐标中心的远近,而Z代表扫描物体距离扫描器坐标中心的高低;同时根据VLP-16扫描器扫描数据的特点(可返回100米之内,上下30度之间的数据),会掺杂地面与其他树体的信息,故通过制定Y值和Z值范围的约束条件,其约束条件是目标果树距离扫描器的远近范围Y值在0.5米至2.5米,有效果树树干起点高度Z值大于-1.5米(地面杂草约0.2米的高度),自动剔除无效数据,从而确定了有效数据范围;需说明的是,确定坐标轴和有效数据范围的设置均采用处理终端进行设定以及显示,处理终端为笔记本、计算机、平板或手机等,其坐标轴为3D正交空间坐标轴X、Y、Z构成的空间坐标系。Further, the preprocessing includes scanning the tree body, determining the coordinate axis and the effective data range, wherein the scanning tree body adopts the
进一步的,提取主干轴采用自动搜索的算法;其中,自动搜索的算法具体步骤如下:Further, an automatic search algorithm is used to extract the main axis; wherein, the specific steps of the automatic search algorithm are as follows:
(1)确定兴趣点区域(1) Determine the point of interest area
满足一定Z值的点坐标进行保存,作为兴趣点区域,其为了保证扫描点数真实地反映树干底部,且避免树底杂草对识别的影响。Point coordinates that meet a certain Z value are saved as interest point areas, in order to ensure that the number of scanned points truly reflects the bottom of the trunk, and to avoid the impact of weeds at the bottom of the tree on the recognition.
(2)生成圆柱累加器(2) Generate a cylindrical accumulator
根据Z值的大小,依次提取兴趣点作为圆柱体底面的圆心;根据常规的树体直径大小(0.05m)结合一定的经验偏移量0.01~0.05m,设置圆柱体半径的合适阈值;参考清晰树干高度(即主枝生长点以下的高度)设置圆柱高度。According to the size of the Z value, the points of interest are sequentially extracted as the center of the cylinder bottom; according to the conventional tree diameter (0.05m) combined with a certain empirical offset of 0.01-0.05m, set the appropriate threshold for the radius of the cylinder; the reference is clear The trunk height (that is, the height below the growth point of the main branch) sets the column height.
(3)确定主干位(3) Determine the backbone position
利用生成的一系列圆柱累加器,分别比较兴趣点坐标与圆柱累加器坐标范围的大小,记录处于圆柱累加器内部的坐标点(xi,yi,zi),并统计其个数m,提取数据点数量最多的圆柱体,以确定树体主干位置(见图4)。Using a series of cylindrical accumulators generated, compare the coordinates of the interest point and the coordinate range of the cylindrical accumulator respectively, record the coordinate points (xi , y i , zi ) inside the cylindrical accumulator, and count their number m, Extract the cylinder with the largest number of data points to determine the trunk position of the tree (see Figure 4).
(4)拟合主干线(4) Fitting the main line
由于空间直线相当于两个平面的相交线,故利用空间最小二乘法将圆柱体内部的数据(图5所示)进行拟合,拟合主干线的预测值采用空间直线方程为:Since the spatial straight line is equivalent to the intersecting line of two planes, the data inside the cylinder (shown in Figure 5) is fitted using the spatial least squares method, and the predicted value of the fitted main line adopts the spatial straight line equation as follows:
其中,(x,y,z)表示空间直线上的点,a与c代表直线的斜率,b与d代表直线的截距;但在实际进行散点拟合中,利用上述空间直线方程计算出的结果是预测值,为了确定预测值与真实值之间差值平方和εx,εy为最小值,以求得a,b,c,d结果。Among them, (x, y, z) represents the point on the space straight line, a and c represent the slope of the line, b and d represent the intercept of the line; but in the actual scatter fitting, the above spatial straight line equation is used to calculate The result of is the predicted value. In order to determine the sum of the squares of the differences between the predicted value and the real value ε x , ε y is the minimum value to obtain the results of a, b, c, and d.
根据空间最小二乘法原理,得预测值与真实值之间差值平方和为εx,εy:According to the principle of the spatial least squares method, the sum of the squares of the difference between the predicted value and the real value is ε x , ε y :
当差值平方和εx,εy为最小值时,εx,εy需满足以下公式:When the difference square sum ε x , ε y is the minimum value, ε x , ε y must satisfy the following formula:
即可求得最优a、b、c、d。The optimal a, b, c, d can be obtained.
进一步的,圆柱累加器之外的点定义为轮廓点(xki,yki,zki),其利用凸包原理提取轮廓点中的关键边缘点(如图7所示),其过程:从轮廓点中最左端点与最右端点开始,以逆时针方向分别扫描其他点;若新扫描的点与已确定的点所构成的图形凸性未变(即图形邻边对应向量的叉乘结果大于0),则暂存新扫描点作为确定点,继续扫描下一点;否则删去上一个确定点,保存新扫描点,再扫描其他点,继续比较凸性,直到不发生变化为止;最后将扫描到的上下两个图形,合并在一起,确定凸包,关键边缘点即为此凸包的顶点;由于大多数主枝末端均位于边缘点的位置,以此可简化后期处理,且大大减少运行时间;然后延长主干拟合直线,以此作为参考轴,将所有的关键边缘点向参考轴投影,其效果接近冠层内枝条空间分布。Further, the points outside the cylindrical accumulator are defined as contour points (x ki , y ki , z ki ), which use the convex hull principle to extract key edge points in the contour points (as shown in Figure 7), the process: from Starting from the leftmost and rightmost endpoints of the contour points, scan other points in a counterclockwise direction; if the convexity of the graph formed by the newly scanned point and the determined point remains unchanged (that is, the result of the cross product of the vector corresponding to the adjacent edge of the graph greater than 0), then temporarily store the new scanning point as a definite point, and continue to scan the next point; otherwise, delete the previous definite point, save the new scanning point, and then scan other points, and continue to compare the convexity until there is no change; finally, the The scanned upper and lower graphics are merged together to determine the convex hull, and the key edge point is the apex of the convex hull; since most main branch ends are located at the edge points, post-processing can be simplified and greatly reduced Running time; then extend the trunk fitting line and use it as a reference axis to project all key edge points to the reference axis, the effect is close to the spatial distribution of branches in the canopy.
需说明的是,计算出的轮廓点对树体参考轴的离散程度是利用空间直线方程计算参考轴上与轮廓点(xki,yki,zki)同一高度的点(x′ki,y’ki,zki),设轮廓点到树体参考轴的离散程度为Li,根据如下公式:It should be noted that the degree of dispersion of the calculated contour points to the reference axis of the tree is calculated by using the spatial straight line equation to calculate the point (x′ ki , y ' ki , z ki ), let the degree of dispersion from the contour point to the reference axis of the tree body be L i , according to the following formula:
可反应冠层外围曲面的变化趋势,进而完成了对树体结构参数的估计,完成的模型数据发送机械修枝的刀具位置进行自动调整提供基准信息。It can reflect the change trend of the outer surface of the canopy, and then complete the estimation of the tree structure parameters. The completed model data is sent to the position of the mechanical pruning tool for automatic adjustment to provide benchmark information.
参照图1和9,为本发明第二个实施例,提供了一种适用于果树机械修枝的树体结构参数估计的系统流程结构示意图,如图9,一种适用于果树机械修枝的树体结构参数估计的系统,该系统采用果树机械修枝的树体结构参数估计方法的扫描模块100进行实施,包括,扫描模块100,用于发射并接收第一信号,并将所接收的第一信号通过数据传输模块200输送至控制模块300;控制模块300,读取接收的第一信号并将第一信号解码为第二信号,并与处理模块400建立连接;处理模块400,用于接收控制模块300的第二信号并对接收到的第二信号进行处理,形成扫描数据场景显示至显示屏上。Referring to Figs. 1 and 9, it is a second embodiment of the present invention, which provides a schematic diagram of a system flow structure suitable for tree structure parameter estimation of fruit tree mechanical pruning, as shown in Fig. 9, a kind of system suitable for fruit tree mechanical pruning A system for estimating tree structure parameters, the system adopts the
具体的,本适用于果树机械修枝的树体结构参数估计的系统,用于控制本发明中扫描模块100的信号收发、信号处理、数据传输以及参数估计建模等过程。Specifically, this system is suitable for tree structure parameter estimation of fruit tree mechanical pruning, and is used to control the processes of signal sending and receiving, signal processing, data transmission, parameter estimation and modeling of the
进一步的,其采用果树机械修枝的树体结构参数估计方法的扫描模块100进行实施,包括,扫描模块100,用于发射并接收第一信号,并将所接收的第一信号通过数据传输模块200输送至控制模块300;控制模块300,读取接收的第一信号并将第一信号解码为第二信号,并与处理模块400建立连接;处理模块400,用于接收控制模块300的第二信号并对接收到的第二信号进行处理,形成扫描数据场景显示至显示屏上。Further, it adopts the
具体的,本发明中的扫描模块100用于向树体表面发射第一信号,由于第一信号遇到树体将产生反射,而扫描模块100也能接收反射回来的第一信号,第一信号通过数据传输模块200输送至控制模块300,控制模块300和处理模块400通过分析计算点的相对距离,来确定表面反射点的空间坐标,最终得到树体扫描数据,再通过matlab建立数据模型。Specifically, the
需说明的是,扫描模块100固定于三角支架上,其包括信号发射器101和信号接收器102。其中,信号发射器101采用光线脉冲发射器,其对树体发射第一信号,并通过信号接收器102捕捉反射回来的第一信号,其中,第一信号为脉冲信号。信号发射器101将光线(激光线)以高频率(开/关)投射出来,不断的投射到被测树体的表面,形成密集的反射点,保证测量的精度要求。It should be noted that the
进一步的,数据传输模块200可以采用电缆线,其两端分别连接信号接收器102和控制模块300,用于将来自信号接收器102的接收信号传输至控制模块300,控制模块300读取接收的第一信号并将第一信号解码为第二信号,并通过控制模块300最终传输至处理模块400进行数据分析处理,。Further, the
控制模块300主要用于采集、转换信号,以及将转换信号后的数据传输至处理模块400,其可以为控制箱;其中,控制模块300与处理模块400传输可通过数据传输模块200或无线通信方式传输数据。The
处理模块400设置于处理终端上,处理模块400,用于接收控制模块300的第二信号并对接收到的第二信号进行处理,形成扫描数据场景显示至处理终端的显示屏上,其中,处理模块400为处理器。The
重要的是,应注意,在多个不同示例性实施方案中示出的本申请的构造和布置仅是例示性的。尽管在此公开内容中仅详细描述了几个实施方案,但参阅此公开内容的人员应容易理解,在实质上不偏离该申请中所描述的主题的新颖教导和优点的前提下,许多改型是可能的(例如,各种元件的尺寸、尺度、结构、形状和比例、以及参数值(例如,温度、压力等)、安装布置、材料的使用、颜色、定向的变化等)。例如,示出为整体成形的元件可以由多个部分或元件构成,元件的位置可被倒置或以其它方式改变,并且分立元件的性质或数目或位置可被更改或改变。因此,所有这样的改型旨在被包含在本发明的范围内。可以根据替代的实施方案改变或重新排序任何过程或方法步骤的次序或顺序。在权利要求中,任何“装置加功能”的条款都旨在覆盖在本文中所描述的执行所述功能的结构,且不仅是结构等同而且还是等同结构。在不背离本发明的范围的前提下,可以在示例性实施方案的设计、运行状况和布置中做出其他替换、改型、改变和省略。因此,本发明不限制于特定的实施方案,而是扩展至仍落在所附的权利要求书的范围内的多种改型。It is important to note that the construction and arrangement of the application, shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, it should be readily apparent to those who review this disclosure that many modifications are possible without materially departing from the novel teachings and advantages of the subject matter described in this application. are possible (e.g., variations in dimensions, dimensions, structures, shapes and proportions of various elements, as well as parameter values (e.g., temperature, pressure, etc.), mounting arrangements, use of materials, colors, orientations, etc.). For example, elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be inverted or otherwise varied, and the nature or number or positions of discrete elements may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of this invention. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any "means-plus-function" clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operation and arrangement of the exemplary embodiments without departing from the scope of the invention. Accordingly, the invention is not limited to a particular embodiment, but extends to various modifications still falling within the scope of the appended claims.
此外,为了提供示例性实施方案的简练描述,可以不描述实际实施方案的所有特征(即,与当前考虑的执行本发明的最佳模式不相关的那些特征,或于实现本发明不相关的那些特征)。Moreover, in order to provide a concise description of exemplary embodiments, not all features of an actual embodiment (i.e., those features not relevant to the best mode presently considered for carrying out the invention, or to practicing the invention feature).
应理解的是,在任何实际实施方式的开发过程中,如在任何工程或设计项目中,可做出大量的具体实施方式决定。这样的开发努力可能是复杂的且耗时的,但对于那些得益于此公开内容的普通技术人员来说,不需要过多实验,所述开发努力将是一个设计、制造和生产的常规工作。It should be appreciated that during the development of any actual implementation, as in any engineering or design project, numerous implementation-specific decisions may be made. Such a development effort would be complex and time-consuming, but would be a routine matter of design, fabrication, and production without undue experimentation to those of ordinary skill having the benefit of this disclosure .
应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。It should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention without limitation, although the present invention has been described in detail with reference to the preferred embodiments, those of ordinary skill in the art should understand that the technical solutions of the present invention can be carried out Modifications or equivalent replacements without departing from the spirit and scope of the technical solution of the present invention shall be covered by the claims of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810692670.2A CN108804854B (en) | 2018-06-29 | 2018-06-29 | Tree body structure parameter estimation method and system for mechanical fruit tree pruning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810692670.2A CN108804854B (en) | 2018-06-29 | 2018-06-29 | Tree body structure parameter estimation method and system for mechanical fruit tree pruning |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108804854A CN108804854A (en) | 2018-11-13 |
CN108804854B true CN108804854B (en) | 2022-11-22 |
Family
ID=64072519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810692670.2A Active CN108804854B (en) | 2018-06-29 | 2018-06-29 | Tree body structure parameter estimation method and system for mechanical fruit tree pruning |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108804854B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110702028B (en) * | 2019-09-04 | 2020-09-15 | 中国农业机械化科学研究院 | Three-dimensional detection positioning method and device for orchard trunk |
CN111133911B (en) * | 2020-01-17 | 2024-11-12 | 河北农业大学 | Peach branch pruning device and pruning method and tractor having the same |
CN113985438B (en) * | 2021-11-12 | 2022-08-12 | 河北农业大学 | A system and method for reconstructing a three-dimensional model of a plant |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202014104724U1 (en) * | 2014-10-01 | 2014-10-20 | Einhell Germany Ag | Hand-held implement with tool head |
CN104266562A (en) * | 2014-09-30 | 2015-01-07 | 广西大学 | Standard crown shaping and trimming ruler for pyramid-shaped lychee trees |
CN105486228A (en) * | 2015-11-25 | 2016-04-13 | 南京林业大学 | Tree target volume real-time measuring method based on two-dimension laser scanner |
CN105608739A (en) * | 2016-03-16 | 2016-05-25 | 福州大学 | Three dimensional tree fine modeling method based on integrated drive of data and rules |
CN106441202A (en) * | 2016-11-08 | 2017-02-22 | 河北农业大学 | Fruit tree shape measuring method and device |
CN107371965A (en) * | 2017-08-14 | 2017-11-24 | 上海市农业科学院 | A kind of tuning fork shape Pear trees shape and its shaping and trimming method |
CN107624415A (en) * | 2017-10-11 | 2018-01-26 | 孙考义 | The double open form implantation methods of fruit tree |
CN107705309A (en) * | 2017-10-15 | 2018-02-16 | 南京林业大学 | Forest parameter evaluation method in laser point cloud |
CN107820973A (en) * | 2017-11-09 | 2018-03-23 | 上海市农业科学院 | A kind of cultivation management method of the U-shaped peach of suitable mechanized operation |
-
2018
- 2018-06-29 CN CN201810692670.2A patent/CN108804854B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104266562A (en) * | 2014-09-30 | 2015-01-07 | 广西大学 | Standard crown shaping and trimming ruler for pyramid-shaped lychee trees |
DE202014104724U1 (en) * | 2014-10-01 | 2014-10-20 | Einhell Germany Ag | Hand-held implement with tool head |
CN105486228A (en) * | 2015-11-25 | 2016-04-13 | 南京林业大学 | Tree target volume real-time measuring method based on two-dimension laser scanner |
CN105608739A (en) * | 2016-03-16 | 2016-05-25 | 福州大学 | Three dimensional tree fine modeling method based on integrated drive of data and rules |
CN106441202A (en) * | 2016-11-08 | 2017-02-22 | 河北农业大学 | Fruit tree shape measuring method and device |
CN107371965A (en) * | 2017-08-14 | 2017-11-24 | 上海市农业科学院 | A kind of tuning fork shape Pear trees shape and its shaping and trimming method |
CN107624415A (en) * | 2017-10-11 | 2018-01-26 | 孙考义 | The double open form implantation methods of fruit tree |
CN107705309A (en) * | 2017-10-15 | 2018-02-16 | 南京林业大学 | Forest parameter evaluation method in laser point cloud |
CN107820973A (en) * | 2017-11-09 | 2018-03-23 | 上海市农业科学院 | A kind of cultivation management method of the U-shaped peach of suitable mechanized operation |
Non-Patent Citations (2)
Title |
---|
Research of Precision Farming Expert System Based on GIS;Gu Yanxia;《The Eighth International Conference on Electronic Measurement and Instruments》;20071022;858-861 * |
果园视觉导航基准线生成算法;冯娟;《农业机械学报》;20120725;184-189 * |
Also Published As
Publication number | Publication date |
---|---|
CN108804854A (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Predicting individual apple tree yield using UAV multi-source remote sensing data and ensemble learning | |
CN111724433B (en) | Crop phenotype parameter extraction method and system based on multi-view vision | |
CN106918816B (en) | Crop growth monitoring system and its data processing method and module | |
CN111709981A (en) | A registration method of laser point cloud and simulated image based on feature line fusion | |
Fu et al. | Fast detection of banana bunches and stalks in the natural environment based on deep learning | |
CN108804854B (en) | Tree body structure parameter estimation method and system for mechanical fruit tree pruning | |
CN101672915B (en) | High spatial resolution remote sensing image crown outline delineation system and method | |
CN106023133B (en) | A kind of high-resolution remote sensing image Clean water withdraw method based on multiple features combining processing | |
CN109146948A (en) | The quantization of crop growing state phenotypic parameter and the correlation with yield analysis method of view-based access control model | |
CN106780091A (en) | Agricultural disaster information remote sensing extracting method based on vegetation index time space statistical nature | |
CN103258345A (en) | Method for extracting parameters of tree branches based on ground laser radar three-dimensional scanning | |
Moreno et al. | Proximal sensing for geometric characterization of vines: A review of the latest advances | |
CN111091079B (en) | TLS-based method for measuring vegetation advantage single plant structural parameters in friable region | |
CN114926748A (en) | A Soybean Remote Sensing Recognition Method Based on Sentinel-1/2 Microwave and Optical Multispectral Imagery | |
CN102194233B (en) | Method for extracting leading line in orchard | |
Wu et al. | Plant 3D reconstruction based on LiDAR and multi-view sequence images | |
Xie et al. | Multi-feature detection of in-field grain lodging for adaptive low-loss control of combine harvesters | |
Wang et al. | Automatic estimation of trunk cross sectional area using deep learning | |
Liu et al. | Extracting visual navigation line between pineapple field rows based on an enhanced YOLOv5 | |
Li et al. | Nondestructive detection of key phenotypes for the canopy of the watermelon plug seedlings based on deep learning | |
CN104636716A (en) | Method for identifying green fruits | |
CN102608349A (en) | Intelligent greenhouse nectarine fruit growth rate wireless monitoring system based on embedded dual-camera platform | |
CN113570291A (en) | Ecological environment monitoring and analyzing method and system for ecological functional area | |
Li et al. | Object detection and spatial positioning of kiwifruits in a wide-field complex environment | |
CN114136208A (en) | Low-cost tree structure automatic reconstruction method for lossless estimation of stumpage volume |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240731 Address after: 518000 1002, Building A, Zhiyun Industrial Park, No. 13, Huaxing Road, Henglang Community, Longhua District, Shenzhen, Guangdong Province Patentee after: Shenzhen Wanzhida Technology Co.,Ltd. Country or region after: China Address before: 071001 No.289 lingyusi street, Lianchi District, Baoding City, Hebei Province Patentee before: HEIBEI AGRICULTURAL UNIVERSITY Country or region before: China |