CN108788436A - A kind of technique connecting fusion reactor material tungsten and steel using the diffusion of hydrogen metal is set - Google Patents
A kind of technique connecting fusion reactor material tungsten and steel using the diffusion of hydrogen metal is set Download PDFInfo
- Publication number
- CN108788436A CN108788436A CN201810566930.1A CN201810566930A CN108788436A CN 108788436 A CN108788436 A CN 108788436A CN 201810566930 A CN201810566930 A CN 201810566930A CN 108788436 A CN108788436 A CN 108788436A
- Authority
- CN
- China
- Prior art keywords
- steel
- tungsten
- hydrogen
- fusion reactor
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 81
- 239000010959 steel Substances 0.000 title claims abstract description 81
- 239000000463 material Substances 0.000 title claims abstract description 65
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 55
- 239000010937 tungsten Substances 0.000 title claims abstract description 55
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 46
- 239000001257 hydrogen Substances 0.000 title claims abstract description 46
- 238000000034 method Methods 0.000 title claims abstract description 46
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 230000004927 fusion Effects 0.000 title claims abstract description 37
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 36
- 239000002184 metal Substances 0.000 title claims abstract description 36
- 238000009792 diffusion process Methods 0.000 title claims abstract description 35
- 239000010936 titanium Substances 0.000 claims abstract description 43
- 238000003466 welding Methods 0.000 claims abstract description 35
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 26
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000004913 activation Effects 0.000 claims abstract description 12
- 238000005304 joining Methods 0.000 claims abstract description 8
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 8
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 4
- 238000005516 engineering process Methods 0.000 claims abstract description 3
- 239000000872 buffer Substances 0.000 claims abstract 8
- 238000001513 hot isostatic pressing Methods 0.000 claims description 14
- 238000007731 hot pressing Methods 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 8
- 238000000137 annealing Methods 0.000 claims description 8
- 150000002431 hydrogen Chemical class 0.000 claims description 7
- 238000006356 dehydrogenation reaction Methods 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 4
- 238000010894 electron beam technology Methods 0.000 claims description 4
- 229910000734 martensite Inorganic materials 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 230000003746 surface roughness Effects 0.000 claims description 3
- 229910000859 α-Fe Inorganic materials 0.000 claims description 3
- 229910000756 V alloy Inorganic materials 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 229910000878 H alloy Inorganic materials 0.000 claims 4
- 238000002791 soaking Methods 0.000 claims 3
- 238000005498 polishing Methods 0.000 claims 2
- 230000001133 acceleration Effects 0.000 claims 1
- 238000004140 cleaning Methods 0.000 claims 1
- 238000005476 soldering Methods 0.000 claims 1
- 230000007704 transition Effects 0.000 abstract description 24
- 239000007795 chemical reaction product Substances 0.000 abstract description 12
- 229910045601 alloy Inorganic materials 0.000 abstract description 11
- 239000000956 alloy Substances 0.000 abstract description 11
- 230000002459 sustained effect Effects 0.000 abstract 1
- 238000013268 sustained release Methods 0.000 abstract 1
- 239000012730 sustained-release form Substances 0.000 abstract 1
- 230000008569 process Effects 0.000 description 13
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 239000007790 solid phase Substances 0.000 description 7
- 230000035882 stress Effects 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 150000002739 metals Chemical class 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- GFNGCDBZVSLSFT-UHFFFAOYSA-N titanium vanadium Chemical compound [Ti].[V] GFNGCDBZVSLSFT-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 229910052805 deuterium Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 229910052722 tritium Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- 229910005438 FeTi Inorganic materials 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/02—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K20/00—Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
- B23K20/24—Preliminary treatment
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
技术领域technical field
本发明是一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺,属金属扩散焊接领域。The invention relates to a technique for joining fusion reactor materials tungsten and steel by using hydrogen-containing metal diffusion, belonging to the field of metal diffusion welding.
背景技术Background technique
中国聚变工程试验堆(CFETR)及国外各种演示堆(DEMO)的第一壁部件均处于氢同位素环境中,并将承受氘(D)+氚(T)反应生成的14MeV中子及其他高能粒子辐照,因此第一壁部件大多被设计为面向等离子体材料(例如钨)和结构材料(例如低活化铁素体/马氏体钢)连接而成。但是钨和钢是两种热物理属性差异较大的异种金属材料,二者不仅线膨胀系数差异较大,会产生较大热应力,同时也会生成脆性反应产物弱化接头焊接性能。The first wall components of the China Fusion Engineering Test Reactor (CFETR) and various foreign demonstration reactors (DEMO) are in a hydrogen isotope environment, and will withstand the 14MeV neutrons and other high-energy components generated by the reaction of deuterium (D) + tritium (T) Particles are irradiated, so the first wall components are mostly designed to connect plasma-facing materials (eg tungsten) and structural materials (eg low-activation ferritic/martensitic steels). However, tungsten and steel are two kinds of dissimilar metal materials with large differences in thermophysical properties. Not only the difference in linear expansion coefficient between the two is large, it will generate large thermal stress, and at the same time, it will also generate brittle reaction products that weaken the welding performance of joints.
在目前国内外研究现状中,采用添加中间过渡层的固相扩散焊接工艺是一种比较有潜力的钨/钢连接技术。然而,中间层材料的选择是一个很大的难题,因为中间层不仅要能改善钨/钢的焊接性能,例如连接强度,界面反应产物,热应力缓释效果等,还需要能适应苛刻的未来聚变堆第一壁材料服役环境:(1)D+T 反应产生14MeV中子,要求材料元素低活化以满足低排放核废料的标准;(2)聚变堆内部氢同位素环境,要求材料在氢同位素氛围中不发生脆性断裂;(3) D,T杂质粒子流要求材料在等离子体辐照条件下具有很好的抗热冲击性能。In the current research status at home and abroad, the solid phase diffusion welding process with the addition of an intermediate transition layer is a relatively promising tungsten/steel connection technology. However, the choice of intermediate layer material is a big problem, because the intermediate layer should not only improve the welding performance of tungsten/steel, such as connection strength, interface reaction products, thermal stress release effect, etc., but also need to be able to adapt to the harsh future The service environment of the first wall material of the fusion reactor: (1) The D+T reaction produces 14MeV neutrons, requiring low activation of material elements to meet the standard of low-emission nuclear waste; (2) The hydrogen isotope environment inside the fusion reactor requires materials Brittle fracture does not occur in the atmosphere; (3) D, T impurity particle flow requires the material to have good thermal shock resistance under plasma irradiation conditions.
然而,目前钨/钢连接所采用的中间层材料均不能满足以上要求:However, none of the intermediate layer materials currently used for tungsten/steel connections can meet the above requirements:
(1)利用Ni,Cu等金属可以实现钨/钢的有效连接。Ni和Cu的热导率较高,利用Ni,Cu甚至可以获得界面残余应力较小且无反应产物的优质钨/钢接头,但二者都是高活化元素,不适合未来聚变堆对低活化材料的需求。(1) The effective connection of tungsten/steel can be realized by using Ni, Cu and other metals. Ni and Cu have high thermal conductivity. Using Ni and Cu can even obtain high-quality tungsten/steel joints with small interfacial residual stress and no reaction products. However, both are highly active elements and are not suitable for low activation in future fusion reactors. Material needs.
(2)Ti,V等低活化金属也可以实现钨/钢的连接,但是与Ni,Cu相比,纯金属Ti, V与钢在较高温度(≥900℃)焊接时易形成FeTi2,V2C等脆性反应产物,弱化接头性能。(2) Ti, V and other low-activation metals can also realize the connection of tungsten/steel, but compared with Ni and Cu, pure metal Ti, V and steel are easy to form FeTi 2 when welding at higher temperature (≥900℃), V 2 C and other brittle reaction products weaken the joint performance.
以纯钛为例,室温下的纯钛组织为α-Ti结构,而钢中的主要元素Fe, Cr等与高温相β-Ti元素晶体结构相同,因此Fe,Cr在β-Ti中的溶解度较高,而在α-Ti中的溶解度较低。α-Ti向β-Ti转变温度约880℃左右,如果采用较高温度焊接,Ti和钢易形成脆性反应产物,若采用较低温度焊接,则Ti与钢之间的扩散会被减弱。Taking pure titanium as an example, the structure of pure titanium at room temperature is α-Ti structure, and the main elements in steel, such as Fe and Cr, have the same crystal structure as high-temperature phase β-Ti elements, so the solubility of Fe and Cr in β-Ti is relatively low. High, but low solubility in α-Ti. The transition temperature from α-Ti to β-Ti is about 880°C. If higher temperature welding is used, Ti and steel will easily form brittle reaction products. If lower temperature welding is used, the diffusion between Ti and steel will be weakened.
同时过渡层的屈服强度会对缓释钨和钢之间的残余应力产生影响,相比于Cu和Ni金属, Ti的屈服强度相对较高,不利于残余应力的缓释。At the same time, the yield strength of the transition layer will affect the slow release of residual stress between tungsten and steel. Compared with Cu and Ni metals, the yield strength of Ti is relatively high, which is not conducive to the slow release of residual stress.
但是Ti,V元素满足聚变堆低活化材料的要求,因此研究改善Ti或V金属的性能并使其满足钨和钢焊接要求,对于聚变堆的持续运行具有十分重要的意义。However, Ti and V elements meet the requirements of low-activation materials for fusion reactors. Therefore, it is of great significance to improve the performance of Ti or V metals and make them meet the welding requirements of tungsten and steel for the continuous operation of fusion reactors.
长久以来,人们认为氢元素会导致Ti金属脆化,但是近年来的研究显示:For a long time, it was believed that hydrogen would cause embrittlement of Ti metal, but research in recent years has shown that:
(1)从Ti-H相图中可以看出,H是一种强β-Ti稳定元素,它可以明显降低α-β Ti的相转变温度(从~880℃-~330℃),这有利于降低钨/钛/钢连接温度,减少Ti与钢之间的脆性反应产物的出现。β-Ti的形成可以促进Ti与钢之间的扩散,提高连接强度,一定程度上弥补了降低焊接温度对扩散的影响。(1) From the Ti-H phase diagram, it can be seen that H is a strong β-Ti stabilizing element, which can significantly reduce the phase transition temperature of α-β Ti (from ~880°C to ~330°C), which has It is beneficial to reduce the connection temperature of tungsten/titanium/steel and reduce the appearance of brittle reaction products between Ti and steel. The formation of β-Ti can promote the diffusion between Ti and steel, improve the connection strength, and make up for the influence of lower welding temperature on diffusion to a certain extent.
(2)在钛及其合金中加入少量的氢元素可以改善Ti的加工性能和流变应力,使得屈服强度降低,这有利于缓释残余应力。(2) Adding a small amount of hydrogen to titanium and its alloys can improve the processing performance and flow stress of Ti, and reduce the yield strength, which is conducive to the release of residual stress.
(3)作为一种临时合金化元素,氢在钛中的存在状态是可逆的,通过退火可以除去Ti中溶解的氢同位素。(3) As a temporary alloying element, the presence of hydrogen in titanium is reversible, and the dissolved hydrogen isotope in Ti can be removed by annealing.
因此,用置氢钛合金作为过渡层材料,能够很好地满足聚变堆对材料的低活化要求,同时解决钨/钛/钢之间会出现脆性反应产物,钛/钢之间扩散较弱,屈服强度较大不利缓释残余应力等问题。采用置氢钛(钒)合金作为过渡层材料固相扩散焊接钨和钢是一种有潜力的聚变堆第一壁材料钨和钢连接方法。Therefore, the use of hydrogen-absorbing titanium alloy as the transition layer material can well meet the low activation requirements of fusion reactors, and at the same time solve the problem of brittle reaction products between tungsten/titanium/steel and weak diffusion between titanium/steel. Larger yield strength is unfavorable for slow release of residual stress and other issues. Solid-phase diffusion welding of tungsten and steel using hydrogen-containing titanium (vanadium) alloy as the transition layer material is a potential method for connecting tungsten and steel, the first wall material of a fusion reactor.
发明内容Contents of the invention
本发明是为解决现有技术中常用纯金属过渡层如镍,铜等不能作为低活化材料应用在聚变堆部件中;钛,钒等易与钢生成脆性反应产物,钛金属屈服强度较高等问题。提供了一种新型置氢金属中间层,既能满足聚变堆材料低活化要求;减少与钢生成脆性反应产物;又能有效提高缓释应力能力的钨/钢连接工艺方法。The present invention aims to solve the problems that commonly used pure metal transition layers such as nickel and copper cannot be used in fusion reactor components as low activation materials in the prior art; titanium, vanadium, etc. are easy to form brittle reaction products with steel, and the yield strength of titanium metal is relatively high. . Provided is a new type of hydrogen-absorbing metal intermediate layer, which can not only meet the requirements of low activation of fusion reactor materials; reduce the generation of brittle reaction products with steel;
本发明是通过以下技术方案实现的:The present invention is achieved through the following technical solutions:
一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺,其特征在于,工艺步骤为:A process for connecting fusion reactor material tungsten and steel by hydrogen metal diffusion, characterized in that the process steps are:
1)制备出固相扩散焊接所需的钨、钢及未置氢的过渡层材料,并对钨、钢以及过渡层材料的待焊接面进行磨抛处理,使钨、钢以及过渡层材料的待焊接面的表面粗糙度低于Ra≤3.2μm,磨抛后清洗并真空封装待用;1) Prepare the tungsten, steel and non-hydrogen transition layer materials required for solid phase diffusion welding, and grind and polish the surfaces to be welded of tungsten, steel and transition layer materials, so that the tungsten, steel and transition layer materials The surface roughness of the surface to be welded is lower than Ra≤3.2μm, cleaned after grinding and polished and vacuum packaged for use;
2)将上述得到的过渡层材料用固态置氢方法预置成质量分数为0-1 wt%的置氢合金;2) The transition layer material obtained above is preset into a hydrogen-absorbing alloy with a mass fraction of 0-1 wt% by a solid-state hydrogen-absorbing method;
3)将置氢合金置于钨片和钢块的中间相互叠合,采用真空热压或热等静压等固相扩散焊接方法进行焊接处理,得到焊接后的工件;3) Place the hydrogen-containing alloy in the middle of the tungsten sheet and the steel block to be superimposed on each other, and perform welding treatment by solid-phase diffusion welding methods such as vacuum hot pressing or hot isostatic pressing, to obtain welded workpieces;
4)采用真空退火方法对焊接后的工件进行除氢处理,实现聚变堆材料钨和钢的连接。4) The vacuum annealing method is used to dehydrogenate the welded workpiece to realize the connection of the fusion reactor material tungsten and steel.
所述的一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺,其特征在于:所述的钢为低活化铁素体/马氏体(RAFM)钢或其他低活化钢。The process for joining fusion reactor material tungsten and steel by hydrogen metal diffusion is characterized in that the steel is low-activation ferrite/martensitic (RAFM) steel or other low-activation steel.
所述的一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺,其特征在于:所述的过渡层材料为钛、钒、钛合金或钒合金。The process for joining fusion reactor material tungsten and steel by hydrogen metal diffusion is characterized in that the transition layer material is titanium, vanadium, titanium alloy or vanadium alloy.
所述的一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺,其特征在于:步骤2)中固态置氢法为将过渡层材料置于加热炉中,充入压强为200Pa-0.1MPa的高纯氢气,升温加速氢气在过渡层材料中的扩散,保温温度200℃-700℃,保温时间1-10h,得到置氢合金。The process for connecting fusion reactor material tungsten and steel by hydrogenation metal diffusion is characterized in that: the solid-state hydrogenation method in step 2) is to place the transition layer material in a heating furnace, and the filling pressure is 200Pa-0.1 MPa of high-purity hydrogen, the temperature rises to accelerate the diffusion of hydrogen in the transition layer material, the holding temperature is 200°C-700°C, and the holding time is 1-10h to obtain a hydrogen-absorbing alloy.
一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺,其特征在于:步骤3)中采用真空热压时的工艺参数为,真空度≤10-2Pa,焊接温度600℃-1050℃,保温时间0.5-6h,焊接压力5-20MPa。A process for joining fusion reactor materials tungsten and steel by hydrogen metal diffusion, characterized in that: in step 3), the process parameters when using vacuum hot pressing are: vacuum degree ≤ 10 -2 Pa, welding temperature 600°C-1050°C , holding time 0.5-6h, welding pressure 5-20MPa.
所述的一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺,其特征在于:步骤3)中,采用热等静压固相扩散焊接方法时需要机加工包套,包套包括盒体和顶盖;将置氢后的置氢合金置于钨片和钢块的中间相互叠合后放入到包套中,并通过电子束或氩弧焊将盒体和顶盖封装后,再将得到的包套整体送入热等静压机中进行热等静压处理,保温温度600℃-1050℃,焊接压力100-200MPa,保温时间0.5-6h;热等静压以后拆除包套,得到焊接后的工件。The process for joining fusion reactor materials tungsten and steel by hydrogen metal diffusion is characterized in that: in step 3), when the hot isostatic solid-phase diffusion welding method is used, a machined sheath is required, and the sheath includes a box body and top cover; put the hydrogen-preserved alloy in the middle of the tungsten sheet and the steel block and put them into the package, and seal the box body and the top cover by electron beam or argon arc welding, Then put the obtained sheath as a whole into the hot isostatic pressing machine for hot isostatic pressing treatment, the heat preservation temperature is 600°C-1050°C, the welding pressure is 100-200MPa, and the heat preservation time is 0.5-6h; the sheath is removed after hot isostatic pressing , to obtain the welded workpiece.
所述的一种聚变堆第一壁材料钨和钢连接工艺,其特征在于:步骤3)中,在钨片和钢块外侧面均放置有钼片。The process for connecting tungsten and steel as the first wall material of a fusion reactor is characterized in that: in step 3), molybdenum sheets are placed on the outer surfaces of both the tungsten sheet and the steel block.
所述的一种采用置氢金属扩散连接聚变堆材料钨和钢的工艺,其特征在于:步骤4)中除氢处理后,对固相扩散连接温度高于钢的奥氏体化温度的工件还需进行焊后热处理。The process for joining fusion reactor material tungsten and steel by hydrogen metal diffusion is characterized in that: after the hydrogen removal treatment in step 4), the solid phase diffusion joint temperature is higher than the austenitization temperature of the steel. Post-weld heat treatment is also required.
所述的聚变堆材料钨、钢及过渡层材料都需满足低活化材料的要求,钢材料为低活化铁素体/马氏体(RAFM)钢或其他低活化钢,过渡层材料为钛(钒)及其合金。所述置氢金属是将氢作为临时合金化元素置入金属中,得到的含一定量氢元素的金属。The fusion reactor material tungsten, steel and transition layer materials all need to meet the requirements of low activation materials, the steel material is low activation ferrite/martensitic (RAFM) steel or other low activation steel, and the transition layer material is titanium ( vanadium) and its alloys. The hydrogen-inserting metal is a metal containing a certain amount of hydrogen obtained by putting hydrogen into the metal as a temporary alloying element.
将过渡层材料用固态或液态置氢方法预置成具有一定质量分数(0-1 wt%)的置氢合金,置氢工艺随过渡层材料不同而变化。The material of the transition layer is preset into a hydrogen storage alloy with a certain mass fraction (0-1 wt%) by solid or liquid hydrogen storage method, and the hydrogen storage process varies with the transition layer material.
采用真空退火方法将连接后的钨/置氢金属/钢工件进行除氢处理,除氢工艺与所选择的置氢金属有关。The vacuum annealing method is used to dehydrogenate the joined tungsten/hydrogen-absorbing metal/steel workpiece, and the dehydrogenation process is related to the selected hydrogen-absorbing metal.
对固相扩散连接温度高于钢的奥氏体化温度的工件,在除氢以后还需要进行焊后热处理恢复钢材的组织和性能。For workpieces whose solid phase diffusion bonding temperature is higher than the austenitizing temperature of the steel, post-weld heat treatment is required to restore the structure and properties of the steel after dehydrogenation.
本发明的有益效果在于:The beneficial effects of the present invention are:
采用预先置氢的纯钛(钒)及其合金作为过渡层材料,既可以降低焊接温度,减少过渡层与钢之间产生的反应产物;降低过渡层屈服强度,有利于缓释应力;又满足聚变堆对材料的低活化要求。因此可以很好解决现有技术中存在的困难,是一种很有潜力的聚变堆材料钨和钢的连接工艺方法。The use of pre-hydrogenated pure titanium (vanadium) and its alloys as the transition layer material can not only reduce the welding temperature, reduce the reaction products between the transition layer and steel; reduce the yield strength of the transition layer, which is conducive to the slow release of stress; and meet Fusion reactors have low activation requirements for materials. Therefore, it can well solve the difficulties existing in the prior art, and it is a very potential method for connecting fusion reactor materials tungsten and steel.
附图说明Description of drawings
图1本发明中层结构的结构示意图。Fig. 1 is a structural schematic diagram of the middle layer structure of the present invention.
图2本发明中采用真空热压时的装配示意图。Fig. 2 is a schematic diagram of assembly when vacuum hot pressing is used in the present invention.
图3本发明中时热等静压包套示意图。Fig. 3 is a schematic diagram of the hot isostatic pressing jacket in the present invention.
具体实施方式Detailed ways
现以中国聚变工程试验反应堆(CFETR)水冷陶瓷包层(WCCB)第一壁(FW),钨与低活化钢真空热压焊接为例进行更进一步的说明。Taking the China Fusion Engineering Test Reactor (CFETR) water-cooled ceramic cladding (WCCB) first wall (FW), tungsten and low-activation steel vacuum thermocompression welding as an example for further explanation.
如图1和图2所示,一种适用于聚变堆第一壁部件钨和钢连接的制造工艺,工艺步骤为:As shown in Figure 1 and Figure 2, a manufacturing process suitable for the connection between tungsten and steel of the first wall part of the fusion reactor, the process steps are:
1)机加工出真空热压焊接所需的钨片1,钢块2及待置氢的过渡层金属纯钛片3,如图1所示。待焊接表面的表面粗糙度用磨床精磨至≤Ra 0.8 μm,将样品放置在35℃丙酮溶液中清洗30min,去除表面油脂和污物,取出后真空封装待用。1) Machining the tungsten sheet 1 required for vacuum thermocompression welding, the steel block 2 and the transition layer metal pure titanium sheet 3 to be hydrogenated, as shown in FIG. 1 . The surface roughness of the surface to be welded was finely ground to ≤ Ra 0.8 μm, and the sample was placed in an acetone solution at 35°C for 30 minutes to remove surface grease and dirt. After taking it out, it was vacuum-packed for use.
2)将加工后的钛片3进行真空退火处理,真空度≤10-4Pa,退火温度700℃,退火时间5h,去除钛片3中的水和氢气等气体。2) The processed titanium sheet 3 is subjected to vacuum annealing treatment, the vacuum degree is ≤10 −4 Pa, the annealing temperature is 700° C., and the annealing time is 5 hours to remove water, hydrogen and other gases in the titanium sheet 3 .
3)在置氢之前,利用精度为10-5g的精密天平对钛片3进行称重,称重后采用固态置氢法,将退火后的钛片3置于真空炉中。先充入一定压强的高纯氢气 200Pa-0.1MPa,然后升温加速氢气在钛金属中的扩散,保温温度200℃-700℃,保温时间1-10h。通过改变充入气体压强,保温温度,保温时间等控制氢在金属中的含量(0-1 wt%)。3) Before hydrogenation, the titanium sheet 3 is weighed with a precision balance with an accuracy of 10 −5 g, and after weighing, the annealed titanium sheet 3 is placed in a vacuum furnace by a solid-state hydrogenation method. First fill in a certain pressure of high-purity hydrogen 200Pa-0.1MPa, then increase the temperature to accelerate the diffusion of hydrogen in titanium metal, the holding temperature is 200°C-700°C, and the holding time is 1-10h. Control the content of hydrogen in the metal (0-1 wt%) by changing the gas pressure, holding temperature, holding time, etc.
4)将置氢后的钛片3进行再次称重以测量氢气在钛金属中的含量。4) The titanium sheet 3 after hydrogenation is weighed again to measure the content of hydrogen in the titanium metal.
5)将含有一定氢含量的钛片3与钨片1和钢块2组合放入真空热压机中进行热压。真空热压真空度需≤10-2Pa,保温温度600℃-1050℃,焊接压力5-20MPa。为防止热压机压头与钨片1和钢块2粘连,在钨片1上面和钢块2下面放置一片钼片4,如图2所示。5) Combining the titanium sheet 3 with a certain hydrogen content, the tungsten sheet 1 and the steel block 2 into a vacuum hot press machine for hot pressing. The vacuum degree of vacuum hot pressing needs to be ≤10 -2 Pa, the holding temperature is 600°C-1050°C, and the welding pressure is 5-20MPa. In order to prevent the pressure head of the hot press from sticking to the tungsten sheet 1 and the steel block 2, a piece of molybdenum sheet 4 is placed on the tungsten sheet 1 and below the steel block 2, as shown in Fig. 2 .
6)将焊接后的工件放入真空退火炉中进行除氢处理,除氢规范工艺需针对所采用的钛材料进行制定。6) Put the welded workpiece into a vacuum annealing furnace for dehydrogenation treatment, and the dehydrogenation standard process needs to be formulated for the titanium material used.
7)若焊接温度高于~760℃,需要对焊接件进行焊后热处理,热处理参数与所采用的低活化钢的热处理制度相同。7) If the welding temperature is higher than ~760 °C, post-weld heat treatment is required for the welded parts, and the heat treatment parameters are the same as the heat treatment system of the low-activation steel used.
8)若采用热等静压焊接方法,工艺步骤1)-4)与真空热压法类似,除了准备工件以外,还需要制备包套,所述的包套是用来固定工件以及防止氧化的工装,如图3所示。8) If the hot isostatic welding method is adopted, the process steps 1)-4) are similar to the vacuum hot pressing method. In addition to preparing the workpiece, it is also necessary to prepare a sheath, which is used to fix the workpiece and prevent oxidation. Tooling, as shown in Figure 3.
9)机加工出包套以后,把工件按照图1所示方式装入包套内,用电子束或氩弧焊焊接封装。包套包括盒体5和顶盖6;将置氢后的置氢合金置于钨片和钢块的中间相互叠合后放入到包套中,并通过电子束或氩弧焊将盒体和顶盖封装后,再将得到的包套整体送入热等静压机中通过压头7的作用进行热等静压处理。9) After machining the sheath, put the workpiece into the sheath according to the method shown in Figure 1, and weld the package with electron beam or argon arc welding. The package includes a box body 5 and a top cover 6; the hydrogenated alloy after hydrogenation is placed in the middle of the tungsten sheet and the steel block and then put into the package, and the box body is welded by electron beam or argon arc welding. After being packaged with the top cover, the obtained package is sent as a whole into a hot isostatic pressing machine for hot isostatic pressing treatment by the action of the pressure head 7 .
10)送入热等静压机中进行热等静压,制度与真空热压步骤5)类似,压力100-200MPa。10) Send it into a hot isostatic pressing machine for hot isostatic pressing, the system is similar to vacuum hot pressing step 5), and the pressure is 100-200MPa.
11)热等静压以后,需拆除包套,并按照真空热压步骤6)和7)进行处理。11) After hot isostatic pressing, the sheath needs to be removed and processed according to steps 6) and 7) of vacuum hot pressing.
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明的范围内。本发明要求的保护范围由所附的权利要求书及其等同物界定。The basic principles, main features and advantages of the present invention have been shown and described above. Those skilled in the art should understand that the present invention is not limited by the above-mentioned embodiments. What are described in the above-mentioned embodiments and the description are only the principles of the present invention. Variations and improvements, which fall within the scope of the claimed invention. The scope of protection required by the present invention is defined by the appended claims and their equivalents.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810566930.1A CN108788436B (en) | 2018-06-05 | 2018-06-05 | A process for connecting fusion reactor material tungsten and steel by hydrogen-placed metal diffusion |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810566930.1A CN108788436B (en) | 2018-06-05 | 2018-06-05 | A process for connecting fusion reactor material tungsten and steel by hydrogen-placed metal diffusion |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108788436A true CN108788436A (en) | 2018-11-13 |
CN108788436B CN108788436B (en) | 2021-02-09 |
Family
ID=64088657
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810566930.1A Active CN108788436B (en) | 2018-06-05 | 2018-06-05 | A process for connecting fusion reactor material tungsten and steel by hydrogen-placed metal diffusion |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108788436B (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109396631A (en) * | 2018-11-14 | 2019-03-01 | 中国工程物理研究院材料研究所 | A kind of tungsten/transition zone/stainless steel hot isostatic pressing diffusion connection method |
CN110538992A (en) * | 2019-09-19 | 2019-12-06 | 深圳市鑫迪科技有限公司 | Diffusion welding process for tungsten alloy and 316L stainless steel |
CN111347147A (en) * | 2018-12-24 | 2020-06-30 | 核工业西南物理研究院 | Hot isostatic pressing connection method of tungsten and heat sink material |
CN111421218A (en) * | 2020-04-28 | 2020-07-17 | 上海交通大学 | A kind of low temperature diffusion welding method of hydrogenated Ti2AlNb base alloy and TC4 titanium alloy |
CN111687530A (en) * | 2019-03-12 | 2020-09-22 | 中南大学 | Method for compounding hydrogen absorption expansion substance and other materials |
CN112496518A (en) * | 2020-11-11 | 2021-03-16 | 核工业西南物理研究院 | Diffusion bonding method of tungsten and low-activation steel |
CN112643188A (en) * | 2020-12-30 | 2021-04-13 | 浙江最成半导体科技有限公司 | Vacuum diffusion bonding method for target and back plate |
CN113020772A (en) * | 2021-03-09 | 2021-06-25 | 上海交通大学 | Low-temperature rapid diffusion welding method for titanium alloy |
CN113165337A (en) * | 2018-12-13 | 2021-07-23 | 俄罗斯国立科技大学莫斯科钢铁合金研究所 | Method for manufacturing composite material based on vanadium alloy and steel |
CN113909801A (en) * | 2020-07-08 | 2022-01-11 | 核工业西南物理研究院 | A kind of preparation method of low activation steel and tungsten full solid solution joint |
CN113909666A (en) * | 2021-11-04 | 2022-01-11 | 中南大学 | A low-temperature diffusion joining method of tungsten alloy and stainless steel |
CN114083005A (en) * | 2021-12-14 | 2022-02-25 | 北京石墨烯技术研究院有限公司 | Turning device |
CN114193096A (en) * | 2021-12-08 | 2022-03-18 | 核工业西南物理研究院 | A kind of hot isostatic pressing diffusion joining method of vanadium alloy and steel |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0367963A2 (en) * | 1988-10-14 | 1990-05-16 | Westinghouse Electric Corporation | Low neutron fluence nuclear reactor internals |
CN103343321A (en) * | 2012-03-12 | 2013-10-09 | 有研亿金新材料股份有限公司 | Method of manufacturing sputtering target |
CN105216394A (en) * | 2015-10-30 | 2016-01-06 | 中南大学 | A kind of High Performance W/steel composite material based on high temperature application and preparation method thereof |
CN105346161A (en) * | 2015-10-30 | 2016-02-24 | 中南大学 | Tungsten/transition layer/steel composite material and low-temperature and low-pressure active diffusion connection preparation method thereof |
CN105499816A (en) * | 2016-02-02 | 2016-04-20 | 中国科学院等离子体物理研究所 | Manufacturing process suitable for tungsten and steel connection of first wall part of fusion reactor |
CN106181015A (en) * | 2016-08-19 | 2016-12-07 | 中国科学院等离子体物理研究所 | The U-shaped manufacturing process containing runner the first wall components of the attached tungsten of a kind of fusion reactor blanket |
-
2018
- 2018-06-05 CN CN201810566930.1A patent/CN108788436B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0367963A2 (en) * | 1988-10-14 | 1990-05-16 | Westinghouse Electric Corporation | Low neutron fluence nuclear reactor internals |
CN103343321A (en) * | 2012-03-12 | 2013-10-09 | 有研亿金新材料股份有限公司 | Method of manufacturing sputtering target |
CN105216394A (en) * | 2015-10-30 | 2016-01-06 | 中南大学 | A kind of High Performance W/steel composite material based on high temperature application and preparation method thereof |
CN105346161A (en) * | 2015-10-30 | 2016-02-24 | 中南大学 | Tungsten/transition layer/steel composite material and low-temperature and low-pressure active diffusion connection preparation method thereof |
CN105499816A (en) * | 2016-02-02 | 2016-04-20 | 中国科学院等离子体物理研究所 | Manufacturing process suitable for tungsten and steel connection of first wall part of fusion reactor |
CN106181015A (en) * | 2016-08-19 | 2016-12-07 | 中国科学院等离子体物理研究所 | The U-shaped manufacturing process containing runner the first wall components of the attached tungsten of a kind of fusion reactor blanket |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109396631B (en) * | 2018-11-14 | 2020-12-11 | 中国工程物理研究院材料研究所 | A hot isostatic pressing diffusion bonding method of tungsten/transition layer/stainless steel |
CN109396631A (en) * | 2018-11-14 | 2019-03-01 | 中国工程物理研究院材料研究所 | A kind of tungsten/transition zone/stainless steel hot isostatic pressing diffusion connection method |
CN113165337B (en) * | 2018-12-13 | 2023-04-28 | 俄罗斯国立科技大学莫斯科钢铁合金研究所 | Method for manufacturing composite material based on vanadium alloy and steel |
CN113165337A (en) * | 2018-12-13 | 2021-07-23 | 俄罗斯国立科技大学莫斯科钢铁合金研究所 | Method for manufacturing composite material based on vanadium alloy and steel |
CN111347147A (en) * | 2018-12-24 | 2020-06-30 | 核工业西南物理研究院 | Hot isostatic pressing connection method of tungsten and heat sink material |
CN111687530B (en) * | 2019-03-12 | 2022-02-01 | 中南大学 | Method for compounding hydrogen absorption expansion substance and other materials |
CN111687530A (en) * | 2019-03-12 | 2020-09-22 | 中南大学 | Method for compounding hydrogen absorption expansion substance and other materials |
CN110538992A (en) * | 2019-09-19 | 2019-12-06 | 深圳市鑫迪科技有限公司 | Diffusion welding process for tungsten alloy and 316L stainless steel |
CN111421218A (en) * | 2020-04-28 | 2020-07-17 | 上海交通大学 | A kind of low temperature diffusion welding method of hydrogenated Ti2AlNb base alloy and TC4 titanium alloy |
CN113909801A (en) * | 2020-07-08 | 2022-01-11 | 核工业西南物理研究院 | A kind of preparation method of low activation steel and tungsten full solid solution joint |
CN112496518A (en) * | 2020-11-11 | 2021-03-16 | 核工业西南物理研究院 | Diffusion bonding method of tungsten and low-activation steel |
CN112496518B (en) * | 2020-11-11 | 2022-03-22 | 核工业西南物理研究院 | A kind of diffusion joining method of tungsten and low activation steel |
CN112643188A (en) * | 2020-12-30 | 2021-04-13 | 浙江最成半导体科技有限公司 | Vacuum diffusion bonding method for target and back plate |
CN113020772A (en) * | 2021-03-09 | 2021-06-25 | 上海交通大学 | Low-temperature rapid diffusion welding method for titanium alloy |
CN113909666A (en) * | 2021-11-04 | 2022-01-11 | 中南大学 | A low-temperature diffusion joining method of tungsten alloy and stainless steel |
CN114193096A (en) * | 2021-12-08 | 2022-03-18 | 核工业西南物理研究院 | A kind of hot isostatic pressing diffusion joining method of vanadium alloy and steel |
CN114193096B (en) * | 2021-12-08 | 2023-08-15 | 核工业西南物理研究院 | Hot isostatic pressing diffusion connection method for vanadium alloy and steel |
CN114083005A (en) * | 2021-12-14 | 2022-02-25 | 北京石墨烯技术研究院有限公司 | Turning device |
Also Published As
Publication number | Publication date |
---|---|
CN108788436B (en) | 2021-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108788436A (en) | A kind of technique connecting fusion reactor material tungsten and steel using the diffusion of hydrogen metal is set | |
CN109666811A (en) | A kind of radiation resistance high-entropy alloy and preparation method thereof | |
CN107999991B (en) | High-entropy flux-cored welding wire for titanium-steel MIG welding and preparation method thereof | |
CN106517828B (en) | A Laser Welding Method for Connecting Molybdenum Glass/Kovar Alloy by Adding Mo-Mn-Ni Metal Interlayer | |
CN109207765A (en) | The method that power forging prepares oxide-dispersed alloy | |
Zhang et al. | Laser seal welding of end plug to thin-walled nanostructured high-strength molybdenum alloy cladding with a zirconium interlayer | |
Zeng et al. | Effect of bonding temperature on the microstructure and mechanical properties of the diffusion-bonded joints of Zr705 alloy | |
CN107009025A (en) | A kind of microalloying method for improving molybdenum and molybdenum alloy arc-seam weld obdurability | |
CN104550964A (en) | Method for producing TiAl alloy plates through beta-gamma TiAl pre-alloy powder | |
Luo et al. | Brazing SiC ceramics and Zr with CoCrFeNiCuSn high entropy alloy | |
CN109402541B (en) | A kind of preparation method of particle dispersion strengthened tungsten bulk material | |
US3276867A (en) | Cermet materials and process of making | |
CN102794612B (en) | Preparation method of W/Cu composite component | |
CN107598402A (en) | CRDM dissimilar metal heavy wall butt weld one-shot forming welding procedure | |
CN103469135B (en) | Preparation method of high-niobium TiAl intermetallic compound | |
TW201718890A (en) | Titanium composite material, and titanium material for use in hot rolling | |
CN114589305B (en) | Method for manufacturing molybdenum alloy for fast neutron reactor | |
Vigraman | Liquid-solid phase reaction products formation in the diffusion welded joints made between Ti-6Al-4 V and AISI304L with brass interlayer | |
CN109465569A (en) | A kind of titanium-based solder for high-temperature brazing and preparation method thereof | |
CN113909801B (en) | Preparation method of low-activation steel and tungsten complete solid solution joint | |
CN112247396A (en) | A kind of austenitic heat-resistant steel welding wire and preparation method and application | |
Jiang et al. | Recent Advances in joining of zirconium and zirconium alloy for nuclear industry | |
CN108746910A (en) | A kind of tungsten/copper sleeve and preparation method thereof of copper base solder addition copper foil | |
Wei et al. | Achieving high-strength W/W-10Cu joints by vacuum diffusion bonding with FeCoCu interlayer | |
CN111139375A (en) | Preparation method of superhard titanium alloy substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |