CN108745339A - 一种NaBH4制燃料电池用氢的催化剂及制备方法 - Google Patents

一种NaBH4制燃料电池用氢的催化剂及制备方法 Download PDF

Info

Publication number
CN108745339A
CN108745339A CN201810684197.3A CN201810684197A CN108745339A CN 108745339 A CN108745339 A CN 108745339A CN 201810684197 A CN201810684197 A CN 201810684197A CN 108745339 A CN108745339 A CN 108745339A
Authority
CN
China
Prior art keywords
catalyst
preparation
fuel cell
cell hydrogen
metal salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201810684197.3A
Other languages
English (en)
Inventor
陈庆
廖健淞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu New Keli Chemical Science Co Ltd
Original Assignee
Chengdu New Keli Chemical Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu New Keli Chemical Science Co Ltd filed Critical Chengdu New Keli Chemical Science Co Ltd
Priority to CN201810684197.3A priority Critical patent/CN108745339A/zh
Publication of CN108745339A publication Critical patent/CN108745339A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

本发明属于催化剂制备的技术领域,提供了一种NaBH4制燃料电池用氢的催化剂及制备方法。该方法以片状二维共价有机框架化合物作为模板吸附金属盐后进行共沉,然后先后在氧气气氛和还原气氛下进行热处理,最后电化学去合金化,制得层状多孔金属/合金催化剂。与传统方法相比,本发明的制备的制燃料电池用氢的催化剂,具有较宽间距的多孔合金层,结构稳定,避免了结构坍塌及副产物堵塞孔隙的问题,并且可以有效抑制金属/合金颗粒的团聚,所得材料的析氢能力强,有效提高了在制氢过程中的稳定性和使用寿命。

Description

一种NaBH4制燃料电池用氢的催化剂及制备方法
技术领域
本发明属于催化剂制备的技术领域,提供了一种NaBH4制燃料电池用氢的催化剂及制备方法。
背景技术
燃料电池是很有发展前途的新的动力电源,一般以氢气、碳、甲醇、硼氢化物、煤气或天然气为燃料,作为负极,用空气中的氧作为正极.和一般电池的主要区别在于一般电池的活性物质是预先放在电池内部的,因而电池容量取决于贮存的活性物质的量;而燃料电池的活性物质(燃料和氧化剂)是在反应的同时源源不断地输入的,这类电池实际上只是一个能量转换装置,具有转换效率高、容量大、比能量高、功率范围广、不用充电等优点,因此应用极为广泛。
燃料电池中,氢氧燃料电池以氢气作燃料为还原剂,氧气作氧化剂通过燃料的燃烧反应,将化学能转变为电能的电池,与原电池的工作原理相同。具有以下优点:产物是水,清洁环保;容易持续通氢气和氧气,产生持续电流;能量转换率较高,可以组合为燃料电池发电站,排放废弃物少,噪音低。因而其发展和应用受到广泛关注。
氢作为高效、洁净和理想的二次能源,在燃料电池乃至能源领域已经受到了全世界的广泛重视,大规模、廉价地生产氢是开发和利用氢能的重要环节之一。目前制氢的方式主要有:电解水制氢、水煤气法制氢、石油热裂的合成和天然气制氢、焦炉煤气冷冻制氢、电解食盐水的副产氢、酿造工业副产、铁与水蒸气反应制氢等。近年来,硼氢化钠由于储氢密度高、产氢纯度高和制氢温度低的优异特性成为制氢行业的重要角色。
目前国内外在制氢技术,尤其是硼氢化钠水解制氢口罩方面已取得了一定成效。其中赵斌等人发明了一种硼氢化钠水解制氢的负载型CoB催化剂及其制备方法(中国发明专利申请号201210388720.0),将TiO2载体用敏化剂溶液进行敏化处理后用化学镀溶液进行化学镀得到的CoB/Ag-TiO2催化剂,其中Co的负载量的质量百分比为1~15%,银的质量百分含量为0.2%;该发明所制备的CoB/Ag-TiO2催化剂及Mo、W改性的CoB/Ag-TiO2催化剂,对于硼氢化钠水解产氢反应具有高催化活性,而且显示出良好的重复使用能力,在空气的稳定性也非常高,非常适合于实际产氢的需要。另外,黄永民等人发明了一种用于硼氢化钠水解制氢的催化剂的载体的制备方法(中国发明专利申请号201510198878.5),包括:(1)纳米碳化硅粉体中添加造孔剂、粘结剂,挤出成型为颗粒状;(2)将颗粒状碳化硅在惰性气氛中1350~1600℃焙烧,再在马弗炉中600~800℃处理除去造孔剂;(3)将步骤(2)得到颗粒状多孔碳化硅用以下一种作表面处理:空气中煅烧,硝酸中加热回流,或水热处理,得到硼氢化钠制氢催化剂的碳化硅载体;所得载体负载催化剂成分钌后得到用于硼氢化钠水解制氢的催化剂;由于使用了耐强碱腐蚀的多孔碳化硅作为载体,机械强度大,催化剂活性寿命长;循环使用五十次催化活性基本没有降低,表现出极强的稳定性和持久性,超过大部分文献中报道制氢催化剂的寿命。
可见,现有技术中的硼氢化钠制氢,因催化剂本身结构疏松,大量氢气导致的体积膨胀容易引起催化剂结构坍塌,同时也存在副产物堵塞孔隙、催化剂表面氧化团聚,存在催化剂容易失活、稳定性差等缺点。
发明内容
针对这种情况,我们提出一种NaBH4制燃料电池用氢的催化剂及制备方法,可以有效提高硼氢化钠之中催化剂的稳定性和使用寿命。
为实现上述目的,本发明涉及的具体技术方案如下:
一种NaBH4制燃料电池用氢的催化剂的制备方法,以片状二维共价有机框架化合物作为模板吸附金属盐后进行共沉,然后先后在氧气气氛和还原气氛下进行热处理,最后电化学去合金化,制得层状多孔金属/合金催化剂,制备的具体步骤如下:
(1)使用片状二维共价有机框架化合物作为模板,浸渍于金属盐溶液中,充分吸附后取出,然后加入碱性溶液进行共沉淀,制得吸附有金属盐的有机相;
(2)将步骤(1)制得的吸附有金属盐的有机相在氧气气氛下进行热处理,去除有机相,然后在还原气氛下进行低温热处理,使层间间隙变宽,制得片层状合金;
(3)将步骤(2)制得的片层状合金通过电化学方法进行去合金化处理,制得层状多孔金属/合金催化剂。
优选的,步骤(1)所述片状二维共价有机框架化合物为全芘COF、卟啉/芘COF中的一种。
优选的,步骤(1)所述金属盐溶液包括钙盐溶液、镁盐溶液、铝盐溶液中的一种。
优选的,步骤(1)所述金属盐溶液还包括过渡金属盐溶液中的一种或几种。
优选的,步骤(1)所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液中的一种。
优选的,步骤(2)所述氧气气氛热处理的温度为80~90℃,时间为2~3h。
优选的,步骤(2)所述还原气氛热处理的温度为40~50℃,时间为1~2h。还原气氛是指在H2气氛中。
优选的,步骤(3)所述去合金化处理为除去所采用的钙、镁或铝。
一方面,共价有机框架材料是一类具有周期性和结晶性的有机多孔聚合物。共价有机框架材料由轻质元素通过共价键连接,拥有较低的密度、高的热稳定性以及固有的多孔性,在气体吸附、非均相催化、能量存储等研究领域有着广泛的应用潜力。本发明利用二维共价有机框架材料的片层状结构作为模板,负载金属盐,形成两相层层堆叠的结构,然后通过热处理除去有机框架而得到层状催化剂。另一方面,由钙、镁、铝中的一种及过渡金属中的一种或几种组成层状结构,可通过电化学去合金化处理,除去其中的钙、镁或铝,制成由过渡金属中的一种或几种形成的多孔层状催化剂,以提高比表面积及析氢能力。
本发明还提供了一种上述制备方法制备得到的NaBH4制燃料电池用氢的催化剂。
该催化剂的制备方法是以片状二维共价有机框架化合物作为模板吸附金属盐后进行共沉,然后先后在氧气气氛和还原气氛下进行热处理,最后电化学去合金化,制得层状多孔金属/合金催化剂。与传统方法相比,本发明的制备的制燃料电池用氢的催化剂,具有较宽间距的多孔合金层,结构稳定,避免了结构坍塌及副产物堵塞孔隙的问题,并且可以有效抑制金属/合金颗粒的团聚,所得材料的析氢能力强,有效提高了在制氢过程中的稳定性和使用寿命。
本发明提供了一种NaBH4制燃料电池用氢的催化剂及制备方法,与现有技术相比,其突出的特点和优异的效果在于:
1.本发明制备的制燃料电池用氢的催化剂,可以有效提高催化剂在制氢过程中的稳定性和使用寿命。
2.本发明的制备方法,通过有机相作为模板使合金材料形成层状结构,去除有机模板后获得具有较宽间距的多孔合金层,结构稳定,避免了结构坍塌及副产物堵塞孔隙的问题。
3.本发明的制得的催化剂具有多层结构,可以有效抑制金属/合金颗粒的团聚,并且使催化剂产生的气体通过层间逸出,提高了材料的析氢能力。
具体实施方式
以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
实施例1
使用全芘COF作为模板,浸渍于镁盐溶液中,充分吸附后取出,然后加入氢氧化钠溶液进行共沉淀,制得吸附有金属盐的有机相;然后将吸附有金属盐的有机相在氧气气氛下加热到86℃处理2.5h,去除有机相,然后在还原气氛下降温到44℃处理1.5h,制得片层状合金;最后将片层状合金通过电化学方法进行去合金化处理,除去所采用的钙,制得层状多孔金属/合金催化剂。
测试方法:
制氢速率:取50L NaBH4溶液作为试验对象,其中NaBH4的质量浓度为30%,NaOH的质量浓度为10%;加入1kg本发明制得的催化剂,试验温度为40℃,采用氢测试仪测定水解反应生成的氢气质量M,反应时间为T,则根据公式A=M/T计算制氢速率,分别在20min、40min、60min及90min时测定制氢产量并计算制氢速率。
所得数据如表1所示。
实施例2
使用卟啉/芘COF作为模板,浸渍于镁盐溶液中,充分吸附后取出,然后加入氢氧化钾溶液进行共沉淀,制得吸附有金属盐的有机相;然后将吸附有金属盐的有机相在氧气气氛下加热到80℃处理3h,去除有机相,然后在还原气氛下降温到40℃处理2h,制得片层状合金;最后将片层状合金通过电化学方法进行去合金化处理,除去所采用的镁,制得层状多孔金属/合金催化剂。
测试方法与实施例1一致,所得数据如表1所示。
实施例3
使用全芘COF作为模板,浸渍于铝盐溶液中,充分吸附后取出,然后加入氢氧化钙溶液进行共沉淀,制得吸附有金属盐的有机相;然后将吸附有金属盐的有机相在氧气气氛下加热到82℃处理3h,去除有机相,然后在还原气氛下降温到43℃处理2h,制得片层状合金;最后将片层状合金通过电化学方法进行去合金化处理,除去所采用的铝,制得层状多孔金属/合金催化剂。
测试方法与实施例1一致,所得数据如表1所示。
实施例4
使用卟啉/芘COF作为模板,浸渍于钙盐溶液中,充分吸附后取出,然后加入氢氧化钠溶液进行共沉淀,制得吸附有金属盐的有机相;然后将吸附有金属盐的有机相在氧气气氛下加热到90℃处理2h,去除有机相,然后在还原气氛下降温到50℃处理1h,制得片层状合金;最后将片层状合金通过电化学方法进行去合金化处理,除去所采用的钙,制得层状多孔金属/合金催化剂。
测试方法与实施例1一致,所得数据如表1所示。
实施例5
使用全芘COF作为模板,浸渍于镁盐溶液中,充分吸附后取出,然后加入氢氧化钙溶液进行共沉淀,制得吸附有金属盐的有机相;然后将吸附有金属盐的有机相在氧气气氛下加热到88℃处理2h,去除有机相,然后在还原气氛下降温到49℃处理1h,制得片层状合金;最后将片层状合金通过电化学方法进行去合金化处理,除去所采用的镁,制得层状多孔金属/合金催化剂。
测试方法与实施例1一致,所得数据如表1所示。
实施例6
使用卟啉/芘COF作为模板,浸渍于铝盐溶液中,充分吸附后取出,然后加入氢氧化钾溶液进行共沉淀,制得吸附有金属盐的有机相;然后将吸附有金属盐的有机相在氧气气氛下加热到85℃处理2.5h,去除有机相,然后在还原气氛下降温到45℃处理1.5h,制得片层状合金;最后将片层状合金通过电化学方法进行去合金化处理,除去所采用的铝,制得层状多孔金属/合金催化剂。
测试方法与实施例1一致,所得数据如表1所示。
对比例1
制备过程中,金属盐溶液中不含钙盐溶液、镁盐溶液或铝盐溶液,也无需进行电化学去合金化处理,其他制备条件与实施例6一致。
测试方法与实施例1一致,所得数据如表1所示。
表1:

Claims (9)

1.一种NaBH4制燃料电池用氢的催化剂的制备方法,其特征在于,以片状二维共价有机框架化合物作为模板吸附金属盐后进行共沉,然后先后在氧气气氛和还原气氛下进行热处理,最后电化学去合金化,制得层状多孔金属/合金催化剂,制备的具体步骤如下:
(1)使用片状二维共价有机框架化合物作为模板,浸渍于金属盐溶液中,充分吸附后取出,然后加入碱性溶液进行共沉淀,制得吸附有金属盐的有机相;
(2)将步骤(1)制得的吸附有金属盐的有机相在氧气气氛下进行热处理,去除有机相,然后在还原气氛下进行低温热处理,使层间间隙变宽,制得片层状合金;
(3)将步骤(2)制得的片层状合金通过电化学方法进行去合金化处理,制得层状多孔金属/合金催化剂。
2.根据权利要求1所述一种NaBH4制燃料电池用氢的催化剂的制备方法,其特征在于:步骤(1)所述片状二维共价有机框架化合物为全芘COF、卟啉/芘COF中的一种。
3.根据权利要求1所述一种NaBH4制燃料电池用氢的催化剂的制备方法,其特征在于:步骤(1)所述金属盐溶液包括钙盐溶液、镁盐溶液、铝盐溶液中的一种。
4.根据权利要求1所述一种NaBH4制燃料电池用氢的催化剂的制备方法,其特征在于:步骤(1)所述金属盐溶液还包括过渡金属盐溶液中的一种或几种。
5.根据权利要求1所述一种NaBH4制燃料电池用氢的催化剂的制备方法,其特征在于:步骤(1)所述碱性溶液为氢氧化钠溶液、氢氧化钾溶液、氢氧化钙溶液中的一种。
6.根据权利要求1所述一种NaBH4制燃料电池用氢的催化剂的制备方法,其特征在于:步骤(2)所述氧气气氛热处理的温度为80~90℃,时间为2~3h。
7.根据权利要求1所述一种NaBH4制燃料电池用氢的催化剂的制备方法,其特征在于:步骤(2)所述还原气氛热处理的温度为40~50℃,时间为1~2h。
8.根据权利要求1所述一种NaBH4制燃料电池用氢的催化剂的制备方法,其特征在于:步骤(3)所述去合金化处理为除去所采用的钙、镁或铝。
9.权利要求1~8任一项所述制备方法制备得到的制燃料电池用氢的催化剂。
CN201810684197.3A 2018-06-28 2018-06-28 一种NaBH4制燃料电池用氢的催化剂及制备方法 Withdrawn CN108745339A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810684197.3A CN108745339A (zh) 2018-06-28 2018-06-28 一种NaBH4制燃料电池用氢的催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810684197.3A CN108745339A (zh) 2018-06-28 2018-06-28 一种NaBH4制燃料电池用氢的催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN108745339A true CN108745339A (zh) 2018-11-06

Family

ID=63974237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810684197.3A Withdrawn CN108745339A (zh) 2018-06-28 2018-06-28 一种NaBH4制燃料电池用氢的催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN108745339A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652713A (zh) * 2021-07-31 2021-11-16 中国华能集团清洁能源技术研究院有限公司 核壳型催化剂的制备方法及其该催化剂制备的复合电极

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113652713A (zh) * 2021-07-31 2021-11-16 中国华能集团清洁能源技术研究院有限公司 核壳型催化剂的制备方法及其该催化剂制备的复合电极

Similar Documents

Publication Publication Date Title
Gao et al. Recent development of Ni/Fe‐based micro/nanostructures toward photo/electrochemical water oxidation
Han et al. Functionalised hexagonal boron nitride for energy conversion and storage
Jiang et al. Ru@ RuO2 core‐shell nanorods: a highly active and stable bifunctional catalyst for oxygen evolution and hydrogen evolution reactions
Liu et al. Issues and opportunities facing hydrolytic hydrogen production materials
Yuan et al. Effects of heat-treatment temperature on properties of Cobalt–Manganese–Boride as efficient catalyst toward hydrolysis of alkaline sodium borohydride solution
Tarasov et al. Metal hydride–Graphene composites for hydrogen based energy storage
CN102476054B (zh) 一种Ag/MnyOx/C催化剂及其制备和应用
Hung et al. An alternative cobalt oxide-supported platinum catalyst for efficient hydrolysis of sodium borohydride
Singh et al. Material-based generation, storage, and utilisation of hydrogen
Zhang et al. Doping engineering: modulating the intrinsic activity of bifunctional carbon-based oxygen electrocatalysts for high-performance zinc–air batteries
CN112058293B (zh) 氮磷共掺杂的泡沫状碳纳米片负载NiCo纳米粒子复合材料的制备方法及其产品和应用
CN111224087B (zh) 一种负载过渡金属单原子的碳复合材料及其制备方法与应用
Zhang et al. Wood‐Derived Monolithic Catalysts with the Ability of Activating Water Molecules for Oxygen Electrocatalysis
CN111211333A (zh) 一种富含二价铁位点的内凹型十二面体材料及其制备方法
CN105854881A (zh) 可见光型介孔氧化亚铜/还原石墨烯复合催化剂的制备方法
Wang et al. Porous Co–P–Pd nanotube arrays for hydrogen generation by catalyzing the hydrolysis of alkaline NaBH 4 solution
Liu et al. Recent Advances in Metal–Gas Batteries with Carbon‐Based Nonprecious Metal Catalysts
Li et al. Stabilizing highly active atomically dispersed NiN4Cl sites by Cl‐doping for CO2 electroreduction
CN114182287B (zh) 一种镍-氮化钼镍复合催化剂及其制备方法和应用
Teng et al. Selective CO 2 Reduction to Formate on Heterostructured Sn/SnO 2 Nanoparticles Promoted by Carbon Layer Networks
Sahoo et al. Activation of metal-free porous basal plane of biphenylene through defects engineering for hydrogen evolution reaction
Jing et al. Self-standing heterostructured NiCx-NiFe-NC/biochar as a highly efficient cathode for lithium–oxygen batteries
Yang et al. Transition metal nitride-based materials as efficient electrocatalysts: Design strategies and prospective applications
CN108745339A (zh) 一种NaBH4制燃料电池用氢的催化剂及制备方法
CN1290608C (zh) 过渡金属硼化物催化剂在硼氢化物水解反应制氢中的用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20181106

WW01 Invention patent application withdrawn after publication