CN108736000B - 一种Fe2O3/碳纳米管复合材料的制备方法及其应用 - Google Patents

一种Fe2O3/碳纳米管复合材料的制备方法及其应用 Download PDF

Info

Publication number
CN108736000B
CN108736000B CN201810534089.8A CN201810534089A CN108736000B CN 108736000 B CN108736000 B CN 108736000B CN 201810534089 A CN201810534089 A CN 201810534089A CN 108736000 B CN108736000 B CN 108736000B
Authority
CN
China
Prior art keywords
composite material
carbon nano
nano tube
nickel
carbon nanotube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810534089.8A
Other languages
English (en)
Other versions
CN108736000A (zh
Inventor
关明云
黄茂战
徐舟
侯程
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201810534089.8A priority Critical patent/CN108736000B/zh
Publication of CN108736000A publication Critical patent/CN108736000A/zh
Application granted granted Critical
Publication of CN108736000B publication Critical patent/CN108736000B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • H01M4/28Precipitating active material on the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/521Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of iron for aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种热分解制备Fe2O3/碳纳米管复合材料的方法。将硝酸铁和碳纳米管的混合物于管式炉中在惰性气体下保护下在设定温度下煅烧,保温一定时间后自然冷却至室温即得到Fe2O3/碳纳米管复合材料。本发明还公开了镍铁电池负极的优化的Fe2O3/碳纳米管复合材料、添加剂、粘合剂的涂膏比例配方。本方法的优点是操作简单、成本低廉,无需复杂设备,该方法制得的Fe2O3/碳纳米管复合材料作为负极材料获得的镍铁电池具有良好的循环寿命、库伦效率及比较高的能量密度和循环稳定性。

Description

一种Fe2O3/碳纳米管复合材料的制备方法及其应用
技术领域
本发明属电池材料技术领域,特别涉及一种Fe2O3/碳纳米管复合材料的制备方法及其利用该种Fe2O3/碳纳米管复合材料制备镍铁电池负极极片的方法。
背景技术
镍铁电池由美国科学家Edison和瑞典科学家Jungner在上个世纪初发明,由于循环寿命长、电极材料价格低廉、电池安全可靠、不会造成环境污染、环境适应性比较强,被应用于矿下照明、大型电站储能和机车牵引等方面。虽然镍铁电池的理论容量高(267Wh/Kg),但是由于铁负极存在自放电、易析氢导致充放电效率低、放电倍率性能较差等问题,制约了镍铁电池的发展。
镍铁电池负极材料可为铁、铁的氧化物或它们的混合物,铁的氧化物为Fe2O3或Fe3O4。铁负极的制备是将活性材料、添加剂、粘合剂、导电剂等按一定比例调和成浆料,涂敷在泡沫镍或穿孔钢带等集流体上,干燥后压片而成。由于活性材料和导电剂(导电炭黑)物理混合,不利于电子在界面的快速输运,而且电解液也不易渗透进电极内部和活性材料接触,造成活性材料利用率较低(10-20%)。人们提出解决的方法为制备铁/碳复合材料。如专利CN105552325A提出了制备Fe2O3(Fe3O4)-NiO-FeS(BiS)-碳复合材料的方法,但其给出的SEM 图不足以证明其形成了活性材料生在碳材料表面。专利 CN104466169A提出了先制备油酸铁复合物,然后和表面修饰的纳米石墨烯片反应得到前驱物,再在高温下煅烧获得铁/石墨烯复合材料,但存在用到大量有机物和操作复杂等问题。而Liu Zhaolin等 (ChemComm2011,47,12473-12475)采用水热法制备了Fe2O3/碳纳米纤维复合材料,Wang Hailiang等(Nature Commun 2012,3, 1921-1926)采用醋酸盐水解然后高温煅烧的方法制备FeOx/石墨烯复合材料,展现了高的功率密度和比容量。但上述两种方法制备成本高,不适合大批量生产。
发明内容
为解决现有技术存中Fe2O3/碳纳米纤维复合材料制备成本高,不适合大批量生产的缺陷,本发明提供一种Fe2O3/碳纳米管复合材料的制备方法。
一种Fe2O3/碳纳米管复合材料的制备方法,包括以下步骤:
步骤1:铁盐和碳纳米管混合:
在室温下将铁盐溶解于去离子水中,将碳纳米管在超声条件下分散于去离子水中形成分散液,将铁盐溶液和碳纳米管分散液超声混合,放置在干燥箱中于60~80℃下烘干;优选的,每100mg碳纳米管加 25mL去离子水。
步骤2复合材料制备:
将烘干后的材料研磨成粉末状后,于惰性气体的保护下在高温管式炉中以2~10℃/min升温到200~500℃,保温1~4h后自然冷却至室温即得到Fe2O3/碳纳米管复合材料。反应后产生的废气通入稀氢氧化钠溶液中,用于吸收硝酸铁热分解产生的NO2气体。
优选的,所述步骤1中的铁盐为九水合硝酸铁,碳纳米管与 Fe(NO3)3·9H2O的质量比为1:15~35。
优选的,碳纳米管为管径在10-50nm的多壁碳纳米管。采用工业化生产的多壁碳纳米管作为碳材料,碳纳米管表面缺陷可作为 Fe2O3生长的活性位点,硝酸铁高温下分解为Fe2O3,Fe2O3原子在碳纳米管表面活性位点生长得到Fe2O3/碳纳米管复合材料,碳纳米管不需要进行氧化处理。所得Fe2O3/碳纳米管复合材料具有高的性能,用其作为活性材料制备的镍铁电池具有较高的能量密度、功率密度和长的循环稳定性。
进一步的,所述步骤1中的烘干温度≤80℃。
进一步的,所述步骤2中的惰性气体为氮气。
一种镍铁电池负极极片的制备方法,将Fe2O3/碳纳米管复合材料、硫化亚铁、聚四氟乙烯调和成均匀的浆料涂覆在泡沫镍上烘干、压片、裁剪制作成铁负极极片,其中Fe2O3/碳纳米管复合材料:硫化亚铁:聚四氟乙烯的质量比为2400~2600:240~260:20~45。其中PTFE选自市场上销售的60%wt产品稀释成的0.1%wt水悬浮液,PTFE所用比例按照纯的PTFE计算。优选的,Fe2O3/碳纳米管复合材料:硫化亚铁: 聚四氟乙烯的质量比为2500:250:33。
有益效果:本发明采用氧化铁在碳纳米管表面生长获得Fe2O3/ 碳纳米管复合材料,该复合材料可作为活性物质材料制备镍铁电池负极,和镍正极组装成软包镍铁电池。Fe2O3生长在碳纳米管表面有利于电子在充放电过程中的快速输运,碳纳米管构成的网络结构有利于电解液的快速扩散和阻止充放电过程中的粒子团聚,组装成的电池表现出良好的电化学性能。本方法的优点是操作简单、成本低廉,无需复杂设备,该方法制得的Fe2O3/碳纳米管复合材料作为负极材料获得的镍铁电池具有良好的循环寿命、库伦效率及比较高的能量密度和循环稳定性。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为热分解法获得的Fe2O3/碳纳米管复合材料的透射电镜图;
图2为热分解法获得的Fe2O3/碳纳米管复合材料的XRD图;
图3为本发明所得产物与正极材料构成镍铁电池时的充放电曲线;
图4为本发明所得产物与正极材料构成镍铁电池时在不同电流下的比容量。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例
热分解法制备Fe2O3/碳纳米管复合材料
称取5.06g Fe(NO3)3·9H2O,然后加入5mL去离子水中使其完全溶解;称取200mg碳纳米管加入50mL去离子水中,超声30分钟使其均匀分散;Fe(NO3)3溶液加入碳纳米管分散液中,继续超声搅拌5分钟。将混合液放置在鼓风干燥箱中以80℃的温度烘干得到硝酸铁与碳纳米管的混合物,将混合物用玛瑙研钵研磨成粉末状。把研磨后物质转移至高温管式炉在氮气保护下以2℃/min的升温速率升温至300℃,保温2h,自然降至室温得到Fe2O3/碳纳米管复合材料。制备的Fe2O3/碳纳米管复合材料的透射电镜图如图1所示和XRD图如图2所示。
Fe2O3/碳纳米管复合材料作为活性物质的负极极片的制备方法
按Fe2O3/碳纳米管复合材料:硫化亚铁:PTFE=2500:250:33的质量比,称取50mgFe2O3/碳纳米管复合材料、5mg FeS、660μL PTFE悬浮液,调和成均匀的浆料涂覆在泡沫镍上烘干、压片、裁剪制作成铁负极极片。其中PTFE选自市场上销售的60%wt产品稀释成的0.1% wt水悬浮液使用,PTFE所用比例按照纯的PTFE计算。
软包镍铁电池组装
把制备的铁负极片、镍正极片(NiOH2/碳纳米复合材料)用通过有改性聚丙烯毡与可湿性聚烯烃孔膜经粘合而成的复合隔膜隔开,加入2%质量浓度的氢氧化锂、6%质量浓度的聚丙烯酸钠和30%质量浓度的氢氧化钾的电解液,然后封口制成软包镍铁电池。
电池性能测试:
将实施例制备的镍铁电池用30mA电流充2.5分钟、30mA放电至截止电压0.6V,根据其放电曲线,找其放电中压。测试的电池循环稳定性达到400循环。电池的充放电曲线见图3,
将实施例制备的镍铁电池以不同的充放电电流进行电池容量的测定,放电截止电压为0.6V,测试结果见图4。由图4可知,当充放电电流分别以15mA·cm-2、20mA·cm-2、25mA·cm-2、30mA·cm-2时容量分别可达到96.72mAh·g-1、96.39mAh·g-1、100.13mAh·g-1、108.44mAh·g-1
从上述电池的测试结果可知,使用Fe2O3/碳纳米管复合材料作为活性物质制备的电极时,可有效提高电池的能量密度和循环稳定性,这可能是由于Fe2O3生长在碳纳米管表面有效提高了Fe2O3的利用率,加快电子的输运,改善了电池的性能。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种镍铁电池负极极片的制备方法,其特征在于,将Fe2O3/碳纳米管复合材料、硫化亚铁、聚四氟乙烯调和成均匀的浆料涂覆在泡沫镍上烘干、压片、裁剪制作成镍铁电池负极极片,其中Fe2O3/碳纳米管复合材料:硫化亚铁:聚四氟乙烯的质量比为2400~2600:240~260:20~45;
所述Fe2O3/碳纳米管复合材料的制备方法,包括以下步骤:
步骤1:铁盐和碳纳米管混合:
在室温下将铁盐溶解于去离子水中,将碳纳米管在超声条件下分散于去离子水中形成分散液,将铁盐溶液和碳纳米管分散液超声混合,放置在干燥箱中于60~80℃下烘干;
步骤2复合材料制备:
将烘干后的材料研磨成粉末状后,于惰性气氛的保护下在高温管式炉中以2~10℃/min升温到200~500℃,保温1~4 h后自然冷却至室温即得到Fe2O3/碳纳米管复合材料;
所述步骤1中的铁盐为九水合硝酸铁,碳纳米管为管径在10-50 nm的多壁碳纳米管,碳纳米管与Fe(NO3)3·9H2O的质量比为1:15~35;
所述步骤2中的惰性气氛为氮气。
2.如权利要求1所述的镍铁电池负极极片的制备方法,其特征在于,Fe2O3/碳纳米管复合材料:硫化亚铁:聚四氟乙烯的质量比为2500:250:33。
CN201810534089.8A 2018-05-29 2018-05-29 一种Fe2O3/碳纳米管复合材料的制备方法及其应用 Active CN108736000B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810534089.8A CN108736000B (zh) 2018-05-29 2018-05-29 一种Fe2O3/碳纳米管复合材料的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810534089.8A CN108736000B (zh) 2018-05-29 2018-05-29 一种Fe2O3/碳纳米管复合材料的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN108736000A CN108736000A (zh) 2018-11-02
CN108736000B true CN108736000B (zh) 2021-08-24

Family

ID=63936655

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810534089.8A Active CN108736000B (zh) 2018-05-29 2018-05-29 一种Fe2O3/碳纳米管复合材料的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN108736000B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947292A (en) * 1971-02-18 1976-03-30 Westinghouse Electric Corporation Preparation of an alkaline iron electrode material using sulfur acids
CN102214822A (zh) * 2010-04-09 2011-10-12 国立清华大学 负极电极复合材料其制法及使用其的电化学装置
CN104064823A (zh) * 2014-06-19 2014-09-24 杭州纽普新能源有限公司 胶体电解液铁镍蓄电池及其制造方法
CN105375009A (zh) * 2015-11-17 2016-03-02 山东玉皇新能源科技有限公司 一种稳定型氮掺杂碳纳米管与氧化铁复合负极材料及其制备方法
CN107958996A (zh) * 2017-12-15 2018-04-24 四川大学 铁-储氢复合负电极、镍基蓄电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3947292A (en) * 1971-02-18 1976-03-30 Westinghouse Electric Corporation Preparation of an alkaline iron electrode material using sulfur acids
CN102214822A (zh) * 2010-04-09 2011-10-12 国立清华大学 负极电极复合材料其制法及使用其的电化学装置
CN104064823A (zh) * 2014-06-19 2014-09-24 杭州纽普新能源有限公司 胶体电解液铁镍蓄电池及其制造方法
CN105375009A (zh) * 2015-11-17 2016-03-02 山东玉皇新能源科技有限公司 一种稳定型氮掺杂碳纳米管与氧化铁复合负极材料及其制备方法
CN107958996A (zh) * 2017-12-15 2018-04-24 四川大学 铁-储氢复合负电极、镍基蓄电池及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"碳纳米管负载铁基催化剂的低温脱硝性能研究";苗雷;《中国优秀硕士学位论文全文数据库(电子期刊)》;20160315;第B027-539页 *
苗雷."碳纳米管负载铁基催化剂的低温脱硝性能研究".《中国优秀硕士学位论文全文数据库(电子期刊)》.2016, *

Also Published As

Publication number Publication date
CN108736000A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
CN111362254B (zh) 一种氮掺杂碳纳米管负载磷掺杂四氧化三钴复合材料的制备方法及应用
CN105390687B (zh) 一种高性能三维碳纳米管复合负极材料及其制备方法和应用
CN108172770B (zh) 具有单分散结构特征的碳包覆NiPx纳米复合电极材料及其制备方法
CN107221654B (zh) 一种三维多孔鸟巢状硅碳复合负极材料及其制备方法
CN103500820A (zh) 一种用于锂硫电池的硫/多孔碳包覆碳纳米管复合正极材料及其制备方法
CN111613789B (zh) 纳米碳质/金属硫化物复合多孔材料及其制备方法与应用
CN111313000B (zh) 一种锂硫电池正极材料及其制备方法与应用
CN107464938B (zh) 一种具有核壳结构的碳化钼/碳复合材料及其制备方法和在锂空气电池中的应用
CN105702958B (zh) 一种二氧化锡量子点溶液及其复合材料的制备方法与应用
CN110581264B (zh) 一种高性能镍锌电池负极活性材料及其制备方法
CN111211273A (zh) 氮化铁纳米颗粒原位生长在还原氧化石墨烯上作为修饰隔膜材料的锂硫电池及其制备方法
Fu et al. Engineering MnO/C microsphere for enhanced lithium storage
CN111668453A (zh) 柔性自支撑正极材料及其制备方法和应用
CN109950503B (zh) 一种CoMoOx/碳/硫复合纳米材料的制备方法、锂离子电池负极及锂离子半电池
CN111554905B (zh) 一种氧化锌基碳复合纳米材料制备方法、产品及应用
CN113410460A (zh) 一种三维有序大孔碳包覆的硒化镍纳米晶材料、制备及应用
CN109286027B (zh) Fe纳米颗粒与碳复合材料为正极催化剂的锂氮气氧气电池
CN110745799A (zh) 磷化铁纳米立方体修饰的石墨烯/碳纳米管复合气凝胶材料,其制备方法以及锂硫电池
CN108736000B (zh) 一种Fe2O3/碳纳米管复合材料的制备方法及其应用
CN107572486B (zh) 一种纳米硫颗粒、制备及其锂硫电池正极的制备
CN108666532B (zh) 锂离子电池阳极的制备方法
CN111799467B (zh) 一种用于钠离子电池负极的MoS2/MoS2纳米复合材料及其制备方法
CN113735108A (zh) 一种多孔石墨硅碳复合材料及其制备方法、应用
CN113488645A (zh) 一种磷酸铁/碳复合材料作为锂离子电池负极材料的应用
CN112886017A (zh) 一种镍化钴催化管内结构贯通的内部高缺陷碳纳米管复合材料及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant