CN108759870B - 一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法 - Google Patents

一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法 Download PDF

Info

Publication number
CN108759870B
CN108759870B CN201810715555.2A CN201810715555A CN108759870B CN 108759870 B CN108759870 B CN 108759870B CN 201810715555 A CN201810715555 A CN 201810715555A CN 108759870 B CN108759870 B CN 108759870B
Authority
CN
China
Prior art keywords
inertial navigation
observed quantity
navigation system
transfer alignment
updating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810715555.2A
Other languages
English (en)
Other versions
CN108759870A (zh
Inventor
高伟
王凯
张亚
王岩岩
张悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810715555.2A priority Critical patent/CN108759870B/zh
Publication of CN108759870A publication Critical patent/CN108759870A/zh
Application granted granted Critical
Publication of CN108759870B publication Critical patent/CN108759870B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

本发明公开了一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法。首先,考虑到系统的非线性,采用速度加姿态加角速度匹配方式,建立传递对准非线性数学模型。其次,主、子惯导分别进行惯导解算,主惯导的速度和姿态信息传输到子惯导的导航计算机,利用主、子惯导系统之间的速度误差、姿态误差和角速度误差构造观测量。然后,基于广义高阶容积卡尔曼滤波时间更新获得一步状态预测值和协方差,利用新息卡方检测方法对观测量受污染的程度进行判断,若判断结果超过了预设门限,则舍弃该部分观测量,跳过观测量重构过程和滤波更新过程;若判断结果未超过预设门限,则利用Huber方法对受污染观测量进行重构。最后,利用重构后的观测量进行量测更新,估计当前时刻的状态值和协方差,从而实现传递对准。本发明解决了观测量中存在混合高斯噪声和野值情况下的舰船快速高精度对准问题。

Description

一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法
技术领域
本发明涉及捷联惯导系统初始对准领域,特别是涉及一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法。
背景技术
惯性导航是一种推算定位方式,初始参数的准确性对惯性导航的精度具有重要影响,因此初始对准至关重要。传递对准由于具有对准精度高、速度快的优点成为目前较为常用的一种初始对准方式。传递对准的本质是建立误差模型并利用滤波算法对误差参数进行估计,由于实际系统一般具有非线性,因此非线性滤波方法成为研究热点之一。
非线性滤波的核心任务是对状态的后验概率密度函数进行计算,基于“对概率分布进行近似要比对非线性函数进行近似要容易”的认识,发展出包括无迹卡尔曼滤波(Unscented Kalman Filter,UKF)、高斯-埃尔米特卡尔曼滤波(Gauss-Hermite KalmanFilter,GHKF)、容积卡尔曼滤波(Cubature Kalman Filter,CKF)、高阶容积卡尔曼滤波(HCKF)、广义高阶容积卡尔曼滤波(GHCKF)等在内的多种次优非线性滤波方法。其中,GHCKF在获得更高滤波精度的同时,进一步克服了HCKF结构复杂、高阶扩展性差的问题。
GHCKF是基于l2范数的最优估计,其假设前提是噪声为高斯白噪声,统计学表明其不具有鲁棒性。即当假设条件和现实参数不相符时,估计量都会发生明显的变化,而当实际参数和假设具有较大差别时甚至会造成滤波发散。在舰船传递对准的实际应用中,由于受到外界复杂环境的影响,观测量中往往存在非高斯强噪声和野值,此时GHCKF可能会失效。
Huber方法是一种可以用于解决在高斯分布附近存在一定对称干扰的随机量(即混合高斯分布)问题的实用方法。Huber方法结合最小二乘法和绝对和最小法来构造代价函数,即设置一个调节因子γ,在残差小于γ处应用最小二乘法,在残差大于γ处应用绝对和最小法。而新息卡方检测法可以利用新息对观测量中的突变干扰、野值等进行检测和隔离,通过一定门限将野值等受污染的观测检测出并剔除,以起到降低干扰的作用。
因此,为解决传递对准实际应用时,观测量中存在非高斯强噪声和野值的问题,本发明提出了一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法。本发明将Huber方法和新息卡方检测法的思想用于传递对准中,首先进行标准的GHCKF时间更新,然后利用新息卡方检测方法预判断观测量受污染的情况,之后利用Huber方法对新息进行加权修正,并进行标准的GHCKF量测更新,从而实现了算法的鲁棒化。本发明可以解决观测噪声为非高斯噪声和观测量中存在野值的问题,从而提高舰船传递对准的精度。
发明内容
本发明的目的在于提供一种可应用于观测量中存在非高斯强噪声和野值情况下的舰船快速高精度传递对准方法。
实现本发明目的的技术方案为:一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法,包括以下步骤:
步骤一:安装高精度主惯导系统和精度较低的子惯导系统,完成启动、预热准备;
步骤二:主、子惯导系统分别进行惯导解算,主惯导输出的速度、姿态和角速度信息传输到子惯导系统的导航计算机;
步骤三:建立大失准角情况下的舰船传递对准非线性模型;
步骤四:进行广义高阶容积卡尔曼滤波GHCKF时间更新,并利用新息卡方检测方法预判断观测量受污染的情况,从而剔除观测量中野值的影响。
步骤五:利用Huber方法对新息进行加权修正,之后进行GHCKF量测更新,从而实现算法的鲁棒性,完成传递对准。
在步骤四中,利用新息卡方检测方法预判断观测量受污染的情况,具体方法为:
基于GHCKF时间更新获得k时刻的状态预测值
Figure BDA0001717339100000021
和状态预测协方差Pk,k-1
将k时刻的状态预测值
Figure BDA0001717339100000022
在非线性量测方程中进行传递,得到k时刻的量测预测值
Figure BDA0001717339100000023
和量测预测协方差Pzz,k/k-1
计算新息vk和观测有效性检测函数λk
Figure BDA0001717339100000024
Figure BDA0001717339100000025
预设一个门限M,若λ>M,说明该观测量中含有的有害信息超限应予以剔除,此时只进行时间更新,不进行量测更新;若λ<M,则保留观测量,继续进行之后的步骤。
在步骤五中,利用Huber方法对新息进行加权修正,之后进行GHCKF量测更新,具体方法为:
计算变换新息:
Figure BDA0001717339100000026
其中,m为容积点数。
计算Huber权值函数:
Figure BDA0001717339100000027
Figure BDA0001717339100000028
Figure BDA0001717339100000029
其中,Huber调节因子γ设置为1.345,令Ψ=diag[ψ(ηk,i)]。
计算l(k),即:
l(k)=(1-ε)(1-2Φ(-k))
其中,0≤ε≤1,Φ是标准高斯分布函数。
估计k时刻的状态值和协方差矩阵:
Figure BDA0001717339100000031
Figure BDA0001717339100000032
与现有技术相比,本发明的有益效果是:
本发明在舰船存在大失准角的情况下,将系统建模为非线性模型,并且针对观测量中存在非高斯强噪声和野值的问题,设计了一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法,在标准GHCKF的基础上,利用新息卡方检测法对观测量受污染情况进行预判,利用Huber方法构造权值函数对新息进行加权修正,以提高GHCKF算法的鲁棒性,从而提高了传递对准的精度。
附图说明
图1为本发明流程示意图;
图2为Matlab仿真得到的安装误差角估计误差曲线;
图3为Matlab仿真得到的航向安装误差角估计误差曲线;
图4为蒙特卡罗仿真结果。
具体实施方式
下面结合附图1本发明流程示意图对本发明进一步说明。
为了验证本发明的有效性,利用Matlab对本发明的方法进行仿真。
首先,采用速度加姿态匹配方式,建立传递对准非线性模型,具体如下:
选取速度误差、量测失准角、安装误差角、加速度计漂移和陀螺漂移作为状态变量:
Figure BDA0001717339100000033
建立系统状态方程:
Figure BDA0001717339100000034
其中,n为导航坐标系;m系为主惯导载体坐标系;s系为子惯导载体坐标系;
Figure BDA0001717339100000035
为子惯导计算载体坐标系;δVn为速度误差在导航坐标系的投影;
Figure BDA0001717339100000041
为主惯导载体坐标系到子惯导载体坐标系的方向余弦矩阵;
Figure BDA0001717339100000042
为主惯导载体坐标系到子惯导计算载体坐标系的方向余弦矩阵;
Figure BDA0001717339100000043
为主惯导载体坐标系到导航坐标系的方向余弦矩阵;
Figure BDA0001717339100000044
为子惯导测量的比力在其载体坐标系的投影;
Figure BDA0001717339100000045
为地球自转角速度在导航坐标系的投影;
Figure BDA0001717339100000046
为n系相对于地球坐标系的角速度在n系的投影;
Figure BDA0001717339100000047
为s系和m系之间的安装误差角;
Figure BDA0001717339100000048
Figure BDA0001717339100000049
系和m系之间的量测失准角;
Figure BDA00017173391000000410
为主惯导相对于导航坐标系的角速度在m系的投影;▽s为加速度计常值漂移;wv为加速度计随机漂移;εs为陀螺常值漂移;
Figure BDA00017173391000000418
为陀螺随机漂移。
选取主、子惯导间的速度误差δVn、量测失准角
Figure BDA00017173391000000411
以及角速度误差
Figure BDA00017173391000000412
作为观测量:
Figure BDA00017173391000000413
量测方程为:
Z=h(X)+V
其中,V为系统的观测噪声。
然后,设计新型鲁棒广义高阶容积卡尔曼滤波算法,具体如下:
对于如下一个离散非线性系统:
Figure BDA00017173391000000414
其中,xk为系统状态矢量;zk为观测矢量;wk为系统噪声矢量,vk为量测噪声矢量,均为零均值的高斯白噪声,且互不相关,即满足:
Figure BDA00017173391000000415
其中,Qk为系统噪声序列的方差阵;Rk为量测噪声序列的方差阵;δkj为克罗内克函数。
新型鲁棒广义高阶容积卡尔曼滤波算法的具体实现步骤如下:
(1)基于GHCKF时间更新
GHCKF采用广义五阶容积准则,容积点数为m=2n2+1
Figure BDA00017173391000000416
假设k-1时刻的状态xk-1的统计特性已知,先对Pk-1做Cholesky分解:
Figure BDA00017173391000000417
计算容积点:
Figure BDA0001717339100000051
计算容积点权重:
Figure BDA0001717339100000052
估计k时刻的状态预测值:
Figure BDA0001717339100000053
估计k时刻的状态预测协方差阵:
Figure BDA0001717339100000054
(2)将
Figure BDA0001717339100000055
在非线性方程中传递
对Pk/k-1做Cholesky分解:
Figure BDA0001717339100000056
计算容积点:
Figure BDA0001717339100000057
计算经系统量测方程传递后的容积点:
Zi,k/k-1=h(Xi,k/k-1)i=1,2…,2n2+1
估计k时刻的量测预测值:
Figure BDA0001717339100000058
估计k时刻的量测预测协方差阵:
Figure BDA0001717339100000059
估计k时刻的一步预测互相关协方差阵:
Figure BDA00017173391000000510
(3)新息卡方检测预判断
计算新息:
Figure BDA00017173391000000511
计算有效性检测函数:
Figure BDA0001717339100000061
预先设置一个门限M,若λ>M,说明该观测量中含有的有害信息超限应予以剔除,此时只进行时间更新,不进行量测更新;若λ<M,则保留观测量,继续进行之后的步骤。
(4)计算变换新息
Figure BDA0001717339100000062
(5)计算Huber权值函数
Figure BDA0001717339100000063
Figure BDA0001717339100000064
Figure BDA0001717339100000065
其中,Huber调节因子γ设置为1.345,令Ψ=diag[ψ(ηk,i)]。
(6)计算l(k)
l(k)=(1-ε)(1-2Φ(-k))
其中,0≤ε≤1,Φ是标准高斯分布函数。
(7)估计k时刻的状态值和协方差矩阵
Figure BDA0001717339100000066
Figure BDA0001717339100000067
最后,仿真验证本发明的有效性,舰船三轴摇摆模型:
Figure BDA0001717339100000068
式中,ψ,θ,γ分别表示航向角、纵摇角和横摇角;ψm,θm,γm为摇摆角幅值;ωy,ωp,ωr为摇摆角频率;Ti=2π/ωi,(i=y,p,r)为摇摆周期;
Figure BDA0001717339100000069
为初始姿态角;K为初始航向。
仿真参数设置如下:
摇摆角幅值:ψm=5°,θm=15°,γm=10°;
摇摆周期:Ty=8s,Tp=12s,Tr=6s;
初始姿态角:
Figure BDA00017173391000000610
初始航向:K=30°;
初始纬度
Figure BDA0001717339100000071
初始经度λ=126.6705°;
误差角为:
Figure BDA0001717339100000072
陀螺常值漂移为εx=εy=εz=0.01°/h,随机漂移为0.001°/h;
加速度计随机常值偏置为10-4g,加速度计随机漂移为10-5g;
舰船以10n mile/h的速度匀速直航;
滤波周期:0.05s;
观测噪声服从混合高斯分布:
Figure BDA0001717339100000073
观测量中随机加入野值。
滤波器初始条件,包括状态估计协方差阵P0、系统噪声方差阵Q0及量测噪声方差阵R0,设定如下:
P0=diag{(0.1m/s)2,(0.1m/s)2,(1°)2,(1°)2,(10°)2,(1°)2,(1°)2,(10°)2,
(1×10-4g0)2,(1×10-4g0)2,(0.01°/h)2,(0.01°/h)2,(0.01°/h)2}
Q0=diag{(1×10-5g0)2,(1×10-5g0)2,(0.001°/h)2,(0.001°/h)2,(0.001°/h)2}
R0=diag{(0.02m/s)2,(0.02m/s)2,(0.0004°)2,(0.0004°)2,(0.0004°)2}
仿真结果:
以上述仿真条件,利用CKF、HCKF和本发明方法(RGHCKF)三种滤波算法估计安装误差角,仿真结果如图2、图3和图4所示。
由图2和图3可以看出,在观测量中存在混合高斯噪声和野值的情况下,CKF滤波估计误差曲线波动很大,收敛速度很慢,滤波精度降低,HCKF可以降低混合高斯噪声和野值的影响,误差估计曲线可以较快收敛,并且估计精度有所提高,而采用本发明方法,误差估计曲线可以更快收敛,估计精度也比HCKF更高。由图4蒙特卡罗仿真结果可以看出,采用传统CKF滤波估计安装误差角,估计误差在5角分左右,采用HCKF滤波,估计误差可达到2角分以下,而采用本文方法,估计误差可达到0.5角分以下。综上所述,本发明提供的方法,可以在观测量中存在混合高斯噪声和野值的情况下,实现快速高精度对准。

Claims (1)

1.一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法,其特征在于,包括以下步骤:
步骤一:安装高精度主惯导系统和精度较低的子惯导系统,完成启动、预热准备;
步骤二:主、子惯导系统分别进行惯导解算,主惯导输出的速度、姿态信息传输到子惯导系统的导航计算机;
步骤三:建立大失准角情况下的舰船传递对准非线性模型;
步骤四:进行广义高阶容积卡尔曼滤波GHCKF时间更新,并利用新息卡方检测方法预判断观测量受污染的情况,从而剔除观测量中野值的影响;
基于GHCKF时间更新获得k时刻的状态预测值
Figure FDA0003488866540000011
和状态预测协方差Pk,k-1
将k时刻的状态预测值
Figure FDA0003488866540000012
在非线性量测方程中进行传递,得到k时刻的量测预测值
Figure FDA0003488866540000013
和量测预测协方差Pzz,k/k-1
计算新息vk和观测有效性检测函数λk
Figure FDA0003488866540000014
Figure FDA0003488866540000015
预设一个门限M,若λk>M,说明该观测量中含有的有害信息超限应予以剔除,此时只进行时间更新,不进行量测更新;若λk<M,则保留观测量,继续进行之后的步骤;
步骤五:利用Huber方法对新息进行加权修正,之后进行GHCKF量测更新,从而实现算法的鲁棒性,完成传递对准;
在步骤五中,计算变换新息:
ηk=(Pzz,k/k-1·m)-1/2
其中,m为容积点数;
计算Huber权值函数:
Figure FDA0003488866540000016
Figure FDA0003488866540000017
Figure FDA0003488866540000018
其中,Huber调节因子γ设置为1.345,令Ψ=diag[ψ(ηk,i)];
计算l(k),即:
l(k)=(1-ε)(1-2Φ(-k))
其中,0≤ε≤1,Φ是标准高斯分布函数;
估计k时刻的状态值和协方差矩阵:
Figure FDA0003488866540000021
Figure FDA0003488866540000022
CN201810715555.2A 2018-07-03 2018-07-03 一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法 Active CN108759870B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810715555.2A CN108759870B (zh) 2018-07-03 2018-07-03 一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810715555.2A CN108759870B (zh) 2018-07-03 2018-07-03 一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法

Publications (2)

Publication Number Publication Date
CN108759870A CN108759870A (zh) 2018-11-06
CN108759870B true CN108759870B (zh) 2022-03-25

Family

ID=63975751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810715555.2A Active CN108759870B (zh) 2018-07-03 2018-07-03 一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法

Country Status (1)

Country Link
CN (1) CN108759870B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724599B (zh) * 2019-03-12 2023-08-01 哈尔滨工程大学 一种抗野值的鲁棒卡尔曼滤波sins/dvl组合导航方法
CN111076722B (zh) * 2019-11-18 2022-07-19 广州南方卫星导航仪器有限公司 基于自适应的四元数的姿态估计方法及装置
CN112859004B (zh) * 2021-01-04 2024-09-06 南京理工大学 基于改进卡尔曼滤波的野值剔除方法
CN113124903B (zh) * 2021-04-23 2024-07-30 中国电子科技集团公司第二十六研究所 传递对准下基于姿态匹配的最小二乘陀螺零偏快速估计
CN113218421B (zh) * 2021-05-11 2023-07-04 中国人民解放军63921部队 北斗拒止条件下捷联惯导系统鲁棒自适应动态对准方法
CN113704684B (zh) * 2021-07-27 2023-08-29 浙江工商大学 一种集中式融合鲁棒滤波方法
CN115096321B (zh) * 2022-06-23 2024-08-06 中国人民解放军63921部队 一种车载捷联惯导系统鲁棒无迹信息滤波对准方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075248A1 (fr) * 2013-11-22 2015-05-28 Sagem Defense Securite Procédé d'alignement d'une centrale inertielle
CN105973268A (zh) * 2016-05-06 2016-09-28 哈尔滨工程大学 一种基于共基座安装的传递对准精度定量评估方法
CN106352876A (zh) * 2016-07-25 2017-01-25 北京航空航天大学 一种基于h∞和ckf混合滤波的机载分布式pos传递对准方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075248A1 (fr) * 2013-11-22 2015-05-28 Sagem Defense Securite Procédé d'alignement d'une centrale inertielle
CN105973268A (zh) * 2016-05-06 2016-09-28 哈尔滨工程大学 一种基于共基座安装的传递对准精度定量评估方法
CN106352876A (zh) * 2016-07-25 2017-01-25 北京航空航天大学 一种基于h∞和ckf混合滤波的机载分布式pos传递对准方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于Huber 的改进鲁棒滤波算法;高敬东;《系统仿真学报》;20140830;第26卷(第8期);第1769 -1774页 *
基于Huber的鲁棒广义高阶容积卡尔曼滤波算法;秦康;《控制与决策》;20180131;第33卷(第1期);第88-94页 *

Also Published As

Publication number Publication date
CN108759870A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
CN108759870B (zh) 一种基于新型鲁棒广义高阶容积卡尔曼滤波的传递对准方法
CN107990910B (zh) 一种基于容积卡尔曼滤波的舰船大方位失准角传递对准方法
CN110109470B (zh) 基于无迹卡尔曼滤波的联合定姿方法、卫星姿态控制系统
CN109459019B (zh) 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法
CN108981696B (zh) 一种sins任意失准角无奇异快速传递对准方法
CN105737823B (zh) 一种基于五阶ckf的gps/sins/cns组合导航方法
CN110579740A (zh) 一种基于自适应联邦卡尔曼滤波的无人船组合导航方法
CN109931955B (zh) 基于状态相关李群滤波的捷联惯性导航系统初始对准方法
CN110779518B (zh) 一种具有全局收敛性的水下航行器单信标定位方法
CN104122794B (zh) 微陀螺仪的自适应模糊神经补偿非奇异终端滑模控制方法
CN103344260B (zh) 基于rbckf的捷联惯导系统大方位失准角初始对准方法
CN112798021B (zh) 基于激光多普勒测速仪的惯导系统行进间初始对准方法
CN103940433B (zh) 一种基于改进的自适应平方根ukf算法的卫星姿态确定方法
CN107831655A (zh) 微陀螺仪的分数阶自适应反演模糊滑模控制方法
CN106940193A (zh) 一种基于Kalman滤波的船舶自适应摇摆标定方法
CN106840211A (zh) 一种基于kf和stupf组合滤波的sins大方位失准角初始对准方法
CN103776449B (zh) 一种提高鲁棒性的动基座初始对准方法
CN112181002B (zh) 微陀螺仪双递归扰动模糊神经网络分数阶滑模控制方法
WO2022222938A1 (zh) 一种基于运动状态监测的自适应水平姿态测量方法
CN105004351A (zh) 基于自适应upf的sins大方位失准角初始对准方法
CN108731702B (zh) 一种基于Huber方法的大失准角传递对准方法
CN103792562A (zh) 一种基于变换采样点的强跟踪ukf的滤波方法
CN105675017A (zh) 一种应用于光电平台的光纤陀螺随机漂移补偿方法
Zhang et al. SINS initial alignment based on fifth-degree cubature Kalman filter
CN104897170B (zh) 一种基于罗德里格参数和二阶非线性量测的滤波对准算法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant