CN108804721A - 基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法 - Google Patents

基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法 Download PDF

Info

Publication number
CN108804721A
CN108804721A CN201710283330.XA CN201710283330A CN108804721A CN 108804721 A CN108804721 A CN 108804721A CN 201710283330 A CN201710283330 A CN 201710283330A CN 108804721 A CN108804721 A CN 108804721A
Authority
CN
China
Prior art keywords
fault
rbf neural
indicator card
rbf
decision variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710283330.XA
Other languages
English (en)
Other versions
CN108804721B (zh
Inventor
周伟
李晓亮
刘华超
甘丽群
易军
李太福
梁晓东
辜小花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daqing Ruifujia Petroleum Technology Co ltd
Original Assignee
Chongqing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Science and Technology filed Critical Chongqing University of Science and Technology
Priority to CN201710283330.XA priority Critical patent/CN108804721B/zh
Publication of CN108804721A publication Critical patent/CN108804721A/zh
Application granted granted Critical
Publication of CN108804721B publication Critical patent/CN108804721B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/008Monitoring of down-hole pump systems, e.g. for the detection of "pumped-off" conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing
    • G06F2218/02Preprocessing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Geophysics (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

本发明提供了一种基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法。首先,利用RBF神经网络对决策参数进行建模,然后,利用无迹Kalman卡尔曼滤波算法实时更新神经网络模型隐层的权值、中心及宽度,得到神经网络最优参数,最后,利用自适应滤波算法来提高模型稳定性,建立基于自适应无迹Kalman滤波与RBF神经网络相结合的抽油机故障诊断方法。本烦的显著效果是:无迹Kalman滤波具有实时更新性能,从而实现RBF神经网络的非线性动态建模,自适应滤波算法可以提高模型稳定性,满足复杂环境下对模型精度的要求。该方法提高了故障诊断的精确率,真正达到实时检测抽油机运行状况的目的。

Description

基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊 断方法
技术领域
本发明涉及抽油机故障诊断技术,具体涉及一种基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法。
背景技术
抽油机的故障诊断需要科学合理的方法,目前人们主要是根据示功图人为进行判断,而且只能定性分析,其诊断结果受到专家经验、技术等方面的影响,并且诊断具有一定的滞后性,达不到实时精确的诊断。抽油机运行过程具有非线性、强耦合性特点,为故障诊断带来较大困难。RBF神经网络具有很强的非线性映射能力,适用于解决非线性系统建模问题,为制定该方案过程建模提供了新的思路。本发明采用人工智能方法,对抽油机采集到的示功图参数进行傅里叶变换处理并结合抽油机本身电流参数,用RBF神经网络建立抽油机故障诊断模型,并用UKF算法对建立的诊断模型进行优化,得到最优模型参数,在此技术上,用自适应滤波方法对模型稳定性进行调整,提高模型稳定性。在实际运用中,通过收集到的数据预处理后,经RBF神经网络映射后得到的输出与模型输出作比较即可判断抽油机的故障类型。本发明不仅解决了长期以来仅仅依靠直觉判断健康而可能导致判断错误的问题,提高了故障诊断准确率和效率,降低了随机性和不确定性,真正达到了对抽油机实时诊断的目的,还为解决类似问题提供了一种新的思路,体现了人工智能算法在工业中的强大用处。
发明内容
本申请通过提供一种基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法,以解决现有技术中抽油机运行过程中发生故障时因无法及时检测抽油机故障而导致错过最佳维修时期的技术问题。
为解决上述技术问题,本申请采用以下技术方案予以实现:
一种基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法,其特征在于,包括如下步骤:
S1:选取抽油机一个冲程内完整的示功图,对示功图进行傅里叶变换选取低频部分的前f个示功图坐标参数,并结合抽油机三相电流参数b1,b2,b3构成决策变量X=[a1,a2,…,af,b1,b2,b3],f为所选示功图坐标参数的个数;
S2:在抽油机生产现场,选取至少一组决策变量X=[a1,a2,…,af,b1,b2,b3]作为样本数据,输出为所述决策变量X或X1~Xi所对应的故障类型Y或Y1~Yl
运用RBF神经网络对采集到的决策变量X或X1~Xi进行训练、检验,从而建立抽油机故障诊断模型;
S3:利用无迹Kalman算法,即UKF算法,对步骤S2所得的神经网络模型进行优化,得到一组最优参数;
S4:利用自适应滤波算法,对步骤S3所建立的故障诊断模型的稳定性进行调整,提高模型稳定性;
最佳自适应因子构建如下:
最佳自适应因子为:
式中,为引入自适应因子后的理论协方差矩阵,为系统残差向量的协方差矩阵;
推导过程如下:
在UKF算法中,最佳的自适应因子应满足以下公式
式中为引入自适应因子后的理论协方差矩阵,为系统残差向量的协方差矩阵,其表达式为 为残差向量,表达式为
式中,为k-1时刻系统观测矩阵,为k-1时刻系统估计矩阵;
根据方差传播原理,理论协方差矩阵可改写成
式中,Ai为方差传播系数,为系统状态矩阵协方差阵,Rk为系统噪声;
将上式两边同时乘以自适应因子Δi
在上式两边同时加上噪声向量Ri并结合公式得
在上式两边加入矩阵的迹,就可以得到自适应因子Δi的表达式为
实际应用中,自适应因子应始终小于或者等于1,同时忽略掉分子、分母的相对小量Ri,因此最佳的自适应因子近似为
S5:按照步骤S4所得的参数构建最优模型来对步骤S2中所选定的抽油机故障进行建模诊断,使其达到故障诊断目的。
步骤S2中选取一个决策变量时:选取抽油机一个冲程内完整的示功图,对示功图进行傅里叶变换选取低频部分的前8个示功图坐标参数,并结合抽油机三相电流参数b1,b2,b3构成决策变量X=[a1,a2,…,a8,b1,b2,b3],输入为1组决策变量X,输出为该组决策变量X所对应的故障类型Y;
步骤S2中,选取12个决策变量时:在抽油机生产现场,选取12组决策变量X1,X2,...,X12及其对应的供液不足、油井出砂、气体影响、气锁、固定凡尔漏失、游动凡尔漏失、双凡尔漏失、抽油杆断脱、泵上碰、泵下碰、连抽带喷故障类型作为数据样本,输入为n组决策变量X1~Xi,输出为n组决策变量X1~Xi所对应的故障类型Y1~Yl;1<n≤12,i为12
步骤S2中的RBF神经网络由输入层、隐藏层和输出层构成;
针对抽油机故障诊断模型而言,网络结构为A-B-C,A为输入层,B为隐藏层,C为输出层,激活函数采用Sigmod函数,样本训练时的迭代次数为800。
步骤S5中的最优模型法包括以下步骤:
S511:初始化系统参数,包括RBF神经网络的隐层的权值、中心及宽度w,b,c,UKF的初始滤波其中,分别为预测值及协方差,
其中UKF算法部分为:
S512:计算Sigma点状态向量;
S513:进行系统状态一步预测及协方差矩阵;
S514:计算系统观测及协方差矩阵;
S515:计算卡尔曼增益;
S516:更新系统状态估计矩阵及协方差阵;
式中,为k-1时刻的系统状态估计矩阵,为卡尔曼增益矩阵,Y(k|k-1)为k-1时刻的系统观测矩阵,为k-1时刻的系统观测预测矩阵;
式中,为k-1时刻系统估计矩阵协方差阵,为k-1时刻系统观测矩阵协方差阵;
RBF算法部分为:
S521:更新RBF隐含层的输出:
式中,m为隐层神经元,共有J个,为隐层神经元输出,cm为隐层神经元的中心,σm为隐层神经元的宽度;
S522:计算RBF输出层输出
式中,l为输出层神经元,共有M个,yl为网络输出层输出,ωm,l为更新后隐含层到输出层连接权值。
与现有技术相比,本申请提供的技术方案,具有的技术效果或优点是:当抽油机发生故障时该方法可以快速进行诊断识别,实现故障的实施诊断,提高了采油的效率。
附图说明
图1为本发明流程图;
图2为本发明对示功图进行傅里叶变换后的频谱图;
图3为静态RBF诊断模型输出图;
图4为静态RBF诊断误差图;
图5为AUKF-RBF诊断模型输出图;
图6为AUKF-RBF诊断误差图;
图7为RBFNN在多故障诊断中的仿真图,输出1为正常样本,2为供液不足,3为气体影响,4为固定凡尔漏失;
图8为AUKF-RBF在多故障诊断中的仿真图,输出1为正常样本,2为供液不足,3为气体影响,4为固定凡尔漏失。
具体实施方式
本申请实施例通过提供一种基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法,参考现有技术手段,本申请提供的技术方案,具有的技术效果或优点是:该方法采用智能算法用于抽油机故障诊断,有效提高了诊断效率,真正达到抽油机故障实施诊断的目的。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式,对上述技术方案进行详细的说明。
如图1所示,一种基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法,包括如下步骤:
如图2、3、4、5、6所示,S1:选取一组决策变量时:选取抽油机一个冲程内完整的示功图,对示功图进行傅里叶变换选取低频部分的前8个示功图坐标参数,并结合抽油机三相电流参数b1,b2,b3构成决策变量X=[a1,a2,…,a8,b1,b2,b3],输入为1组决策变量X,输出为该组决策变量X所对应的故障类型Y;
选取12组决策变量时:在抽油机生产现场,选取12组决策变量X1,X2,...,X12及其对应的供液不足、油井出砂、油井结蜡、气体影响、气锁、固定凡尔漏失、游动凡尔漏失、双凡尔漏失、抽油杆断脱、泵上碰、泵下碰、连抽带喷故障类型作为数据样本,输入为n组决策变量X1~Xi,输出为n组决策变量X1~Xi所对应的故障类型Y1~Yl;1<n≤12,i为12
S2:运用RBF神经网络对采集到的决策变量X或X1~Xi进行训练、检验,从而建立抽油机故障诊断模型;
在本实施例中,采集胜利油田东辛采油厂抽油机运行的800组数据,其中,740组数据作为建模训练样本,60组数据作为测试样本,抽油机正常运行时输出为1,发生故障时输出为2,当预测误差大于0.5时为检测到故障发生。数据样本如下表1所示;
表1数据样本
在神经网络设计中,隐层节点数的多少是决定神经网络模型好坏的关键,也是神经网络设计中的难点,这里采用试凑法来确定隐层的节点数;
式中,h为隐层神经元节点数,q为输入层神经元数,e为输出层神经元数,r为1-10之间的常数,本例中RBF神经网络的设置参数如下表2所示;
表2RBF神经设置参数
神经网络的训练过程中主要按照以下步骤进行:
设置Xk=[xk1,xk2,…,xkM](k=1,2,…,T)为输入矢量,T为训练样本个数,为第g次迭代时隐层M与输出I之间的权值矢量,yn(l)=[yk1(l),yk2(l),…,ykP(l)](k=1,2,…,T)为第g次迭代时网络的实际输出,dk=[dk1,dk2,…,dkP](k=1,2,…,T)为期望输出;
步骤S2中建立抽油机故障诊断模型模型具体包括如下步骤:
S21:初始化,设迭代次数g初值为0,赋给WMI(0)一个(0,1)区间的随机值;
S22:随机输入样本Xk
S23:对输入样本Xk,前向计算RBF神经网络每层神经元的输入信号和输出信号;
S24:根据期望输出dk和实际输出Yk(l),计算误差E(l);
S25:判断误差E(l)是否满足要求,如不满足,则进入步骤S26,如满足,则进入步骤S29;
S26:判断迭代次数g+1是否大于最大迭代次数,如大于,则进入步骤S29,否则,进入步骤S27;
S27:对输入样本Xk反向计算每层神经元的局部梯度δ;
S28:计算权值修正量△W,并修正权值,计算公式为: 式中,η为学习效率;令g=g+1,跳转至步骤S23;
S29:判断是否完成所有的训练样本,如果是,则完成建模,否则,继续跳转至步骤S22。
通过上述过程,可得到RBF神经网络预测效果如图3所示,误差如图4所示。通过对图3,图4分析可知,传统RBF神经网络训练建立的静态预测模型大部分满足可以检测出故障,满足初步建模要求,需要进行优化调整;
S3:利用无迹Kalman算法,即UKF算法,对步骤S2所得的神经网络模型进行优化,得到一组最优参数;
S4:利用自适应滤波算法,对步骤S3所建立的故障诊断模型的稳定性进行调整,提高模型稳定性;
S5:按照步骤S4所得的参数构建最优模型来对步骤S2中所选定的抽油机故障进行建模诊断,使其达到故障诊断目的,具体步骤如下:
其中,UKF算法部分为:
S511:初始化系统参数,包括RBF神经网络的隐层的权值、中心及宽度w,b,c,UKF的初始滤波其中,分别为预测值及协方差。
S511:初始化系统参数;
S512:计算Sigma点状态向量;
S513:进行系统状态一步预测及协方差矩阵;
S514:计算系统观测及协方差矩阵;
S515:计算卡尔曼增益;
S516:更新系统状态估计矩阵及协方差阵;
式中,为k-1时刻的系统状态估计矩阵,为卡尔曼增益矩阵,Y(k|k-1)为k-1时刻的系统观测矩阵,为k-1时刻的系统观测预测矩阵;
式中,为k-1时刻系统估计矩阵协方差阵,为k-1时刻系统观测矩阵协方差阵;
RBF算法部分为:
S521:更新RBF隐含层的输出:
式中,m为隐层神经元,共有J个,为隐层神经元输出,cm为隐层神经元的中心,σm为隐层神经元的宽度;
S522:计算RBF输出层输出
式中,l为输出层神经元,共有M个,yl为网络输出层输出,ωm,l为更新后隐含层到输出层连接权值;
与现有技术相比,本申请提供的技术方案,具有的技术效果或优点是:当抽油机发生故障时该方法可以快速进行诊断识别,实现故障的实施诊断,提高了采油的效率。
通过上述过程,可得到AUKF-RBF神经网络预测效果如图5所示,误差如图6所示,通过对图5,图6分析可知,经过优化模型所建立的AUKF-RBF诊断模型可以精确检测出故障,满足建模精度要求,通过对图7,图8分析可知,再多目标诊断中AUKF-RBF有更好的分类效果;
本发明提供了一种基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法。首先,利用RBF神经网络对抽油机运行过程进行建模,然后,利用无迹Kalman卡尔曼滤波算法实时更新神经网络模型隐层的权值、中心及宽度,得到神经网络最优参数,最后,利用自适应滤波算法来提高模型稳定性,建立基于自适应无迹Kalman滤波与RBF神经网络相结合的抽油机故障诊断方法。抽油机运行过程往往是复杂非线性的动态系统运行过程,而描述其过程的神经网络模型往往是一个静态映射,没有考虑到井下具体工况等外界条件对抽油机泵的影响,从而导致依赖静态模型的技术决策效果不稳定,自适应无迹Kalman滤波具有实时更新性能,从而实现RBF神经网络的非线性动态建模。该方法提高了故障诊断的精确率,真正达到实时检测抽油机运行状况的目的。
应当指出的是,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改性、添加或替换,也应属于本发明的保护范围。

Claims (5)

1.一种基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法,其特征在于,包括如下步骤:
S1:选取抽油机一个冲程内完整的示功图,对示功图进行傅里叶变换选取低频部分的前f个示功图坐标参数,并结合抽油机三相电流参数b1,b2,b3构成决策变量X=[a1,a2,…,af,b1,b2,b3],f为所选示功图坐标参数的个数;
S2:在抽油机生产现场,选取至少一组决策变量X=[a1,a2,…,af,b1,b2,b3]作为样本数据,输出为所述决策变量X或X1~Xi所对应的故障类型Y或Y1~Yl
运用RBF神经网络对采集到的决策变量X或X1~Xi进行训练、检验,从而建立抽油机故障诊断模型;
S3:利用无迹Kalman算法,即UKF算法,对步骤S2所得的神经网络模型进行优化,得到一组最优参数;
S4:利用自适应滤波算法,对步骤S3所建立的故障诊断模型的稳定性进行调整,提高模型稳定性;
最佳自适应因子构建如下:
最佳自适应因子为:
式中,为引入自适应因子后的理论协方差矩阵,为系统残差向量的协方差矩阵;
S5:按照步骤S4所得的参数构建最优模型来对步骤S2中所选定的抽油机故障进行建模诊断,使其达到故障诊断目的。
2.根据权利要求1所述的基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法,其特征在于,
步骤S1中选定了二大类参数构成决策变量X,第一大类为运用傅里叶变换后的示功图坐标参数a1,a2,…a8,将每种故障示功图进行傅里叶变换得到示功图频谱图,其低频部分前8个点代表示功图图形特征,对每种故障分别进行傅里叶变换,选取变换后的前8个低频部分的示功图坐标参数a1,a2,…a8,第二大类为抽油机电流参数b1,b2,b3。
3.根据权利要求1所述的基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法,其特征在于,
在步骤S1中,选取一组决策变量时:选取抽油机一个冲程内完整的示功图,对示功图进行傅里叶变换选取低频部分的前8个示功图坐标参数,并结合抽油机三相电流参数b1,b2,b3构成决策变量X=[a1,a2,…,a8,b1,b2,b3],输入为1组决策变量X,输出为该组决策变量X所对应的故障类型Y;
在步骤S1中,选取12组决策变量时:在抽油机生产现场,选取12组决策变量X1,X2,...,X12及其对应的供液不足、油井出砂、油井结蜡、气体影响、气锁、固定凡尔漏失、游动凡尔漏失、双凡尔漏失、抽油杆断脱、泵上碰、泵下碰、连抽带喷故障类型作为数据样本,输入为n组决策变量X1~Xi,输出为n组决策变量X1~Xi所对应的故障类型Y1~Yl;1<n≤12,i为12
运用RBF神经网络对采集到的样本数据进行训练、检验,从而建立抽油机故障诊断模型。
4.根据权利要求1所述的基于自适应无迹Kalman滤波与RBF神经网络结合的抽油机故障诊断方法,其特征在于,步骤S2中的RBF神经网络由输入层、隐藏层和输出层构成;
针对抽油机故障诊断模型而言,网络结构为A-B-C,A为输入层,B为隐藏层,C为输出层,激活函数采用Sigmod函数,样本训练时的迭代次数为800。
5.根据权利要求1所述的基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法,其特征在于,步骤S5中的最优模型法包括以下步骤:
S511:初始化系统参数,包括RBF神经网络的隐层的权值、中心及宽度w,b,c,UKF的初始滤波其中,分别为预测值及协方差,
其中,UKF算法部分为:
S512:计算Sigma点状态向量;
S513:进行系统状态一步预测及协方差矩阵;
S514:计算系统观测及协方差矩阵;
S515:计算卡尔曼增益;
S516:更新系统状态估计矩阵及协方差阵;
式中,为k-1时刻的系统状态估计矩阵,为卡尔曼增益矩阵,Y(k|k-1)为k-1时刻的系统观测矩阵,为k-1时刻的系统观测预测矩阵;
式中,为k-1时刻系统估计矩阵协方差阵,为k-1时刻系统观测矩阵协方差阵;
RBF算法部分为:
S521:更新RBF隐含层的输出:
式中,m为隐层神经元,共有J个,为隐层神经元输出,cm为隐层神经元的中心,σm为隐层神经元的宽度;
S522:计算RBF输出层输出
式中,l为输出层神经元,共有M个,yl为网络输出层输出,ωm,l为更新后隐含层到输出层连接权值。
CN201710283330.XA 2017-04-26 2017-04-26 基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法 Active CN108804721B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710283330.XA CN108804721B (zh) 2017-04-26 2017-04-26 基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710283330.XA CN108804721B (zh) 2017-04-26 2017-04-26 基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法

Publications (2)

Publication Number Publication Date
CN108804721A true CN108804721A (zh) 2018-11-13
CN108804721B CN108804721B (zh) 2021-09-14

Family

ID=64069308

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710283330.XA Active CN108804721B (zh) 2017-04-26 2017-04-26 基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法

Country Status (1)

Country Link
CN (1) CN108804721B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109886126A (zh) * 2019-01-23 2019-06-14 长安大学 一种基于动态采样机制与rbf神经网络的区域车辆密度估计方法
CN109920514A (zh) * 2019-03-11 2019-06-21 重庆科技学院 一种基于卡尔曼滤波神经网络的自闭症拥抱机体验评价方法及系统
CN114718514A (zh) * 2021-01-06 2022-07-08 中国石油化工股份有限公司 基于功率加权预测的抽油机直流母线群控算法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744026A (zh) * 2013-12-19 2014-04-23 广西科技大学 基于自适应无迹卡尔曼滤波的蓄电池荷电状态估算方法
CN104680259A (zh) * 2015-03-12 2015-06-03 天津市万众科技发展有限公司 抽油机运行参数的节能优化方法
CN105045941A (zh) * 2015-03-13 2015-11-11 重庆科技学院 基于无迹卡尔曼滤波的抽油机参数优化方法
CN105425039A (zh) * 2015-12-29 2016-03-23 南京因泰莱电器股份有限公司 基于自适应卡尔曼滤波的谐波检测方法
WO2016059126A1 (en) * 2014-10-17 2016-04-21 Jaguar Land Rover Limited Battery condition monitoring
CN106203698A (zh) * 2016-07-11 2016-12-07 国网青海省电力公司 一种基于无迹卡尔曼滤波和神经网络的光伏发电预测方法
CN106530130A (zh) * 2016-11-14 2017-03-22 重庆科技学院 油田机采过程动态演化建模与节能优化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103744026A (zh) * 2013-12-19 2014-04-23 广西科技大学 基于自适应无迹卡尔曼滤波的蓄电池荷电状态估算方法
WO2016059126A1 (en) * 2014-10-17 2016-04-21 Jaguar Land Rover Limited Battery condition monitoring
CN104680259A (zh) * 2015-03-12 2015-06-03 天津市万众科技发展有限公司 抽油机运行参数的节能优化方法
CN105045941A (zh) * 2015-03-13 2015-11-11 重庆科技学院 基于无迹卡尔曼滤波的抽油机参数优化方法
CN105425039A (zh) * 2015-12-29 2016-03-23 南京因泰莱电器股份有限公司 基于自适应卡尔曼滤波的谐波检测方法
CN106203698A (zh) * 2016-07-11 2016-12-07 国网青海省电力公司 一种基于无迹卡尔曼滤波和神经网络的光伏发电预测方法
CN106530130A (zh) * 2016-11-14 2017-03-22 重庆科技学院 油田机采过程动态演化建模与节能优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王明建: "改进自适应UKF在组合导航系统中的应用研究", 《无线电工程》 *
王江萍: "基于RBF网络的抽油机减速器故障诊断", 《石油机械》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109886126A (zh) * 2019-01-23 2019-06-14 长安大学 一种基于动态采样机制与rbf神经网络的区域车辆密度估计方法
CN109920514A (zh) * 2019-03-11 2019-06-21 重庆科技学院 一种基于卡尔曼滤波神经网络的自闭症拥抱机体验评价方法及系统
CN114718514A (zh) * 2021-01-06 2022-07-08 中国石油化工股份有限公司 基于功率加权预测的抽油机直流母线群控算法
CN114718514B (zh) * 2021-01-06 2024-05-17 中国石油化工股份有限公司 基于功率加权预测的抽油机直流母线群控算法

Also Published As

Publication number Publication date
CN108804721B (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
CN108804720A (zh) 一种基于改进无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法
He et al. Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples
CN105372087B (zh) 基于多传感器信号分析的故障诊断方法
CN108960303B (zh) 一种基于lstm的无人机飞行数据异常检测方法
CN109255441A (zh) 基于人工智能的航天器故障诊断方法
CN105095918A (zh) 一种多机器人系统故障诊断方法
CN108804721A (zh) 基于自适应无迹Kalman滤波与RBF神经网络的抽油机故障诊断方法
CN108181562A (zh) 基于模糊小脑模型神经网络的绝缘子故障诊断装置及方法
CN109884892A (zh) 基于交叉相关时滞灰色关联分析的流程工业系统预测模型
Cen et al. A gray-box neural network-based model identification and fault estimation scheme for nonlinear dynamic systems
CN111461187B (zh) 一种建筑物沉降智能检测系统
CN113609955A (zh) 一种基于深度学习和数字孪生的三相逆变器参数辨识方法和系统
CN113435644A (zh) 基于深度双向长短期记忆神经网络的突发事件预测方法
CN107967489A (zh) 一种异常检测方法及系统
CN106523393A (zh) 一种用于井下排水系统的故障诊断方法
CN106874963A (zh) 一种基于大数据技术的配电网故障诊断方法及系统
CN106610584A (zh) 一种基于神经网络与专家系统的再制造工序质量控制方法
CN110531737A (zh) 基于混合模型的卫星执行机构故障诊断方法、系统及介质
CN111311577A (zh) 一种基于生成对抗网络及强化学习的智能渗水检测方法
CN109779791A (zh) 一种固体火箭发动机中异常数据智能诊断方法
CN102749584B (zh) 基于Kalman滤波的ESN的涡轮发动机的剩余寿命预测方法
CN112215279A (zh) 一种基于免疫rbf神经网络的电网故障诊断方法
Wang et al. Deep recurrent belief propagation network for POMDPs
CN114169091A (zh) 工程机械部件剩余寿命的预测模型建立方法及预测方法
CN105976029A (zh) 一种布谷鸟行为rna-ga的桥式吊车神经网络建模方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230602

Address after: 163000 room 1012, building 1, emerging industry incubator, No. 32, torch new street, high tech Zone, Daqing City, Heilongjiang Province

Patentee after: Daqing ruifujia Petroleum Technology Co.,Ltd.

Address before: No. 20, East Road, University City, Chongqing, Shapingba District, Chongqing

Patentee before: Chongqing University of Science & Technology

TR01 Transfer of patent right