CN108793197A - 银掺杂硫氰酸亚铜薄膜及其制备方法和应用 - Google Patents

银掺杂硫氰酸亚铜薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN108793197A
CN108793197A CN201810170301.7A CN201810170301A CN108793197A CN 108793197 A CN108793197 A CN 108793197A CN 201810170301 A CN201810170301 A CN 201810170301A CN 108793197 A CN108793197 A CN 108793197A
Authority
CN
China
Prior art keywords
membrane
nano structure
doping
cuprous
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810170301.7A
Other languages
English (en)
Other versions
CN108793197B (zh
Inventor
徐伟
吴莹莹
甘营
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201810170301.7A priority Critical patent/CN108793197B/zh
Publication of CN108793197A publication Critical patent/CN108793197A/zh
Application granted granted Critical
Publication of CN108793197B publication Critical patent/CN108793197B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/20Thiocyanic acid; Salts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明属于纳米结构功能薄膜技术领域,具体为一种银掺杂硫氰酸亚铜纳米结构薄膜及其制备方法和应用。本发明提出的纳米结构薄膜由硫氰酸亚铜薄膜和硝酸银水溶液反应掺杂获得,该薄膜用作表面增强拉曼谱的基底,能检测微量有机分子,检测极限浓度达到10‑9摩尔/升。本发明工艺简单,成本低,容易生产。

Description

银掺杂硫氰酸亚铜薄膜及其制备方法和应用
技术领域
本发明属于纳米功能薄膜技术领域,具体涉及一种银掺杂硫氰酸亚铜纳米结构薄膜及其制备方法和在表面增强拉曼谱检测中的应用。
背景技术
表面增强拉曼谱(Surface-enhanced Raman spectroscopy, 简称SERS)在微量有机物和生物分子检测方面有极广泛的应用。能否获得极高灵敏度的检测效果,往往依赖于拉曼谱的检测基底。由于本领域的巨大研究价值和应用背景,已有大量研究人员从事SERS基底材料的开发研究。SERS基底通常采用贵金属纳米粒子或者纳米结构,但是要获得很高的增强效果往往需要采用特殊的材料和较复杂的制备工艺。为满足本领域的广泛需求,迫切需要开发出高灵敏度、低成本的SERS基底。[(1)John R. Lombardi, Ronald L. Birke,A unified view of surface-enhanced Raman scattering. Acc Chem Res, 2009, 42(6): 734; (2)D. Cialla-May, X.-S. Zheng, K. Weber, J. Popp. Recent progressin surface-enhanced Raman spectroscopy for biological and biomedicalapplications: from cells to clinics. Chem Soc Rev, 2017, 46: 3945]。
发明人前期曾发现铜膜能够与硫氰酸盐反应形成硫氰酸亚铜薄膜。这类硫氰酸亚铜薄膜已被证明可用做电存储薄膜。 [(3) Y-W. Dong, X. Ji, W. Xu, J-Q. Tang, P.Guo. Resistive Switching and Memory Effect Based on CuSCN Complex LayerCreated Through Interface Reactions. Electrochem. Solid-State Lett. 2009, 12(3): H54;(4)X. Ji, Y-W. Dong, Z-Q. Huo, and W. Xu, Resistive Switching MemoryBased on CuSCN Films Fabricated by Solution-Dipping Method. Electrochem.Solid-State Lett. 2009, 12(9): H344]。
本发明进一步发现,用硝酸银水溶液处理硫氰酸亚铜薄膜能形成新型的纳米结构复合物薄膜。这种薄膜可用做高灵敏度的SERS基底。
发明内容
本发明的目的在于提出一种银掺杂硫氰酸亚铜纳米结构薄膜及其制备方法和应用。
本发明提出的这种银掺杂硫氰酸亚铜纳米结构薄膜,可用做表面增强拉曼谱(SERS)的检测基底。这种SERS基底能够高灵敏度检测微量有机分子。
本发明提出的银掺杂硫氰酸亚铜纳米结构薄膜的制备方法,以硫氰酸亚铜薄膜为前体,通过与硝酸银水溶液反应,制备银掺杂硫氰酸亚铜纳米结构薄膜;具体流程为,将沉积在固态基底上的硫氰酸亚铜薄膜浸入硝酸银水溶液中,通过固液界面反应,形成银掺杂硫氰酸亚铜纳米结构薄膜。
本发明中,所述固态基底可采用玻璃基底、云母片或者柔性支撑膜;所述硫氰酸亚铜薄膜由铜膜和可溶性硫氰酸盐(比如:硫氰酸钠或者硫氰酸铵)水溶液反应制备获得。
所述硝酸银水溶液的浓度为0.001~0.05摩尔/升。
硫氰酸亚铜薄膜与硝酸银水溶液的反应时间为5~30分钟。
硫氰酸亚铜薄膜的制备方法参见文献。[(5)Xingxing Xiao, Peng Xia, Xin Ji,Wei Xu. In situ synthesis and characterization of Cu2O nanowire networks fromCuSCN films. Materials Letters 2014, 128: 271-274]。
扫描电子显微镜(SEM)等分析实验显示,用硝酸银水溶液处理硫氰酸亚铜薄膜,其表面上有新的纳米结构形成,且薄膜表面银组份含量较高,是一种银掺杂的纳米结构复合层。
本发明还提出银掺杂硫氰酸亚铜纳米结构薄膜的具体应用,即可用作SERS的基底。具体方法是,将银掺杂硫氰酸亚铜纳米结构薄膜浸入待检测有机分子的溶液中,浸泡1~24小时,取出,晾干,再置于拉曼分析仪器中检测即可。可用于检测微量有机分子。例如,待检测有机分子可为罗丹明6G分子(R6G)。
实验证明,采用银掺杂硫氰酸亚铜纳米结构薄膜做SERS基底,有很高的增强效果,能检测浓度极低(1×10-9摩尔/升)的罗丹明6G分子,灵敏度非常高。
本发明提出的银掺杂硫氰酸亚铜纳米结构薄膜的制备方法,工艺简单,成本低,容易生产。以这种薄膜做SERS基底,在分子科学研究、污染物检测、食品中微量物质检测、以及生物医药和环境卫生等领域都有广泛的应用价值。
附图说明
图1为硫氰酸亚铜薄膜的SEM图像。
图2为银掺杂硫氰酸亚铜纳米结构薄膜SEM图像。在0.05摩尔/升硝酸银水溶液中浸泡15分钟获得。
图3为银掺杂硫氰酸亚铜纳米结构薄膜用做SERS基底。其中,6条拉曼曲线分别对应于6种基底。 从下往上依次为:未处理的CuSCN薄膜;0.01摩尔/升AgNO3溶液浸泡处理;0.025摩尔/升AgNO3溶液浸泡处理; 0.05摩尔/升AgNO3溶液浸泡处理; 0.001摩尔/升AgNO3溶液浸泡处理; 0.005摩尔/升AgNO3溶液浸泡处理。
图4为银掺杂硫氰酸亚铜纳米结构薄膜用做SERS基底,在0.005摩尔/升AgNO3溶液中浸泡处理获得。用于检测浓度分别为10-6 摩尔/升、10-7 摩尔/升、10-8 摩尔/升的罗丹明6G水溶液。
图5为银掺杂硫氰酸亚铜纳米结构薄膜用做SERS基底,在0.005摩尔/升AgNO3溶液中浸泡处理获得。能检测浓度10-9摩尔/升的罗丹明6G水溶液。
具体实施方式
下面通过实施例进一步描述本发明提出的银掺杂硫氰酸亚铜纳米结构薄膜及其应用。
实施例1(薄膜制备)
将硫氰酸亚铜薄膜分别浸入不同浓度的硝酸银水溶液中(硝酸银水溶液的浓度分别为:0.001摩尔/升、0.005摩尔/升、0.01摩尔/升、0.025摩尔/升、0.05摩尔/升),浸泡15分钟后取出晾干。即得5种银掺杂硫氰酸亚铜纳米结构薄膜。
图1是硫氰酸亚铜薄膜的SEM图像。
图2是用0.05摩尔/升硝酸银水溶液处理后的SEM图像,显示与硫氰酸亚铜薄膜有明显的形貌差别,表面上有新的纳米结构生成。
实施例2
将未经硝酸银处理的硫氰酸亚铜薄膜以及5种银掺杂硫氰酸亚铜纳米结构薄膜分别用浓度为10-6摩尔/升的罗丹明6G水溶液浸泡2小时,取出晾干。然后用于表面增强拉曼检测,并比较拉曼增强效果。
图3显示5种用不同浓度硝酸银溶液处理获得的银掺杂硫氰酸亚铜薄膜都有明显的拉曼增强效果。作为对比,没有用硝酸银溶液处理的硫氰酸亚铜薄膜的拉曼谱峰很弱。
实施例3
采用0.005摩尔/升硝酸银溶液处理获得的银掺杂硫氰酸亚铜纳米结构薄膜作为SERS的基底,分别在浓度为10-6摩尔/升、10-7摩尔/升和10-8摩尔/升的罗丹明6G水溶液中,浸泡2小时,取出晾干,用于表面增强拉曼检测。
图4显示即使罗丹明6G的浓度低至10-8 摩尔/升,仍然能明显观测到拉曼谱峰。
实施例4
为了确认罗丹明6G能被检测的极限浓度,采用0.005摩尔/升硝酸银溶液处理获得的银掺杂硫氰酸亚铜纳米结构薄膜作为SERS的基底,分别在浓度为10-9 摩尔/升、10-10 摩尔/升的罗丹明6G水溶液中,浸泡24小时,取出晾干,用于表面增强拉曼检测。
研究发现,浓度10-10 摩尔/升的罗丹明6G水溶液检测不到拉曼信号;浓度10-9 摩尔/升的罗丹明6G水溶液能检测到微弱拉曼信号。放大后的图谱如图5所示。
图5 显示微弱但是清楚的拉曼信号。其中,峰值610cm-1、771 cm-1、1185 cm-1、1362cm-1、1508 cm-1和1648 cm-1 的谱峰是罗丹明R6G的拉曼特征峰。
结论:银掺杂硫氰酸亚铜纳米结构薄膜能用做高灵敏度的SERS基底。对于罗丹明R6G,极限检测浓度为10-9摩尔/升。

Claims (4)

1. 一种银掺杂硫氰酸亚铜纳米结构薄膜的制备方法, 其特征在于,以硫氰酸亚铜薄膜为前体,通过与硝酸银水溶液反应,制备银掺杂硫氰酸亚铜纳米结构薄膜;具体流程为,将沉积在固态基底上的硫氰酸亚铜薄膜浸入硝酸银水溶液中,通过固液界面反应,形成银掺杂硫氰酸亚铜纳米结构薄膜;
所述硝酸银水溶液的浓度为0.001~0.05摩尔/升;硫氰酸亚铜薄膜与硝酸银水溶液的反应时间为5~30分钟。
2.一种由权利要求1所述的制备方法得到的银掺杂硫氰酸亚铜纳米结构薄膜。
3.如权利要求2所述的银掺杂硫氰酸亚铜纳米结构薄膜作为表面增强拉曼谱的检测基底的应用。
4.如权利要求3所述的银掺杂硫氰酸亚铜纳米结构薄膜作为表面增强拉曼谱的检测基底的应用,用于检测微量有机分子。
CN201810170301.7A 2018-03-01 2018-03-01 银掺杂硫氰酸亚铜薄膜及其制备方法和应用 Active CN108793197B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810170301.7A CN108793197B (zh) 2018-03-01 2018-03-01 银掺杂硫氰酸亚铜薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810170301.7A CN108793197B (zh) 2018-03-01 2018-03-01 银掺杂硫氰酸亚铜薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108793197A true CN108793197A (zh) 2018-11-13
CN108793197B CN108793197B (zh) 2021-08-20

Family

ID=64095116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810170301.7A Active CN108793197B (zh) 2018-03-01 2018-03-01 银掺杂硫氰酸亚铜薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108793197B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621569A (zh) * 2004-09-30 2005-06-01 天津大学 一种在水溶液中电沉积制备硫氰酸亚铜薄膜的方法
CN101109101A (zh) * 2007-07-27 2008-01-23 中国科学院上海硅酸盐研究所 一种液相条件下制备硫氰酸亚铜薄膜的方法
CN101252154A (zh) * 2008-04-01 2008-08-27 天津大学 用三乙醇胺络合水基电沉积液制备硫氰酸亚铜薄膜的方法
EP2415902A2 (de) * 2010-08-03 2012-02-08 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Verfahren zur Herstellung einer nanokristallinen CuSCN-chnicht auf einem Substrat
CN103364390A (zh) * 2012-04-10 2013-10-23 国家纳米科学中心 一种表面增强拉曼基底及其制备方法和应用
CN103754925A (zh) * 2014-01-13 2014-04-30 复旦大学 一种氧化亚铜纳米线多孔薄膜及其制备方法和应用
WO2015013613A1 (en) * 2013-07-25 2015-01-29 First Solar, Inc. Tellurium enriched back contact paste with copper
CN106248650A (zh) * 2016-08-22 2016-12-21 上海朗研光电科技有限公司 简便高效拉曼增强基底的制备方法
CN106847951A (zh) * 2017-01-20 2017-06-13 中国计量大学 一种碳量子点负载硫氰酸亚铜光电薄膜及其制备方法
KR20170106531A (ko) * 2016-03-10 2017-09-21 인하대학교 산학협력단 티오시안산구리(CuSCN) 정공수송체 층 및 이의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1621569A (zh) * 2004-09-30 2005-06-01 天津大学 一种在水溶液中电沉积制备硫氰酸亚铜薄膜的方法
CN101109101A (zh) * 2007-07-27 2008-01-23 中国科学院上海硅酸盐研究所 一种液相条件下制备硫氰酸亚铜薄膜的方法
CN101252154A (zh) * 2008-04-01 2008-08-27 天津大学 用三乙醇胺络合水基电沉积液制备硫氰酸亚铜薄膜的方法
EP2415902A2 (de) * 2010-08-03 2012-02-08 Helmholtz-Zentrum Berlin für Materialien und Energie GmbH Verfahren zur Herstellung einer nanokristallinen CuSCN-chnicht auf einem Substrat
CN103364390A (zh) * 2012-04-10 2013-10-23 国家纳米科学中心 一种表面增强拉曼基底及其制备方法和应用
WO2015013613A1 (en) * 2013-07-25 2015-01-29 First Solar, Inc. Tellurium enriched back contact paste with copper
CN103754925A (zh) * 2014-01-13 2014-04-30 复旦大学 一种氧化亚铜纳米线多孔薄膜及其制备方法和应用
KR20170106531A (ko) * 2016-03-10 2017-09-21 인하대학교 산학협력단 티오시안산구리(CuSCN) 정공수송체 층 및 이의 제조방법
CN106248650A (zh) * 2016-08-22 2016-12-21 上海朗研光电科技有限公司 简便高效拉曼增强基底的制备方法
CN106847951A (zh) * 2017-01-20 2017-06-13 中国计量大学 一种碳量子点负载硫氰酸亚铜光电薄膜及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
V.P.S. PERERA等: "Doping CuSCN films for enhancement of conductivity: Application in dye-sensitized solid-state solar cells", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *
吴莹莹等: "Cu2(OH)3NO3/Ag复合物的制备及性能研究", 《复旦学报(自然科学版)》 *
李宣东等: "液相沉积法制备掺银TiO_2薄膜及光催化性能", 《哈尔滨工业大学学报》 *

Also Published As

Publication number Publication date
CN108793197B (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
Tang et al. A formaldehyde sensor based on molecularly-imprinted polymer on a TiO2 nanotube array
Hu et al. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes
Gherab et al. Fabrication and characterizations of Al nanoparticles doped ZnO nanostructures-based integrated electrochemical biosensor
Elanjeitsenni et al. A review on thin films, conducting polymers as sensor devices
Peng et al. Theoretical and experimental studies of Ti3C2 MXene for surface-enhanced Raman spectroscopy-based sensing
Karaman et al. A molecularly imprinted electrochemical biosensor based on hierarchical Ti2Nb10O29 (TNO) for glucose detection
Silva et al. Electrochemical performance of porous diamond-like carbon electrodes for sensing hormones, neurotransmitters, and endocrine disruptors
Chang et al. Imparting chemical stability in nanoparticulate silver via a conjugated polymer casing approach
US11307163B2 (en) Carbon nanotube based reference electrodes and all-carbon electrode assemblies for sensing and electrochemical characterization
Song et al. Enzyme-free molecularly imprinted and graphene-functionalized photoelectrochemical sensor platform for pollutants
Shamsipur et al. Coupled electrochemical-chemical procedure used in construction of molecularly imprinted polymer-based electrode: a highly sensitive impedimetric melamine sensor
Chen et al. Silver nanowires on coffee filter as dual-sensing functionality for efficient and low-cost SERS substrate and electrochemical detection
Rahman et al. Smart methanol sensor based on silver oxide-doped zinc oxide nanoparticles deposited on microchips
Abdullah et al. PANI‐Ag‐Cu Nanocomposite Thin Films Based Impedimetric Microbial Sensor for Detection of E. coli Bacteria
Chen et al. Branched silver nanowires on fluorine-doped tin oxide glass for simultaneous amperometric detection of H 2 O 2 and of 4-aminothiophenol by SERS
Salagare et al. Facile synthesis of silver nanoparticle-decorated zinc oxide nanocomposite-based pencil graphite electrode for selective electrochemical determination of nitrite
CN104251852A (zh) 一种基于无电沉积法构建的表面增强拉曼散射基底及其制备方法和应用
Torad et al. Gas sensors based on conducting polymers
Arida Novel pH microsensor based on a thin film gold electrode modified with lead dioxide nanoparticles
Sriram et al. In situ synthesis of a bismuth vanadate/molybdenum disulfide composite: an electrochemical tool for 3-Nitro-l-tyrosine analysis
Kimura et al. Copper oxide solution sensor formed on a thin film having nanowires for detecting ethanol in water
Dickinson et al. Fabrication and characterisation of the graphene ring micro electrode (GRiME) with an integrated, concentric Ag/AgCl reference electrode
Jain et al. Zinc oxide nanoflowers based graphene nanocomposite platform for catalytic studies of febuxostat
Vamvakaki et al. DNA Stabilization and Hybridization Detection on Porous Silicon Surface by EIS and Total Reflection FT‐IR Spectroscopy
Alharthi et al. Ultrathin optically transparent carbon electrodes produced from layers of adsorbed proteins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant