CN108754580A - 一种原位沉积纳米pt的表面改性不锈钢及其应用 - Google Patents

一种原位沉积纳米pt的表面改性不锈钢及其应用 Download PDF

Info

Publication number
CN108754580A
CN108754580A CN201810662015.2A CN201810662015A CN108754580A CN 108754580 A CN108754580 A CN 108754580A CN 201810662015 A CN201810662015 A CN 201810662015A CN 108754580 A CN108754580 A CN 108754580A
Authority
CN
China
Prior art keywords
stainless steel
situ deposition
porous
electrode
surface modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810662015.2A
Other languages
English (en)
Other versions
CN108754580B (zh
Inventor
梁可心
檀玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN201810662015.2A priority Critical patent/CN108754580B/zh
Publication of CN108754580A publication Critical patent/CN108754580A/zh
Application granted granted Critical
Publication of CN108754580B publication Critical patent/CN108754580B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/34Anodisation of metals or alloys not provided for in groups C25D11/04 - C25D11/32
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1848Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by electrochemical pretreatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy

Abstract

本发明公开了一种原位沉积纳米pt的表面改性不锈钢,该表面改性不锈钢板表面自组装有多孔结构的氧化薄膜,且纳米pt沉积于多孔氧化薄膜中。本发明还公开了其应用,将该表面改性不锈钢作为电极对0.1molL‑1Na2SO4溶液进行三电极测试时,该电极具有析氢电位低,电流密度大,反应阻抗小的特点,并且该电极材料的制作费用低,经济性强。

Description

一种原位沉积纳米pt的表面改性不锈钢及其应用
技术领域
本发明属于不锈钢表面改性处理,具体地说是不锈钢表面自组装多孔氧化薄膜且多孔氧化薄膜中填充有纳米pt,本发明还涉及该改性不锈钢在电解实验中作为电极的应用。
背景技术
不锈钢因其价廉、抗腐蚀,目前被广泛用作加工材料。但因其表面阻抗较大,不是用作电极的理想材料,同时析氢电位高,更不适用于电解析氢的电极。因Pt析氢过电位低,性质稳定等特点,目前普遍用作电解析氢的电极材料,但造价高,经济性差。本发明是将不锈钢表面进行多孔化改性,增加比表面积,降低阻抗,然后用纳米Pt颗粒沉积多孔膜,降低析氢过电位,取得性能优良、经济性好的新型电解水析氢电极。
发明内容
为了解决上述问题,本发明的目的在于提供一种原位沉积纳米pt的表面改性不锈钢及其制备方法。本发明的另一目的是将其于电解水析氢中的应用。
本发明的解决方案是通过将厚度为0.3~0.6mm不锈钢表面自组装有纳米多孔氧化薄膜,并将纳米pt沉积于多孔氧化薄膜的孔隙中获得表面改性不锈钢,将其应用于电解实验中作为电极的应用。
本发明为不锈钢板表面自组装有多孔结构的氧化薄膜,且纳米pt沉积在多孔氧化薄膜中,其中优选多孔氧化薄膜的孔径为100~200nm。
所述原位沉积纳米pt的表面改性不锈钢电极包括以下步骤制备:
(1)不锈钢表面清洗,将厚度为0.3~0.6mm不锈钢板分别用无水乙醇、去离子水进行超声表面清洗后干燥处理;
(2)电极氧化,将步骤(1)表面处理后的不锈钢板作为阳极,铂片为阴极,以乙二醇和高氯酸重量比为10:1的混合溶液为电解液,在室温条件磁力搅拌,电压由0V通过阶梯上升的方式上升到40V,并且在40V电压下氧化80-150s,不锈钢电极板上形成多孔结构的氧化薄膜;
(3)干燥固化,电极氧化结束后将不锈钢板用去离子水冲洗,然后置于氮气氛围中于温度60℃下干燥2h。
(4)配制氯铂酸溶液,将氯铂酸溶于乙醇溶液中,配制成浓度为0.5mmol/L的氯铂酸溶液;
(5)浸泡,将表面自组装多孔氧化薄膜的不锈钢浸泡于步骤(1)配制的氯铂酸溶液中,并于恒定温度30~50℃下浸泡处理10~24h;
(6)高温固化,浸泡处理后,用去离子水冲洗不锈钢表面,然后在氮气氛围下于50℃~80℃固化2h。
所述步骤(2)的电压上升速率优选为1V/s,氧化时间优选为100s。
所述步骤(4)乙醇溶液优选无水乙醇与去离子水的体积比为4:1的混合溶液。
优选步骤(5)浸泡条件为在恒定温度40℃下浸泡16h。
所述步骤(6)固化温度优选60℃。
将制备的原位沉积纳米pt的表面改性不锈钢作为电极应用于电解Na2SO4溶液。
与现有技术相比,本发明的有益技术效果:
本发明制备的改性不锈钢作为研究电极时,其电解电位低,电流密度大,反应阻抗小,且该电极材料制造费用低,经济性强,制备方法简单。
附图说明
图1是实施例1中制备的表面自组装多孔氧化薄膜的不锈钢SEM图。
图2是实施例1中制备的原位沉积纳米pt的表面改性不锈钢SEM图。
图3是实施例1中制备的表面自组装多孔氧化薄膜的不锈钢和原位沉积纳米pt的表面改性不锈钢的EDS图。
图4是实施例1中制备的表面自组装多孔氧化薄膜的不锈钢和原位沉积纳米pt的表面改性不锈钢XRD图。
图5是电极析氢电位测定装置图。
图5附图标记说明:1为H型电解池,2为辅助Pt电极,3为隔膜,4为研究电极,5为饱和甘汞电极,6为电化学工作站,7为电脑。
图6是实施例1中三种研究电极的电流-电位曲线。
图7是实施例1中三种研究电极的在开路电压下交流阻抗谱图。
图8是实施例1中三种研究电极外加电压E为-1.2V下交流阻抗谱图。
具体实施方式
实施例1
一种原位沉积纳米pt的表面改性不锈钢,按以下方法制备:
(1)将厚度为0.5mm 304不锈钢板分别用无水乙醇、去离子水进行超声表面清洗后干燥处理;
(2)电极氧化,将步骤(1)表面处理后的不锈钢板作为阳极,铂片为阴极,以乙二醇和高氯酸重量比为10:1的混合溶液为电解液,在室温条件磁力搅拌,电压由0V通过阶梯上升的方式以1V/S的速率上升到40V,,并且在40V电压下氧化100s;
(3)干燥,电极氧化结束后将不锈钢板用去离子水冲洗,然后在氮气氛围下于60℃干燥2h,获得表面自组装多孔氧化薄膜的不锈钢;
(4)配制氯铂酸溶液,将氯铂酸溶于无水乙醇与去离子水的体积比为4:1的乙醇溶液中,配制成浓度为0.5mmol/L的氯铂酸溶液;
(5)浸泡,将表面自组装多孔膜的不锈钢浸泡于步骤(1)配制的氯铂酸溶液中,并于恒定温度为40℃下浸泡处理16h;
(6)干燥固化,浸泡处理后将不锈钢用去离子水冲洗干净,然后置于氮气氛围中在60℃小件干燥2h,获得原位沉积纳米pt的表面改性不锈钢。
图1为表面自组装多孔氧化薄膜的不锈钢的SEM照片,图2为原位沉积纳米pt的表面改性不锈钢的SEM照片,图3和图4分别为二者EDS图和XRD图。图1和图2经对比,可以看出表面自组装多孔薄膜的孔径分布均匀,孔呈六边形蜂窝状,孔径约为150nm。原位沉积Pt后,Pt以纳米颗粒形态分布在不锈钢纳米多孔膜上。从图3中可以看出表面自组装多孔薄膜的不锈钢的成分为Fe、Cr、Mn、Ni、C、Si,为304不锈钢的基本成分,沉积Pt后电极表面有Pt元素存在。从图4中可以看出原位沉积纳米Pt后,有明显的Pt单质元素存在。
将制备的原位沉积纳米pt的表面改性不锈钢作为电极应用于电解Na2SO4溶液,具体步骤如下:测试采用H型电解池,如图5,将制备的原位沉积纳米pt的表面改性不锈钢、表面自组装多孔氧化薄膜的不锈钢及金属pt分别作为研究电极,分别将这三种电极切割,封装成面积0.2826cm-2圆形,辅助电极为Pt电极,带盐桥的饱和甘汞电极为参比电极。
采用线性扫描曲线测定电极析氢电位,应用电位从0V到-2V,扫描速率为20mVs-1,电解液为0.1molL-1Na2SO4溶液。交流阻抗测定频率范围为100mHz-100kHz,交流扰动电位为10mV。
图6为三种研究电极的电流-电位曲线,图7和图8分别为三种研究电极在开路电压下交流阻抗谱图和外加电压E为-1.2V下交流阻抗谱图。
从图6中可以看出原位沉积纳米Pt的表面改性不锈钢电极的析氢电位为-1.0V,低于Pt电极的析氢电位-1.08V,远远低于表面自组装多孔氧化薄膜的不锈钢电极的析氢电位-1.45V,同时在同一电压下,原位沉积纳米Pt的表面改性不锈钢电极的电流高于Pt电极和表面自组装多孔氧化薄膜的不锈钢电极。
从图7可以看出,在开路电位下,Pt电极阻抗圆弧半径远远大于原位沉积的表面改性不锈钢电极的半径,说明原位沉积的表面改性不锈钢电极比Pt电极的电荷传递阻抗值小,利于电荷传递和表面反应进行。从图8可以看出,在施加偏压-1.2V后,通过上述电解电位表明,此电压下两种电极都发生的析氢反应,所以阻抗都明显减小,但同样原位沉积纳米Pt的表面改性不锈钢电极阻抗值小于Pt电极,说明原位沉积纳米Pt的表面改性不锈钢电极优于Pt电极。
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明精神的基础之下,本领域普通技术人员可以对本发明的技术方案做出的各种修改和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

1.一种原位沉积纳米pt的表面改性不锈钢,其特征在于:不锈钢板表面自组装有多孔结构的氧化薄膜,且纳米pt沉积在多孔氧化薄膜中。
2.根据权利要求1所述的原位沉积纳米pt的表面改性不锈钢,其特征在于:所述多孔氧化薄膜的孔径为100~200nm。
3.根据权利要求1所述的原位沉积纳米pt的表面改性不锈钢,其特征在于由以下步骤制备:
(1)不锈钢表面清洗,将厚度为0.3~0.6mm不锈钢板分别用无水乙醇、去离子水进行超声表面清洗后干燥处理;
(2)电极氧化,将步骤(1)表面处理后的不锈钢板作为阳极,铂片为阴极,以乙二醇和高氯酸重量比为10:1的混合溶液为电解液,在室温条件磁力搅拌,电压由0V通过阶梯上升的方式上升到40V,并且在40V电压下氧化80~150s,不锈钢电极板上形成多孔结构的氧化薄膜;
(3)干燥固化,电极氧化结束后将不锈钢板用去离子水冲洗,然后置于氮气氛围中于温度60℃下干燥2h后获得表面自组装多孔氧化薄膜的不锈钢;
(4)配制氯铂酸溶液,将氯铂酸溶于乙醇溶液中,配制成浓度为0.5mmol/L的氯铂酸溶液;
(5)浸泡,将步骤(3)制备的表面自组装多孔氧化薄膜的不锈钢板浸泡于步骤(4)配制的氯铂酸溶液中,并于恒定温度30~50℃下浸泡处理10~24h;
(6)高温固化,浸泡处理后,用去离子水冲洗不锈钢板表面,然后在氮气氛围下于50℃~80℃固化2h。
4.根据权利要求3所述的制备方法,其特征在于:步骤(2)所述的电压上升速率为1V/s。
5.根据权利要求3所述的制备方法,其特征在于:步骤(2)中的氧化时间为100s。
6.根据权利要求3所述的制备方法,其特征在于:步骤(4)所述的乙醇溶液为无水乙醇与去离子水的体积比为4:1混合而成。
7.根据权利要求3所述的制备方法,其特征在于:步骤(5)所述的浸泡工艺为在40℃下浸泡16h。
8.根据权利要求3所述的制备方法,其特征在于:步骤(6)中所述的固化温度为60℃。
9.根据权利要求1~8任一项所述的原位沉积纳米pt的表面改性不锈钢于电解析氢实验中作为电极的应用。
10.根据权利要求9所述的应用,其特征在于:电解溶液为Na2SO4溶液。
CN201810662015.2A 2018-06-25 2018-06-25 一种原位沉积纳米pt的表面改性不锈钢及其应用 Active CN108754580B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810662015.2A CN108754580B (zh) 2018-06-25 2018-06-25 一种原位沉积纳米pt的表面改性不锈钢及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810662015.2A CN108754580B (zh) 2018-06-25 2018-06-25 一种原位沉积纳米pt的表面改性不锈钢及其应用

Publications (2)

Publication Number Publication Date
CN108754580A true CN108754580A (zh) 2018-11-06
CN108754580B CN108754580B (zh) 2019-08-20

Family

ID=63976841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810662015.2A Active CN108754580B (zh) 2018-06-25 2018-06-25 一种原位沉积纳米pt的表面改性不锈钢及其应用

Country Status (1)

Country Link
CN (1) CN108754580B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109930156A (zh) * 2019-03-04 2019-06-25 无锡广兴东茂科技有限公司 一种用于型钢除锈防腐的方法
CN114855209A (zh) * 2022-04-16 2022-08-05 苏州科技大学 一种硒化不锈钢/铂复合电极及其制备方法与应用
CN114855209B (zh) * 2022-04-16 2024-05-17 苏州科技大学 一种硒化不锈钢/铂复合电极及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763252A (zh) * 2004-10-01 2006-04-26 培尔梅烈克电极股份有限公司 析氢阴极
CN101249436A (zh) * 2008-02-27 2008-08-27 浙江大学 不锈钢丝网阳极氧化膜金属蜂窝催化剂的制备方法
CN101352683A (zh) * 2008-09-12 2009-01-28 南京大学 担载型纳米Pt(Pt-M)/载体催化剂制备方法
CN105483799A (zh) * 2015-12-13 2016-04-13 华北电力大学(保定) 一种不锈钢表面微孔结构的制备方法
CN107012494A (zh) * 2017-03-16 2017-08-04 东北大学 一步法制备以金属或合金为基体的金属氧化物负载纳米催化剂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1763252A (zh) * 2004-10-01 2006-04-26 培尔梅烈克电极股份有限公司 析氢阴极
CN101249436A (zh) * 2008-02-27 2008-08-27 浙江大学 不锈钢丝网阳极氧化膜金属蜂窝催化剂的制备方法
CN101352683A (zh) * 2008-09-12 2009-01-28 南京大学 担载型纳米Pt(Pt-M)/载体催化剂制备方法
CN105483799A (zh) * 2015-12-13 2016-04-13 华北电力大学(保定) 一种不锈钢表面微孔结构的制备方法
CN107012494A (zh) * 2017-03-16 2017-08-04 东北大学 一步法制备以金属或合金为基体的金属氧化物负载纳米催化剂的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109930156A (zh) * 2019-03-04 2019-06-25 无锡广兴东茂科技有限公司 一种用于型钢除锈防腐的方法
CN109930156B (zh) * 2019-03-04 2021-02-05 无锡广兴东茂科技有限公司 一种用于型钢除锈防腐的方法
CN114855209A (zh) * 2022-04-16 2022-08-05 苏州科技大学 一种硒化不锈钢/铂复合电极及其制备方法与应用
CN114855209B (zh) * 2022-04-16 2024-05-17 苏州科技大学 一种硒化不锈钢/铂复合电极及其制备方法与应用

Also Published As

Publication number Publication date
CN108754580B (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
Chen et al. Corrosion resistance mechanism of a novel porous Ti/Sn-Sb-RuOx/β-PbO2 anode for zinc electrowinning
Liu et al. Surface determination and electrochemical behavior of IrO2-RuO2-SiO2 ternary oxide coatings in oxygen evolution reaction application
Marino et al. On the stability of thin-anodic-oxide films of titanium in acid phosphoric media
Lai et al. Electrochemical behaviors of co-deposited Pb/Pb–MnO2 composite anode in sulfuric acid solution–Tafel and EIS investigations
Yang et al. Effects of manganese nitrate concentration on the performance of an aluminum substrate β-PbO2–MnO2–WC–ZrO2 composite electrode material
de Mussy et al. Characterisation and behaviour of Ti/TiO2/noble metal anodes
Raghu et al. Electrochemical behaviour of titanium/iridium (IV) oxide: Tantalum pentoxide and graphite for application in vanadium redox flow battery
Cao et al. Novel Sb-doped ruthenium oxide electrode with ordered nanotube structure and its electrocatalytic activity toward chlorine evolution
Rosalbino et al. Electrocatalytic activity of crystalline Ni–Co–M (M= Cr, Mn, Cu) alloys on the oxygen evolution reaction in an alkaline environment
Zheng et al. Hydrous–ruthenium–oxide thin film electrodes prepared by cathodic electrodeposition for supercapacitors
CN1211500C (zh) 基于表面纳米构筑的金属表面防腐蚀方法
Yang et al. Electrochemical behavior of rolled Pb–0.8% Ag anodes in an acidic zinc sulfate electrolyte solution containing Cl− ions
Yang et al. Effects of current density on preparation and performance of Al/conductive coating/a-PbO2-CeO2-TiO2/ß-PbO2-MnO2-WC-ZrO2 composite electrode materials
Soares et al. Oxide loading effect on the electrochemical performance of LaNiO3 coatings in alkaline media
Wang et al. Electrochemical properties of Pb-0.6 wt% Ag powder-pressed alloy in sulfuric acid electrolyte containing Cl−/Mn2+ ions
Hu et al. Anodic deposition of nickel oxides for the nickel-based batteries
Zhang et al. Electrochemical behavior of mesh and plate oxide coated anodes during zinc electrowinning
Wu et al. A study on Ti anodic pretreatment for improving the stability of electrodeposited IrO2 electrode
Pathiraja et al. Oxygen evolution reaction of Ti/IrO 2–SnO 2 electrode: a study by cyclic voltammetry, Tafel lines, EIS and SEM
CN108328703A (zh) 钛基二氧化钛纳米管沉积锡锑氟电极的制备及其对电镀铬废水中铬抑雾剂降解的应用
Abedini et al. Anodized graphite as an advanced substrate for electrodeposition of PbO2
CN108754580B (zh) 一种原位沉积纳米pt的表面改性不锈钢及其应用
Pereira et al. Platinum-free lead dioxide electrode for electrooxidation of organic compounds
CN109985630A (zh) 一种铜镍电催化剂的制备方法
Browne et al. The Oxygen Evolution Reaction at Manganese Oxide Films in Base: Kinetics and Mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant