CN108760690A - 椭球反射镜聚焦环形孔径照明光学谐波生成激发方法 - Google Patents

椭球反射镜聚焦环形孔径照明光学谐波生成激发方法 Download PDF

Info

Publication number
CN108760690A
CN108760690A CN201810498506.8A CN201810498506A CN108760690A CN 108760690 A CN108760690 A CN 108760690A CN 201810498506 A CN201810498506 A CN 201810498506A CN 108760690 A CN108760690 A CN 108760690A
Authority
CN
China
Prior art keywords
ellipsoidal
annular aperture
ellipsoidal reflector
harmonic
focuses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810498506.8A
Other languages
English (en)
Inventor
王伟波
刘俭
吴必伟
谭久彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810498506.8A priority Critical patent/CN108760690A/zh
Publication of CN108760690A publication Critical patent/CN108760690A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Polarising Elements (AREA)

Abstract

椭球反射镜聚焦环形孔径照明光学谐波生成激发方法属于非线性光学测量领域;该光学谐波生成激发方法的理论基础为沃尔夫衍射积分理论。通过建立椭球面反射镜聚焦系统聚焦环形孔径照明下的焦点附近电场的三维矢量模型,结合样品的非线性极化率张量矩阵,可以计算出所激发出的谐波极化场强度分布。飞秒激光器发出的脉冲激光经过准直,由椭球面反射镜聚焦系统聚焦于样品处。椭球面反射镜聚焦系统采用环形孔径照明。所述的椭球面反射镜聚焦系统包括大数值孔径物镜和椭球面反射镜;所述大数值孔径物镜的焦点和椭球反射镜的远焦点F1重合,椭球面反射镜的近焦点F2位于样品的表面上;使用本发明,可以抑制谐波激发过程中产生的噪声,提高所激发出的光学谐波的信噪比,同时压缩谐波极化场强度分布的半高宽。

Description

椭球反射镜聚焦环形孔径照明光学谐波生成激发方法
技术领域
本发明属于非线性光学测量领域,主要涉及一种用于非线性光学中,所研究样品的光学谐波激发的方法。
背景技术
利用样品自身的非线性光学效应,例如二次谐波生成,三次谐波生成,可进行生物样品无荧光标记的显微成像,纳米器件的微结构探测,疾病机理的诊断等。光学非线性效应的发生需要强光激发,例如在激光会聚的焦点处。一般情况下,谐波激发需要大数值孔径物镜进行紧聚焦照明。传统透镜的会聚角小于π/2,无法实现更大角度的会聚激发。径向偏振光在聚焦的焦面处有强轴向偏振分量,是谐波生成的一种理想照明光模式。但是,采用全孔径照明时,谐波激发过程中依然存在大量噪声。采用椭球面反射镜聚焦环形孔径照明,可以实现角度大于π/2的紧聚焦照明。此外,环形孔径技术还可以抑制噪声,提高谐波激发过程中的信噪比,提高谐波成像质量。
发明内容
本发明设计了一种椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,可以解决谐波激发过程中噪声大量存在问题,可有效提高谐波显微成像的分辨率。
本发明的目的是这样实现的:
椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,其理论基础为沃尔夫衍射积分理论。通过建立椭球面反射镜聚焦系统聚焦环形孔径照明下的焦点附近电场的三维矢量模型,结合样品的非线性极化率张量矩阵,可以计算出所激发出的谐波极化场强度分布。飞秒激光器发出的脉冲激光经过准直,由椭球面反射镜聚焦系统聚焦于样品处。椭球面反射镜聚焦系统采用环形孔径照明。所述的椭球面反射镜聚焦系统包括大数值孔径物镜和椭球面反射镜;所述大数值孔径物镜的焦点和椭球反射镜的远焦点F1重合,椭球面反射镜的近焦点F2位于样品的表面上,进而引起光学非线性效应,激发出光学谐波。所述的谐波生成方法其特征在于采用反射式环形孔径结构用于光学非线性谐波生成的激发。
上述的椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,其特征在于所述的椭球反射镜为环形孔径结构。
上述的椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,其特征在于所述的椭球反射镜中心圆部分反射率为0,外部环形部分反射率为1。
上述的椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,其特征在于所述的椭球反射镜边缘到顶点,边缘环形部分对椭球反射镜近焦点F2的张角范围为[π/2,π],中心圆部分的对椭球反射镜近焦点F2的张角范围为[0,π/2]。
由于本发明的谐波激发方法中,采用环形孔径照明,遮挡低照明角度的入射光,保留大角度照明的入射光。这种类似于滤波器的结构,可以抑制谐波激发过程中引入的噪声。尤其是径向偏振光入射时,环形孔径照明可以提升轴向偏振分量所占比重,提高成像分辨率。
附图说明
图1是椭球反射镜聚焦环形孔径照明光学谐波生成方法示意图。
图2是环形孔径结构在沿Z轴方向在X-Y平面上的投影图。
图3是椭球面反射镜聚焦环形孔径照明谐波生成矢量模型坐标定义图。
图4是环形孔径照明和全孔径照明下所对应的KTP样品二次谐波极化场强度分布对比图。
图1中:1飞秒激光器、2准直扩束器、3大数值孔径物镜、4环形孔径椭球面反射镜、5样品、6三维载物台。
具体实施方式
以下结合附图对本发明的实施实例进行详细的描述。
本实施例的椭球反射镜聚焦环形孔径照明光学谐波生成激发方法示意图如图1所示。该光学谐波激发方法包括飞秒激光器1,准直扩束器2,大数值孔径物镜3,椭球面反射镜4,样品5,三维载物台6;飞秒激光器1发出的脉冲激光束依次经过准直扩束器2后,由大数值孔径物镜3会聚到椭球面反射镜4表面,再经过椭球面反射镜反射会聚于样品5处,进而引起光学非线性效应,激发出光学谐波;其中椭球反射镜为环形孔径结构,中心圆部分反射率为0,即抑制低照明角度入射光分量。样品固定放置在三维载物台6上;大数值孔径物镜的焦点和椭球面反射镜的远焦点F1重合,椭球面反射镜的近焦点F2位于样品的表面上。
本实施例中,椭球面反射镜聚焦环形孔径照明谐波生成矢量模型坐标定义图如图3所示。
径向偏振光经过大数值孔径物镜3会聚到椭球面反射镜4的一个焦点F1,然后被椭球反射镜4反射、会聚到另一个焦点F2。光束的对称轴为z轴,φ为子午平面相对于x轴的方位角,α为透镜的汇聚角,θ为椭球面反射镜的汇聚角。
基于沃尔夫衍射积分理论,可以得到F2附近的的电场分布,包括轴向偏振分量和径向偏振分量:
其中,A=k·f(a+c)/[2(a-c)],k=2π/λ,λ为入射光波长,f为大数值孔径物镜的焦距。ρs,zs分别为聚焦区域的横向坐标和轴向坐标,α=artan[(t-2c)·tanθ/t],为消球差透镜的汇聚角,t=[a2c·tan2θ+ab2(1+tan2θ)]/(a2tan2θ+b2)+c,t为M和F1之间沿着光轴方向的距离。l0(α)为透镜光瞳处的幅值分布函数,θ为椭球面反射镜的汇聚角,θmax为环形孔径照明下汇聚角的最大值,与椭球面反射镜的数值孔径有关,θmax=arcsin(NA/n),NA为椭球面反射镜的数值孔径。θmin为环形孔径照明下汇聚角的最小值。Jn(·)为第一类n阶贝塞尔函数。
本实施例中,椭球面反射镜在环形孔径照明下和全孔径照明下所对应的二次谐波极化场强度焦面分布对比图如图4所示。在椭球面反射镜4长半轴和短半轴长度比例为5∶3情况下,可以获得KTP样品在照明角度为[π/2,π]的环形孔径照明和全孔径照明(照明角度为[0,π/2])下所对应的二次谐波极化场强度在焦面上的分布。可以看出,在全孔径照明(照明角度为[0,π/2])下,KTP样品所激发的出的二次谐波极化场强度分布的主旁瓣峰值相对与主瓣峰值的比值较大,意味着此时有着很大的噪声干扰。而在环形孔径照明下的二次谐波极化场强度分布的主旁瓣有了很大的压缩,主旁瓣峰值相对于主瓣峰值的比值从全孔径照明(照明角度为[0,π/2])下的25%下降为环形孔径下的9%。

Claims (4)

1.一种椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,其实现方式如下:飞秒激光器发出的脉冲激光经过准直,由椭球面反射镜聚焦系统聚焦于样品处;椭球面反射镜聚焦系统采用环形孔径照明;所述的椭球面反射镜聚焦系统包括大数值孔径物镜和椭球面反射镜;所述大数值孔径物镜的焦点和椭球反射镜的远焦点F1重合,椭球面反射镜的近焦点F2位于样品的表面上;其特征在于采用反射式环形孔径结构用于光学非线性谐波生成的激发。
2.根据权利要求书1所述的椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,其特征在于所述的椭球反射镜为环形孔径结构。
3.根据权利要求书1所述的椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,其特征在于所述的椭球反射镜中心圆部分反射率为0,外部环形部分反射率为1。
4.根据权利要求书1所述的椭球反射镜聚焦环形孔径照明光学谐波生成激发方法,其特征在于所述的椭球反射镜边缘到顶点,边缘环形部分对椭球反射镜近焦点F2的张角范围为[π/2,π],中心圆部分的对椭球反射镜近焦点F2的张角范围为[0,π/2]。
CN201810498506.8A 2018-05-23 2018-05-23 椭球反射镜聚焦环形孔径照明光学谐波生成激发方法 Pending CN108760690A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810498506.8A CN108760690A (zh) 2018-05-23 2018-05-23 椭球反射镜聚焦环形孔径照明光学谐波生成激发方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810498506.8A CN108760690A (zh) 2018-05-23 2018-05-23 椭球反射镜聚焦环形孔径照明光学谐波生成激发方法

Publications (1)

Publication Number Publication Date
CN108760690A true CN108760690A (zh) 2018-11-06

Family

ID=64004935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810498506.8A Pending CN108760690A (zh) 2018-05-23 2018-05-23 椭球反射镜聚焦环形孔径照明光学谐波生成激发方法

Country Status (1)

Country Link
CN (1) CN108760690A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456172A (zh) * 2019-08-05 2019-11-15 清华大学 非侵入式电场测量系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713660A (en) * 1993-11-10 1998-02-03 Nikon Corporation Illumination optical apparatus
JPH11195580A (ja) * 1997-12-25 1999-07-21 Ball Semiconductor Inc 半導体露光装置及び露光方法
CN102759328A (zh) * 2012-07-05 2012-10-31 哈尔滨工业大学 基于椭球反射双通照明差动共焦测量装置与方法
CN102768024A (zh) * 2012-07-05 2012-11-07 哈尔滨工业大学 一种基于分离反射镜组的共焦测量装置
CN102818521A (zh) * 2012-07-05 2012-12-12 哈尔滨工业大学 基于椭球反射照明共焦测量装置
CN103075974A (zh) * 2012-12-14 2013-05-01 哈尔滨工业大学 径向偏光照明椭球曲面光瞳振幅滤波共焦成像装置
CN106970460A (zh) * 2017-06-02 2017-07-21 哈尔滨工业大学 基于椭球反射镜的穿透深度可调tirf显微镜与方法
WO2018076244A1 (zh) * 2016-10-27 2018-05-03 西安精英光电技术有限公司 一种基于椭球面反射镜的生物荧光采集结构及采集方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5713660A (en) * 1993-11-10 1998-02-03 Nikon Corporation Illumination optical apparatus
JPH11195580A (ja) * 1997-12-25 1999-07-21 Ball Semiconductor Inc 半導体露光装置及び露光方法
CN102759328A (zh) * 2012-07-05 2012-10-31 哈尔滨工业大学 基于椭球反射双通照明差动共焦测量装置与方法
CN102768024A (zh) * 2012-07-05 2012-11-07 哈尔滨工业大学 一种基于分离反射镜组的共焦测量装置
CN102818521A (zh) * 2012-07-05 2012-12-12 哈尔滨工业大学 基于椭球反射照明共焦测量装置
CN103075974A (zh) * 2012-12-14 2013-05-01 哈尔滨工业大学 径向偏光照明椭球曲面光瞳振幅滤波共焦成像装置
WO2018076244A1 (zh) * 2016-10-27 2018-05-03 西安精英光电技术有限公司 一种基于椭球面反射镜的生物荧光采集结构及采集方法
CN106970460A (zh) * 2017-06-02 2017-07-21 哈尔滨工业大学 基于椭球反射镜的穿透深度可调tirf显微镜与方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110456172A (zh) * 2019-08-05 2019-11-15 清华大学 非侵入式电场测量系统及方法

Similar Documents

Publication Publication Date Title
CN102661938B (zh) 一种基于切向偏振光的受激发射损耗显微方法和装置
CN107941763B (zh) 一种共轴三维受激辐射损耗超分辨显微成像方法和装置
CN103075974B (zh) 径向偏光照明椭球曲面光瞳振幅滤波共焦成像装置
US10921255B2 (en) Optical measuring device and process
US3705755A (en) Microscopy apparatus
TWI665470B (zh) 用於極化控制之系統,方法及裝置
KR102133912B1 (ko) 회전체 미러를 사용한 x선 집광시스템의 광학설계방법 및 x선 집광시스템
CN110118726A (zh) 一种并行探测荧光发射差分显微成像的方法和装置
CN110044930A (zh) 一种基于暗场照明的曲面玻璃次表面缺陷检测方法
CN103901629A (zh) 一种实现远场超分辨成像的方法和装置
CN108982428A (zh) 椭球反射镜照明自适应谐波共焦显微测量方法
US11635377B2 (en) Device for inspecting large area high speed object
CN108760690A (zh) 椭球反射镜聚焦环形孔径照明光学谐波生成激发方法
CN103364417B (zh) 太赫兹波探测装置
CN109633881A (zh) 一种受激发射损耗显微镜的成像系统
CN108956479A (zh) 径向偏振光照明椭球反射镜聚焦光学谐波生成激发方法
US20150071313A1 (en) Laser wavelength conversion apparatus
CN108918475A (zh) 基于径向偏振光照明反射式共焦收集谐波显微成像方法
CN109799609A (zh) 一种光纤扫描器及投影设备
Wang et al. Calculations of second harmonic generation with radially polarized excitations by elliptical mirror focusing
TWI388879B (zh) Reflective optical scanning device with minimal aberration
US9448158B2 (en) Lightguides to simplify total emission detection for multiphoton microscopy
KR101738395B1 (ko) 테라헤르츠파 베셀빔을 이용한 고분해능 검사 장치
CN215128292U (zh) 一种激光共聚焦显微内窥镜
CN108345099A (zh) 大视场高分辨荧光显微镜的环形落射照明装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181106

WD01 Invention patent application deemed withdrawn after publication