CN108722415B - 一种纳米棒定向组装的Co枝晶电催化剂及其制备方法 - Google Patents

一种纳米棒定向组装的Co枝晶电催化剂及其制备方法 Download PDF

Info

Publication number
CN108722415B
CN108722415B CN201810461867.5A CN201810461867A CN108722415B CN 108722415 B CN108722415 B CN 108722415B CN 201810461867 A CN201810461867 A CN 201810461867A CN 108722415 B CN108722415 B CN 108722415B
Authority
CN
China
Prior art keywords
titanium dioxide
hydrothermal reaction
solution
dendrite
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810461867.5A
Other languages
English (en)
Other versions
CN108722415A (zh
Inventor
阳晓宇
余豪争
周青
王永
常刚刚
田歌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201810461867.5A priority Critical patent/CN108722415B/zh
Publication of CN108722415A publication Critical patent/CN108722415A/zh
Application granted granted Critical
Publication of CN108722415B publication Critical patent/CN108722415B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

本发明公开了一种纳米棒定向组装的Co枝晶电催化剂及其制备方法。是由纳米棒定向组装而成的微米枝晶,微米枝晶的尺寸为5~15μm,纳米棒的长度为3~10μm,直径为0.3~1μm。配置均三苯甲酸和二氧化钛P25的乙醇水溶液,搅拌至溶液均一;加入水热反应釜升温80‑120℃水热反应12‑24h,然后洗涤,烘干得到修饰的二氧化钛P25;加入到六水合氯化钴水溶液中,搅拌并加入氢氧化钠水溶液、水合肼;加入水热反应釜中,150‑200℃水热反应0.5‑1.5h。本发明获得的纳米棒定向组装的Co树枝状晶体可提高材料活性位点的暴露比例,促进电析氧进程,为通常Co金属材料的结构和应用范围的拓展提供了新思路。

Description

一种纳米棒定向组装的Co枝晶电催化剂及其制备方法
技术领域
本发明属于无机化学合成技术领域,具体涉及一种由纳米棒定向组装的Co枝晶电催化剂材料及其制备方法。
背景技术
随着能源需求与日俱增,环境日益恶化,亟待发展可持续、无化石燃料;电解水受到国内外电催化界的极大关注,然而产氧半反应比产氢半反应慢,制约了电解水的发展。虽然Ru和Ir基催化剂具有优良的电解水产氧性能;但是Ru和Ir在地球中的含量稀少,价格昂贵,限制了Ru和Ir基基催化材料的实际应用。对于过渡金属Co等非Pt材料,其储量丰富,价格便宜,具有良好的电析氧性能。纳米级的Co金属颗粒具有良好的电催化产氧能力,但是长期稳定性差,容易团聚;微米块体Co金属,由于比表面积小,暴露的产氧活性位点少,导致较差的产氧性能。因此Co类过渡金属的氧化物,磷化物,氮化物等被广大学者研究。
发明内容
本发明目的在于提供一种纳米棒定向组装的Co枝晶电催化剂及其制备方法,制备方法简单,且产量大,在修饰过的二氧化钛P25的诱导下,形成纳米棒定向组装Co枝晶电催化剂材料。
为达到上述目的,采用技术方案如下:
一种纳米棒定向组装的Co枝晶电催化剂,所述Co枝晶电催化剂是由纳米棒定向组装而成的微米枝晶,微米枝晶的尺寸为5~15μm,纳米棒的长度为3~10μm,直径为0.3~1μm。
上述纳米棒定向组装的Co枝晶电催化剂的制备方法,包括以下步骤:
1)配置均苯三甲酸和二氧化钛P25的乙醇水溶液,搅拌至溶液均一;加入水热反应釜升温至80-120℃水热反应12-24h,然后洗涤,烘干得到修饰的二氧化钛P25;
2)在六水合氯化钴水溶液中,加入所得修饰的二氧化钛P25,搅拌并加入氢氧化钠水溶液,再加入水合肼,搅拌至溶液均一;
3)加入水热反应釜中,150-200℃水热反应0.5-1.5h。
按上述方案,所述的六水合氯化钴水溶液的浓度为0.1mol/L,氢氧化钠水溶液的浓度为25mol/L。
按上述方案,步骤2中二氧化钛P25的浓度为0.01~0.156mol/L,水合肼的浓度为2.5mol/L。
上述纳米棒定向组装的Co枝晶电催化剂作为电化学析氧催化剂的应用。
本发明的有益效果:
本发明首先通过将适量的经过修饰的二氧化钛P25放入溶液中,控制体系中二氧化钛P25的含量;然后加入一定水合肼用量,经水热反应,并控制水热温度和水热时间,最终可形成具有纳米棒定向组装的Co树枝状微晶,具有结构稳定性。
本发明获得的纳米棒定向组装的Co树枝状晶体可提高材料活性位点的暴露比例,促进电析氧进程,为通常Co金属材料的结构和应用范围的拓展提供了新思路。
附图说明
图1:实施例1中制得纳米棒定向组装的Co枝晶电催化剂的XRD图。
图2:实施例1中制得纳米棒定向组装的Co枝晶电催化剂的SEM图。
图3:实施例1中制得纳米棒定向组装的Co枝晶电催化剂的OER图。
图4:实施例2中制得纳米棒定向组装的Co枝晶电催化剂的XRD图。
图5:实施例2中制得纳米棒定向组装的Co枝晶电催化剂的SEM图。
图6:实施例2中制得纳米棒定向组装的Co枝晶电催化剂的OER图。
图7:实施例3中制得纳米棒定向组装的Co枝晶电催化剂的XRD图。
图8:实施例3中制得纳米棒定向组装的Co枝晶电催化剂的SEM图。
图9:实施例3中制得纳米棒定向组装的Co枝晶电催化剂的OER图。
具体实施方式
以下实施例进一步阐释本发明的技术方案,但不作为对本发明保护范围的限制。
实施例1:
(1)称取3.0g均苯三甲酸和0.6g二氧化钛P25,将两者一起溶解在由5ml乙醇和10ml去离子水配制的溶液中,搅拌至溶液均一;
(2)将制备好的溶液倒入干净的水热反应釜中,100℃水热反应24h,然后洗涤,烘干;
(3)分别配置0.1mol/L六水合氯化钴水溶液,25mol/L氢氧化钠水溶液;
(4)量取10ml在步骤(3)得到的六水合氯化钴水溶液于烧杯中,加入150mg在步骤(2)得到的二氧化钛P25,搅拌获得均一溶液后再加入0.5ml步骤(3)得到的氢氧化钠水溶液,搅拌获得均一溶液后再加入1.5ml水合肼,搅拌至溶液均一;
(5)将制备好的溶液倒入干净的水热反应釜中,200℃水热反应1.5h。
本实施例所得纳米棒定向组装的Co枝晶的X射线衍射图见图1。根据XRD图,我们可以清晰看到二氧化钛和钴的衍射峰,而且二氧化钛P25衍射峰很强,说明含量比较多。
SEM图见图2,产物为纳米棒定向组装的枝晶,微米枝晶的尺寸为5~15μm,纳米棒的长度为3~10μm,直径为0.3~1μm;从SEM图中可以看到大量的25nm的二氧化钛P25颗粒存在。
在碱溶液体系中对催化剂材料进行电化学性能测试,得到OER图如图3所示。在10mA/cm2处所对应的电压值为1.686V,过电位为456mV,其过电位较大的原因是二氧化钛P25含量过多,覆盖了Co枝晶的活性位点。
实施例2:
(1)称取3.0g均苯三甲酸和0.6g二氧化钛P25,将两者一起溶解在由5ml乙醇和10ml去离子水配制的溶液中,搅拌至溶液均一;
(2)将制备好的溶液倒入干净的水热反应釜中,100℃水热反应24h,然后洗涤,烘干;
(3)分别配置0.1mol/L六水合氯化钴水溶液,25mol/L氢氧化钠水溶液;
(4)量取10ml在步骤(3)得到的六水合氯化钴水溶液于烧杯中,加入50mg在步骤(2)得到的P25,搅拌获得均一溶液后再加入0.5ml步骤(3)得到的氢氧化钠水溶液,搅拌获得均一溶液后再加入1.5ml水合肼,搅拌至溶液均一;
(5)将制备好的溶液倒入干净的水热反应釜中,200℃水热反应1.5h。
本实施例纳米棒定向组装的Co枝晶的X射线衍射图见图4。根据XRD图可知,当修饰过的二氧化钛P25用量减少时,XRD衍射峰明显变弱,但是依然可以看到二氧化钛P25的衍射峰。
SEM图见图5,产物为纳米棒定向组装的枝晶,微米枝晶的尺寸为5~15μm,纳米棒的长度为3~10μm,直径为0.3~1μm。
在碱溶液体系中对催化剂材料进行电化学性能测试,得到OER图如图6所示。在10mA/cm2处所对应的电压值为1.665V,过电位为435mV,其过电位依然较大,需要继续降低二氧化钛P25用量。
实施例3:
(1)称取3.0g均苯三甲酸和0.6g二氧化钛P25,将两者一起溶解在由5ml乙醇和10ml去离子水配制的溶液中,搅拌至溶液均一;
(2)将制备好的溶液倒入干净的水热反应釜中,100℃水热反应24h,然后洗涤,烘干;
(3)分别配置0.1mol/L六水合氯化钴水溶液,25mol/L氢氧化钠水溶液;
(4)量取10ml在步骤(3)得到的六水合氯化钴水溶液于烧杯中,加入10mg在步骤(2)得到的P25,搅拌获得均一溶液后再加入0.5ml步骤(3)得到的氢氧化钠水溶液,搅拌获得均一溶液后再加入1.5ml水合肼,搅拌至溶液均一;
(5)将制备好的溶液倒入干净的水热反应釜中,200℃水热反应1.5h。
本实施例纳米棒定向组装的Co枝晶的X射线衍射图见图7。根据XRD图可知,当修饰过的二氧化钛P25用量减少为10mg时,XRD衍射峰明显消失,但是依然可以看到很弱的二氧化钛P25的衍射峰。
SEM图见图8,产物为纳米棒定向组装的枝晶,微米枝晶的尺寸为5~15μm,纳米棒的长度为3~10μm,直径为0.3~1μm。
在碱溶液体系中对催化剂材料进行电化学性能测试,得到OER图如图9所示。在10mA/cm2处所对应的电压值为1.657V,过电位为427mV,其过电位依然较大,需要继续降低二氧化钛P25用量。
实施例4:
(1)称取3.0g均苯三甲酸和0.6g二氧化钛P25,将两者一起溶解在由5ml乙醇和10ml去离子水配制的溶液中,搅拌至溶液均一;
(2)将制备好的溶液倒入干净的水热反应釜中,80℃水热反应24h,然后洗涤,烘干;
(3)分别配置0.1mol/L六水合氯化钴水溶液,25mol/L氢氧化钠水溶液;
(4)量取10ml在步骤(3)得到的六水合氯化钴水溶液于烧杯中,加入10mg在步骤(2)得到的P25,搅拌获得均一溶液后再加入0.5ml步骤(3)得到的氢氧化钠水溶液,搅拌获得均一溶液后再加入1.5ml水合肼,搅拌至溶液均一;
(5)将制备好的溶液倒入干净的水热反应釜中,200℃水热反应0.5h。
实施例5:
(1)称取3.0g均苯三甲酸和0.6g二氧化钛P25,将两者一起溶解在由5ml乙醇和10ml去离子水配制的溶液中,搅拌至溶液均一;
(2)将制备好的溶液倒入干净的水热反应釜中,120℃水热反应12h,然后洗涤,烘干;
(3)分别配置0.1mol/L六水合氯化钴水溶液,25mol/L氢氧化钠水溶液;
(4)量取10ml在步骤(3)得到的六水合氯化钴水溶液于烧杯中,加入10mg在步骤(2)得到的P25,搅拌获得均一溶液后再加入0.5ml步骤(3)得到的氢氧化钠水溶液,搅拌获得均一溶液后再加入1.5ml水合肼,搅拌至溶液均一;
(5)将制备好的溶液倒入干净的水热反应釜中,150℃水热反应1.5h。

Claims (1)

1.一种纳米棒定向组装的Co枝晶电催化剂的制备方法,其特征在于包括以下步骤:
1)配置均苯三甲酸和二氧化钛P25的乙醇水溶液,搅拌至溶液均一;加入水热反应釜升温至80-120℃水热反应12-24h,然后洗涤,烘干得到修饰的二氧化钛P25;
2)在浓度为0.1mol/L的六水合氯化钴水溶液中,加入所得修饰的二氧化钛P25,搅拌并加入25mol/L的氢氧化钠水溶液,再加入水合肼,搅拌至溶液均一;其中,修饰的二氧化钛P25的浓度为0.01~0.156mol/L,水合肼的浓度为2.5mol/L;
3)加入水热反应釜中,150-200℃水热反应0.5-1.5h;所得Co枝晶电催化剂是由纳米棒定向组装而成的微米枝晶,微米枝晶的尺寸为5~15μm,纳米棒的长度为3~10μm,直径为0.3~1μm。
CN201810461867.5A 2018-05-15 2018-05-15 一种纳米棒定向组装的Co枝晶电催化剂及其制备方法 Expired - Fee Related CN108722415B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810461867.5A CN108722415B (zh) 2018-05-15 2018-05-15 一种纳米棒定向组装的Co枝晶电催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810461867.5A CN108722415B (zh) 2018-05-15 2018-05-15 一种纳米棒定向组装的Co枝晶电催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN108722415A CN108722415A (zh) 2018-11-02
CN108722415B true CN108722415B (zh) 2021-03-23

Family

ID=63937486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810461867.5A Expired - Fee Related CN108722415B (zh) 2018-05-15 2018-05-15 一种纳米棒定向组装的Co枝晶电催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN108722415B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544408A (zh) * 2009-04-17 2009-09-30 中国科学院上海硅酸盐研究所 水热法制备层片状Co(OH)2或Co3O4纳米棒的方法
CN103774218A (zh) * 2014-02-13 2014-05-07 中国计量学院 一种钴纳米枝晶的可控制备方法
CN105252017A (zh) * 2015-11-12 2016-01-20 沈阳工业大学 一种二维片状组成单元自组装成三维树枝状磁性金属钴纳米材料
CN105540827A (zh) * 2015-12-17 2016-05-04 山东大学 一种基于表面定向生长纳米棒的分等级二氧化钛微球填料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101544408A (zh) * 2009-04-17 2009-09-30 中国科学院上海硅酸盐研究所 水热法制备层片状Co(OH)2或Co3O4纳米棒的方法
CN103774218A (zh) * 2014-02-13 2014-05-07 中国计量学院 一种钴纳米枝晶的可控制备方法
CN105252017A (zh) * 2015-11-12 2016-01-20 沈阳工业大学 一种二维片状组成单元自组装成三维树枝状磁性金属钴纳米材料
CN105540827A (zh) * 2015-12-17 2016-05-04 山东大学 一种基于表面定向生长纳米棒的分等级二氧化钛微球填料的制备方法

Also Published As

Publication number Publication date
CN108722415A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
Huang et al. Plasma‐induced Mo‐doped Co3O4 with enriched oxygen vacancies for electrocatalytic oxygen evolution in water splitting
Jiang et al. Bimetallic‐based electrocatalysts for oxygen evolution reaction
Yao et al. Self-assembled Ni3S2 nanosheets with mesoporous structure tightly held on Ni foam as a highly efficient and long-term electrocatalyst for water oxidation
Li et al. WO3-based materials as electrocatalysts for hydrogen evolution reaction
CN112481653B (zh) 一种富含缺陷的钼掺杂硒化钴/纳米碳电催化剂及其制备方法和应用
CN108993513B (zh) 一种掺杂不同金属离子调控镍基双金属氢氧化物的制备方法
CN112795946B (zh) 过渡金属羟基氧化物包覆的钨基析氧催化剂的制备方法
CN113481534B (zh) 低结晶度的锆掺杂的钴铁层状双氢氧化物的制备方法及其应用于电解水制氢
Cheng et al. Three-dimensional self-supporting catalyst with NiFe alloy/oxyhydroxide supported on high-surface cobalt hydroxide nanosheet array for overall water splitting
CN109371419B (zh) 一种短棒自组装成树枝状的V掺杂的Ni3S2/NF电极材料及其制备方法
Qi et al. Self-supported cobalt–nickel bimetallic telluride as an advanced catalyst for the oxygen evolution reaction
CN111001414A (zh) 结构可控的空心钴酸镍纳米线/片状氧化锰核壳阵列材料及制备方法
Das et al. The versatility of the dynamic hydrogen bubble template derived copper foam on the emerging energy applications: progress and future prospects
Dong et al. Selective phosphidation and reduction strategy to construct heterostructured porous nanorod of CoP coated on Mn3O4 as a bifunctional electrocatalyst for overall water splitting
Zhang et al. Doping of vanadium into bismuth oxide nanoparticles for electrocatalytic CO2 reduction
Hu et al. Ternary layered double hydroxide cathode materials for electrochemical energy storage: a review and perspective
Devi et al. One-Pot Hydrothermal Synthesis of Ti3C2 (MXene)-CoS2 Nanocomposite as a Bifunctional Electrocatalyst (HER/OER) for a Clean Environment
Zhao et al. Modulating zeolitic imidazolate framework-67 and its derivatives as advanced oxygen evolution reaction electrocatalysts
CN108722415B (zh) 一种纳米棒定向组装的Co枝晶电催化剂及其制备方法
CN109621959B (zh) 非晶硼酸钴纳米棒高效析氧电催化剂的制备方法及应用
CN102059128A (zh) 纳米多孔钯合金催化剂及其制备方法
WO2023279406A1 (zh) 一种负载型催化剂的制备方法及其应用
He et al. Non-precious metal-based catalysts for water electrolysis to produce H 2 under industrial conditions
CN113981468A (zh) 一种多维度镍钴基硫化物异质结电催化复合材料及其制备方法
CN113061933A (zh) 一种超薄分级结构Co@N-C纳米片及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210323

CF01 Termination of patent right due to non-payment of annual fee