CN109459019B - 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法 - Google Patents

一种基于级联自适应鲁棒联邦滤波的车载导航计算方法 Download PDF

Info

Publication number
CN109459019B
CN109459019B CN201811573035.9A CN201811573035A CN109459019B CN 109459019 B CN109459019 B CN 109459019B CN 201811573035 A CN201811573035 A CN 201811573035A CN 109459019 B CN109459019 B CN 109459019B
Authority
CN
China
Prior art keywords
value
time
navigation
error
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811573035.9A
Other languages
English (en)
Other versions
CN109459019A (zh
Inventor
王伟
王峰
吴宗凯
李欣
黄平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN201811573035.9A priority Critical patent/CN109459019B/zh
Publication of CN109459019A publication Critical patent/CN109459019A/zh
Application granted granted Critical
Publication of CN109459019B publication Critical patent/CN109459019B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments

Abstract

本发明提供一种基于级联自适应鲁棒联邦滤波的车载导航计算方法,属于车载导航技术领域,建立导航解算方程以及误差模型;以残差作为统计量构建三段式降权函数,利用降权因子对含有量测异常值的量测噪声缩减;通过级联方式,当量测噪声R稳定时,利用改进的自适应滤波器构建系统噪声估计器,实时估计先验信息Q,获得子系统的初步状态最优估计值;对两个导航子系统的最优估计值,根据信息分配原则进行全局融合,获得最终的最优估计值,然后进行反馈过程,重复步骤1至步骤4。本发明克服了多传感器组合的车载导航系统中系统先验信息不确定与量测值异常所造成的滤波发散甚至失效的问题,获得全局最优值,从而得到更加精确、鲁棒性更好的导航参数解。

Description

一种基于级联自适应鲁棒联邦滤波的车载导航计算方法
技术领域
本发明属于车载导航技术领域,具体涉及一种基于级联自适应鲁棒联邦滤波的车载导航计算方法。
背景技术
捷联式惯性导航系统(SINS)、全球定位系统(GPS)与车载里程计(Odometer)的组合既弥补了相互的劣势,又充分利用了自身的优势,可以提供相对精确且全面的导航参数:姿态、速度与位置信息,因此被广泛应用于各种领域的车辆载体中,成为目前比较常用的一种车载导航方式。然而随着环境日益复杂,传统的基于SINS/GPS/OD联邦组合的车载导航方式易受异常量测值和不确定系统先验信息的影响,滤波结果容易发散,导航精度下降。为了使导航系统具有更好的鲁棒性以及导航参数更准确,目前常用的方法有:基于多模型自适应估计(MMAE)的方法、基于新息的自适应估计(IAE)的方法、基于Sage-Husa的自适应估计方法以及抗差估计方法等。但以上几种方法或存在计算量大的缺点,或存在解决问题单一的不足,均不能很好的解决目前导航系统存在的问题。
近些年来,一些解决组合导航系统中系统先验信息不确定和量测异常值的方法被提出。文献(An optimal adaptive Kalman filter,J.Geodesy,vol.80,no.4,pp.177-183,2006.)提出使用衰落因子和鲁棒估计减少动力学模型的影响,但是它的缺点是如果不能计算稳健的估计解,则不能形成衰落因子,并且由于粗线性近似,其性能在非线性情况下降低;文献(Hybrid Kalman filter-fuzzy logic adaptive multisensory data fusionarchitectures,In Proc.42nd IEEE Conf.Decis.Control,HI,USA,Dec.2003,pp.5215-5220.)提出了一种基于模糊逻辑的自适应算法,称为模糊卡尔曼滤波器,它能够识别异常测量并校正滤波结果,但是该方法在很大程度上依赖于人的经验,如果经验是未知或错误的,模糊方法将无效;文献(Model-based filters for 3-D positioning of marinemammals using AHRS and GPS-equipped uavs,IEEE Trans.Aerosp.Electron.Syst.,vol.51,no.4,pp.3307-3320,Oct.2015)将两个卡尔曼滤波器插入多模型自适应估计框架中,以应对海洋模型在海洋哺乳动物定位中的未知参数问题,然而,这种方法的明显局限性是并行运行的几个卡尔曼滤波器增加了计算复杂度和处理时间;文献(自适应联邦滤波器在GPS-INS-Odometer组合导航的应用.测绘学报,2016,45(2):157-163.)与文献(PPP/INStightly coupled navigation using adaptive federated filter.Gps Solutions,2017,21(1):1-12.)均提出一种自适应因子与信息分配因子相结合的自适应联邦卡尔曼滤波结构,在一定程度上解决了传感器量测值异常的问题,但是它们只能达到信息分配调节的作用,当多个传感器同时产生异常值时效果不是很好。文献(Small UAV localizationbased strong tracking filters augmented with interacting multiplemodel.Applied Sciences and Technology(IBCAST),2018 15th International BhurbanConference on.IEEE,2018:310-317.)使用交互式多模型的强跟踪滤波方法对小型无人机不同的运行状态进行估计,提高了无人机的鲁棒性与精度,但是计算量过大,运行复杂。文献(Reaearch on underwater integrated navigation system based on SINS/DVL/magnetometer/depth-sensor.OCEANS 2017-Aberdeen.IEEE,2017:1-6.)提出利用Sage-Husa自适应滤波对未知或时变统计特性进行估计,但是不能对量测值野值有较好的滤波效果,提高精度不明显。
发明内容
本发明的目的在于提供了一种基于级联自适应鲁棒联邦滤波的车载导航计算方法,克服多传感器组合的车载导航系统中系统先验信息不确定与量测值异常所造成的滤波发散甚至失效的问题,获得全局最优值,从而得到更加精确、鲁棒性更好的导航参数解。
本发明的目的是这样实现的:
一种基于级联自适应鲁棒联邦滤波的车载导航计算方法,具体的实现步骤为:
步骤1.建立SINS的导航解算方程以及SINS、GPS和Odometer的误差模型;
步骤2.以残差作为统计量构建三段式的降权函数,利用降权因子对含有量测异常值的量测噪声进行缩减;
步骤3.通过级联方式,在量测噪声R达到稳定的基础上,基于Sage-Husa自适应滤波器构建系统噪声估计器实时在线估计先验信息Q,获得子系统的初步状态最优估计值;
步骤4.对两个导航子系统的最优估计值,根据信息分配原则进行全局融合,获得最终的最优估计值,然后进行反馈过程,重复步骤1至步骤4。
本发明还包括:
步骤2.1.根据观测值与预测观测值的差异,获得系统的残差:
vi=Zk-HkXk,k-1
vi为观测量对应的残差向量,Zk表示系统的m维观测向量;下角标k代表时刻,Xk,k-1为时刻介于k与k-1之间的时系统的n维状态向量;
步骤2.2.建立基于残差统计量的三段式降权函数:
Figure BDA0001916008540000021
其中
Figure BDA00019160085400000313
为vi的均方差,实际情况下,
Figure BDA0001916008540000031
Figure BDA0001916008540000032
为vi的权倒数,方差因子
Figure BDA0001916008540000033
k0的取值范围分别为1.5~2.5,ki的取值范围3.0~5.0。
所述的步骤2利用降权因子对含有量测异常值的量测噪声进行缩减具体为:原观测值的权为Pi,则等加权
Figure BDA0001916008540000034
根据降权因子对含有异常值误差的量测噪声缩减:
Figure BDA0001916008540000035
所述的步骤3中利用改进的Sage-Husa自适应滤波器构建系统噪声估计器实时在线估计先验信息Q是基于线性离散系统数学模型;所述的线性离散系统为:
Figure BDA0001916008540000036
其中,Xk表示系统k时刻的n维状态向量;Zk表示系统k时刻的m维观测向量;Φk,k-1为k-1时刻到k时刻的n×n维状态转移矩阵;Hk为系统k时刻的m×n维观测矩阵,Wk-1和Vk为k时刻的系统噪声和量测噪声,其统计特性为:
Figure BDA0001916008540000037
其中,E{·}表示期望函数;Qk和Rk表示k时刻的过程噪声和量测噪声的协方差矩阵。
所述的步骤3中获得子系统的初步状态最优估计值具体过程为:
步骤3.1.当Rk经过降权得到
Figure BDA0001916008540000038
后,获得k时刻的滤波增益Kk
步骤3.1.1:计算k时刻的状态一步预测
Figure BDA0001916008540000039
Figure BDA00019160085400000310
步骤3.1.2:计算状态一步预测的误差协方差矩阵Pk,k-1
Figure BDA00019160085400000311
其中
Figure BDA00019160085400000312
是由时变噪声统计估值器获得的;
步骤3.1.3:计算k时刻的滤波增益Kk
Figure BDA0001916008540000041
步骤3.2.获得k时刻的状态最优估计
Figure BDA0001916008540000042
和k时刻的最优状态误差协方差矩阵Pk
Figure BDA0001916008540000043
Figure BDA0001916008540000044
Pk=[I-KkHk]Pk,k-1
其中,
Figure BDA0001916008540000045
Figure BDA0001916008540000046
由以下时变噪声统计估值器获得:
Figure BDA0001916008540000047
Figure BDA0001916008540000048
式中dk-2=(1-b)/(1-bk-2),b为遗忘因子,b的取值为0.95<b<0.99。
本发明的有益效果在于:本发明克服了多传感器组合的车载导航系统中系统先验信息不确定与量测值异常所造成的滤波发散甚至失效的问题,获得全局最优值,从而得到更加精确、鲁棒性更好的导航参数解,可以消除粗差所带来的影响,提高了车载导航系统的精度,通过对系统噪声的实时估计,结合异常值的降权处理,可以在提高滤波精度的同时,减小甚至消除粗差与系统噪声变化所带来的影响。
附图说明
图1是基于SINS/GPS/OD组合的车载导航系统框图。
图2是车辆的行驶轨迹图。
图3是GPS有粗差时,基于CFKF与CARSHFKF的车载导航系统的导航参数对比仿真结果。
图4是OD有粗差时,基于CFKF与CARSHFKF的车载导航系统的导航参数对比仿真结果。
图5是GPS与OD有粗差且系统噪声不确定时,基于CFKF与CARSHFKF的车载导航系统的导航参数对比仿真结果。
图6是GPS与OD有粗差且系统噪声不确定时,基于CFKF与CARSHFKF算法的实测数据对比结果。
图7是仿真实验中仿真轨迹的参数设置。
图8是仿真实验中三种传感器的参数设置。
具体实施方式
下面结合附图对本发明做进一步的描述:
本发明的目的在于克服多传感器组合的车载导航系统中系统先验信息不确定与量测值异常所造成的滤波发散甚至失效的问题,提出一种基于级联自适应鲁棒联邦滤波的车载导航算法。该方法首先在联邦子系统中利用简化版的Sage-Husa自适应方法对系统的先验信息Q进行在线实时估计,将修正后的系统噪声代入卡尔曼滤波系统中,然后根据统计量残差构建降权因子,对含有异常值影响的量测噪声R进行降权,将二者进行级联,即可获得子系统的最优估计值,然后将子系统的最优值代入主滤波器中进行最优融合,获得全局最优值,从而得到更加精确、鲁棒性更好的导航参数解。
实现本发明目的技术方案:
步骤1:建立SINS的导航解算方程以及误差模型;
捷联式惯性导航系统的姿态、速度、位置解算过程如下所示:
(1)姿态算法
Figure BDA0001916008540000051
其中,
Figure BDA0001916008540000052
表示姿态转移矩阵,
Figure BDA0001916008540000053
表示角速率的反对称阵。
(2)速度算法
Figure BDA0001916008540000054
其中,
Figure BDA0001916008540000055
为加速度计测量的比力在导航系的投影,
Figure BDA0001916008540000056
为由载体运动和地球自转引起的哥氏加速度,
Figure BDA0001916008540000057
为由载体运动引起的对地向心加速度,gn为重力加速度,
(3)位置算法
Figure BDA0001916008540000058
Figure BDA0001916008540000059
Figure BDA00019160085400000510
其中
Figure BDA00019160085400000511
Figure BDA00019160085400000512
Figure BDA0001916008540000061
Figure BDA0001916008540000062
Figure BDA0001916008540000063
Figure BDA0001916008540000064
Figure BDA0001916008540000065
gn=[0 0 -g]T
捷联式惯性导航系统的误差方程如下所示:
(1)姿态误差方程
Figure BDA0001916008540000066
(2)速度误差方程
Figure BDA0001916008540000067
(3)位置误差方程
Figure BDA0001916008540000068
Figure BDA0001916008540000069
Figure BDA00019160085400000610
(4)陀螺误差方程
ε=εb+wg
其中,εb表示常值漂移,wg表示白噪声。
(5)加速度计误差方程
Figure BDA00019160085400000611
其中,
Figure BDA00019160085400000612
表示常值零偏,wa表示白噪声。
步骤2:以残差作为统计量构建三段式的降权函数,利用降权因子对含有量测异常值的量测噪声进行缩减;
步骤2.1:根据观测值与预测观测值的差异,获得系统的残差
vi=Zk-HkXk,k-1
步骤2.2:建立基于残差统计量的三段式降权函数
Figure BDA0001916008540000071
其中,vi为观测量对应的残差向量;
Figure BDA0001916008540000072
为vi的均方差,实际情况下,
Figure BDA0001916008540000073
Figure BDA0001916008540000074
为vi的权倒数;方差因子σ0根据
Figure BDA0001916008540000075
求得;k0与ki的取值范围分别为1.5~2.5和3.0~5.0。
步骤2.3:根据降权函数对含有异常值误差的量测噪声缩减
Figure BDA0001916008540000076
假设原观测值的权为Pi,则等加权
Figure BDA0001916008540000077
步骤3:通过级联方式,在量测噪声达到稳定的基础上,利用改进的Sage-Husa自适应滤波器构建系统噪声估计器实时在线估计
Figure BDA0001916008540000078
从而获得子系统的初步状态最优估计值;
步骤3.1:当Rk经过降权得到
Figure BDA0001916008540000079
后,获得新的滤波增益
Figure BDA00019160085400000710
Figure BDA00019160085400000711
Figure BDA00019160085400000712
步骤3.2:获得局部最优估计值和协方差矩阵
Figure BDA00019160085400000713
Figure BDA00019160085400000714
Pk=[I-KkHk]Pk,k-1
步骤3.3:构造系统噪声估计器,对噪声实时在线估计
Figure BDA00019160085400000715
Figure BDA00019160085400000716
式中dk-2=(1-b)/(1-bk-2),b为遗忘因子,b的取值为0.95<b<0.99。
步骤4:对两个导航子系统的最优估计值进行全局融合,获得最终的最优估计值,再实行反馈过程,迭代进行。
步骤4.1:滤波初值信息设定。初始协方差矩阵Pi,0和系统噪声协方差阵Qi,0可以由组合系统初始值来确定,即:
Figure BDA0001916008540000081
其中,β为子系统的信息分配系数,Qg,0这里取粗略值,后续进行估计更新
步骤4.2:时间更新。时间更新在各子滤波器之间独立进行
Figure BDA0001916008540000082
Figure BDA0001916008540000083
步骤4.3:量测更新。各子滤波器接收子系统量测信息并独立进行量测更新
Figure BDA0001916008540000084
Figure BDA0001916008540000085
Figure BDA0001916008540000086
Pi,k=(I-Ki,kHi,k)Pi,k/k-1
由于主滤波器不存在量测值,故主滤波器没有量测更新。
步骤4.4:信息分配和全局最优化估计
Figure BDA0001916008540000087
Figure BDA0001916008540000088
Figure BDA0001916008540000089
步骤4.5:信息融合。联邦卡尔曼滤波核心算法即为:把各子滤波器的局部最优估计信息进行融合,从而得到全局最优估计。融合方法可以表述为:
Figure BDA00019160085400000810
Figure BDA00019160085400000811
步骤2中降权函数的构造过程如下:
Figure BDA0001916008540000091
其中,vi为观测量对应的残差向量;
Figure BDA0001916008540000092
为vi的均方差,实际情况下,
Figure BDA0001916008540000093
Figure BDA0001916008540000094
为vi的权倒数;方差因子σ0根据
Figure BDA0001916008540000095
求得;k0与ki的取值范围分别为1.5~2.5和3.0~5.0。
步骤3中的过程描述如下:
线性离散系统如下:
Figure BDA0001916008540000096
其中,Xk表示系统k时刻的n维状态向量;Zk表示系统k时刻的m维观测向量;Φk,k-1为k-1时刻到k时刻的n×n维状态转移矩阵;Hk为系统k时刻的m×n维观测矩阵,Wk-1和Vk为k时刻的系统噪声和量测噪声,其统计特性如下所示:
E{Wk}=qk,cov{WkWi}=Qkδkj
E{Vk}=rk,cov{VkVi}=Rkδkj
其中,E{·}表示期望函数;Qk和Rk表示k时刻的过程噪声和量测噪声的协方差矩阵。
在上述线性离散系统数学模型的基础上,基于Sage-Husa的系统噪声估计器在线实时估计算法流程如下:
Figure BDA0001916008540000097
Figure BDA0001916008540000098
Figure BDA0001916008540000099
Figure BDA00019160085400000910
Figure BDA00019160085400000911
Pk=[I-KkHk]Pk,k-1
其中,
Figure BDA00019160085400000912
Figure BDA00019160085400000913
由以下时变噪声统计估值器获得:
Figure BDA00019160085400000914
Figure BDA0001916008540000101
式中dk-2=(1-b)/(1-bk-2),b为遗忘因子,b的取值为0.95<b<0.99。
上述中的第一个公式求得k时刻的状态一步预测
Figure BDA0001916008540000102
第二个公式求取状态一步预测的误差协方差矩阵Pk,k-1,其中的
Figure BDA0001916008540000103
便是由时变噪声统计估值器获得的,第三个公式求取k时刻的滤波增益,其中的
Figure BDA0001916008540000104
便是有降权函数获得的,第四个与第五个公式获得k时刻的状态最优估计
Figure BDA0001916008540000105
第六个公式为k时刻的最优状态误差协方差矩阵Pk
仿真实验采用SINS、GPS与Odometer三种导航传感器,仿真时长为510s,载体的三轴初始姿态角分别设置为:俯仰0°、横滚0°、航向10°,初始速度设置为:0,初始位置为:纬度45.779°、经度126.6705°、高度10m,仿真轨迹的参数设置见图7,仿真轨迹为矩形运动,如图2所示。三种传感器的参数设置见图8,GPS与里程计的数据在INS的仿真数据基础上添加一定的误差完成。
从图3可看出,当GPS在110s-111s过程中具有100m的位置误差,5m/s的速度误差时,传统的联邦滤波(CFKF)不能很好的解决粗差带来的影响,而本文提出的算法在保持的精度的同时,可以减小甚至消除粗差所带来的导航参数跳变。
从图4可看出,当OD在210s-211s过程中具有5m/s的速度误差时,传统的联邦滤波(CFKF)不能很好的解决粗差带来的影响,而本文提出的算法在保持的精度的同时,可以减小甚至消除粗差所带来的导航参数跳变。
从图5可看出,当GPS在110s-111s过程中具有100m的位置误差,5m/s的速度误差,OD在210s-211s过程中具有5m/s的速度误差时,并且系统噪声在140s-150s发生了变化,设置为10Q0,系统噪声的变化会影响异常值的处理过程,通过对系统噪声的实时估计,结合异常值的降权处理,可以在提高滤波精度的同时,减小甚至消除粗差与系统噪声变化所带来的影响。
从图6可看出,在实测数据过程中,当GPS与OD存在粗差,系统噪声不确定时,会引起滤波结果的跳变,同时使导航结果精度降低,而本文所提出的算法可以消除粗差所带来的影响,提高了车载导航系统的精度。

Claims (1)

1.一种基于级联自适应鲁棒联邦滤波的车载导航计算方法,其特征在于,具体的实现步骤为:
步骤1.建立SINS的导航解算方程以及SINS、GPS和Odometer的误差模型;
步骤2.以残差作为统计量构建三段式的降权函数,利用降权因子对含有量测异常值的量测噪声进行缩减;
步骤2.1:根据观测值与预测观测值的差异,获得系统的残差;
vi=Zk-HkXk,k-1
其中,vi为观测量对应的残差向量;Zk表示系统的m维观测向量,下角标k代表时刻;Xk,k-1为时刻介于k与k-1之间时系统的n维状态向量;
步骤2.2:建立基于残差统计量的三段式降权函数;
Figure FDA0003127424880000011
其中,
Figure FDA0003127424880000012
为vi的均方差,实际情况下,
Figure FDA0003127424880000013
Figure FDA0003127424880000014
为vi的权倒数;方差因子
Figure FDA0003127424880000015
k0的取值范围为1.5~2.5;ki的取值范围为3.0~5.0;
步骤2.3:根据降权函数对含有异常值误差的量测噪声进行缩减;
Figure FDA0003127424880000016
其中,
Figure FDA0003127424880000017
Pi为原观测值;
步骤3.通过级联方式,在量测噪声R达到稳定的基础上,基于Sage-Husa自适应滤波器构建系统噪声估计器实时在线估计先验信息Q,获得子系统的初步状态最优估计值;
步骤3.1:当Rk经过降权得到
Figure FDA0003127424880000018
后,获得k时刻的滤波增益Kk
步骤3.1.1:计算k时刻的状态一步预测
Figure FDA0003127424880000019
Figure FDA00031274248800000110
步骤3.1.2:计算状态一步预测的误差协方差矩阵Pk,k-1
Figure FDA00031274248800000111
其中,
Figure FDA00031274248800000112
是由时变噪声统计估值器获得的;
步骤3.1.3:计算k时刻的滤波增益Kk
Figure FDA0003127424880000021
步骤3.2:获得k时刻的状态最优估计
Figure FDA0003127424880000022
与最优状态误差协方差矩阵Pk
Figure FDA0003127424880000023
Figure FDA0003127424880000024
Pk=[I-KkHk]Pk,k-1
其中,
Figure FDA0003127424880000025
Figure FDA0003127424880000026
由以下时变噪声统计估值器获得:
Figure FDA0003127424880000027
Figure FDA0003127424880000028
其中,dk-2=(1-b)/(1-bk-2);b为遗忘因子,0.95<b<0.99;
步骤4.对两个导航子系统的最优估计值进行全局融合,获得最终的最优估计值,然后进行反馈过程,重复步骤1至步骤4;
所述的对两个导航子系统的最优估计值进行全局融合,获得最终的最优估计值的具体步骤为:
步骤4.1:初始化协方差矩阵Pi,0和系统噪声协方差阵Qi,0
Pi,0=βi -1Pg,0,Qi,0=βi -1Qg,0
其中,βi为子系统的信息分配系数;Qg,0取粗略值;
步骤4.2:在各子滤波器之间独立进行时间更新;
Figure FDA0003127424880000029
Figure FDA00031274248800000210
步骤4.3:各子滤波器接收子系统量测信息并独立进行量测更新;
Figure FDA00031274248800000211
Figure FDA00031274248800000212
Figure FDA00031274248800000213
Pi,k=(I-Ki,kHi,k)Pi,k/k-1
步骤4.4:信息分配和全局最优化估计;
Figure FDA0003127424880000031
Pi=βi -1Pg
Figure FDA0003127424880000032
Figure FDA0003127424880000033
步骤4.5:把各子滤波器的局部最优估计信息进行融合,从而得到全局最优估计;
Figure FDA0003127424880000034
Figure FDA0003127424880000035
CN201811573035.9A 2018-12-21 2018-12-21 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法 Active CN109459019B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811573035.9A CN109459019B (zh) 2018-12-21 2018-12-21 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811573035.9A CN109459019B (zh) 2018-12-21 2018-12-21 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法

Publications (2)

Publication Number Publication Date
CN109459019A CN109459019A (zh) 2019-03-12
CN109459019B true CN109459019B (zh) 2021-09-10

Family

ID=65614263

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811573035.9A Active CN109459019B (zh) 2018-12-21 2018-12-21 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法

Country Status (1)

Country Link
CN (1) CN109459019B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990789A (zh) * 2019-03-27 2019-07-09 广东工业大学 一种飞行导航方法、装置及相关设备
CN110209998B (zh) * 2019-06-25 2022-04-01 北京信息科技大学 非理想信道下的最优序贯式融合估计方法
CN110375731A (zh) * 2019-07-01 2019-10-25 东南大学 一种混合交互式多模型滤波方法
CN110514209B (zh) * 2019-08-27 2021-05-11 东南大学 一种交互式多模型组合导航方法
CN110490273A (zh) * 2019-09-12 2019-11-22 河南牧业经济学院 噪声方差不精确建模的多传感器系统融合滤波算法
CN110727968B (zh) * 2019-09-19 2023-07-14 北京控制工程研究所 一种基于强化学习的导航滤波器参数优化方法
CN110632634B (zh) * 2019-09-24 2022-11-01 东南大学 一种适用于弹道导弹ins/cns/gnss组合导航系统的最优数据融合方法
CN110646825B (zh) * 2019-10-22 2022-01-25 北京国家新能源汽车技术创新中心有限公司 定位方法、定位系统及汽车
CN110865334B (zh) * 2019-11-26 2021-09-03 北京航空航天大学 一种基于噪声统计特性的多传感器目标跟踪方法及系统
CN111060942B (zh) * 2019-12-18 2022-11-18 哈尔滨工程大学 一种附加航向约束的ppp/ahrs松组合定位方法
CN111207744B (zh) * 2020-01-15 2023-03-21 哈尔滨工程大学 一种基于厚尾鲁棒滤波的管线地理位置信息测量方法
CN111337020A (zh) * 2020-03-06 2020-06-26 兰州交通大学 引入抗差估计的因子图融合定位方法
CN111623779A (zh) * 2020-05-20 2020-09-04 哈尔滨工程大学 一种适用于噪声特性未知的时变系统自适应级联滤波方法
CN112180361B (zh) * 2020-09-30 2023-09-26 南京航空航天大学 一种基于动态联邦滤波的车载雷达目标跟踪方法
CN113834499A (zh) * 2021-08-26 2021-12-24 北京航天发射技术研究所 一种车载惯组与里程计行进间对准方法及系统
CN113916225B (zh) * 2021-10-09 2023-07-14 哈尔滨工业大学 一种基于稳健权因子系数的组合导航粗差抗差估计方法
CN114166203B (zh) * 2021-11-16 2024-02-09 哈尔滨工程大学 一种基于改进的s-h自适应联邦滤波的智能水下机器人多源组合导航方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8249800B2 (en) * 2009-06-09 2012-08-21 Alpine Electronics, Inc. Method and apparatus to detect platform stationary status using three-axis accelerometer outputs
CN103528587B (zh) * 2013-10-15 2016-09-28 西北工业大学 自主组合导航系统
CN108844540A (zh) * 2018-09-11 2018-11-20 北京机械设备研究所 一种结合协方差和Sage-Husa滤波技术的自适应滤波方法

Also Published As

Publication number Publication date
CN109459019A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN109459019B (zh) 一种基于级联自适应鲁棒联邦滤波的车载导航计算方法
Xu et al. Enhancing localization accuracy of MEMS-INS/GPS/in-vehicle sensors integration during GPS outages
CN109211276B (zh) 基于gpr与改进的srckf的sins初始对准方法
CN111156987B (zh) 基于残差补偿多速率ckf的惯性/天文组合导航方法
CN112013836B (zh) 一种基于改进自适应卡尔曼滤波的航姿参考系统算法
Gao et al. Adaptive Kalman filtering with recursive noise estimator for integrated SINS/DVL systems
CN110887481B (zh) 基于mems惯性传感器的载体动态姿态估计方法
CN110231636B (zh) Gps与bds双模卫星导航系统的自适应无迹卡尔曼滤波方法
CN111024064A (zh) 一种改进Sage-Husa自适应滤波的SINS/DVL组合导航方法
CN111337020A (zh) 引入抗差估计的因子图融合定位方法
Nourmohammadi et al. Design and experimental evaluation of indirect centralized and direct decentralized integration scheme for low-cost INS/GNSS system
CN109945859B (zh) 一种自适应h∞滤波的运动学约束捷联惯性导航方法
CN110572139B (zh) 用于车辆状态估计的融合滤波实现方法以及装置、存储介质、车辆
CN107607977B (zh) 一种基于最小偏度单形采样的自适应ukf组合导航方法
Liu et al. Variational Bayesian-based robust cubature Kalman filter with application on SINS/GPS integrated navigation system
CN115451952B (zh) 一种故障检测及抗差自适应滤波的多系统组合导航方法和装置
CN110595434B (zh) 基于mems传感器的四元数融合姿态估计方法
CN111190207B (zh) 基于pstcsdref算法的无人机ins bds组合导航方法
CN109840517A (zh) 一种mems陀螺噪声估计和滤波方法
CN112083457A (zh) 一种神经网络优化的imm卫星定位导航方法
CN110440756B (zh) 一种惯导系统姿态估计方法
Giremus et al. An improved regularized particle filter for GPS/INS integration
CN110375773B (zh) Mems惯导系统姿态初始化方法
CN116380038A (zh) 一种基于在线增量尺度因子图的多源导航信息融合方法
CN114111843B (zh) 一种捷联惯导系统最优动基座初始对准方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant