CN108701964B - 半导体激光器装置 - Google Patents
半导体激光器装置 Download PDFInfo
- Publication number
- CN108701964B CN108701964B CN201680083246.7A CN201680083246A CN108701964B CN 108701964 B CN108701964 B CN 108701964B CN 201680083246 A CN201680083246 A CN 201680083246A CN 108701964 B CN108701964 B CN 108701964B
- Authority
- CN
- China
- Prior art keywords
- semiconductor laser
- layer
- laser device
- grid
- metal film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 35
- 239000002184 metal Substances 0.000 claims abstract description 33
- 229910052751 metal Inorganic materials 0.000 claims abstract description 33
- 230000007704 transition Effects 0.000 claims abstract description 6
- 238000005520 cutting process Methods 0.000 claims description 3
- 239000010419 fine particle Substances 0.000 description 14
- 230000000737 periodic effect Effects 0.000 description 8
- 238000000605 extraction Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 238000002834 transmittance Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000007689 inspection Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 239000004038 photonic crystal Substances 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000000411 transmission spectrum Methods 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation ; Circuits therefor
- H01S5/0425—Electrodes, e.g. characterised by the structure
- H01S5/04254—Electrodes, e.g. characterised by the structure characterised by the shape
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/11—Comprising a photonic bandgap structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/185—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only horizontal cavities, e.g. horizontal cavity surface-emitting lasers [HCSEL]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
- H01S5/3401—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers
- H01S5/3402—Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having no PN junction, e.g. unipolar lasers, intersubband lasers, quantum cascade lasers intersubband lasers, e.g. transitions within the conduction or valence bands
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N2015/03—Electro-optical investigation of a plurality of particles, the analyser being characterised by the optical arrangement
- G01N2015/035—Electro-optical investigation of a plurality of particles, the analyser being characterised by the optical arrangement the optical arrangement forming an integrated apparatus with the sample container
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N2021/0106—General arrangement of respective parts
- G01N2021/0112—Apparatus in one mechanical, optical or electronic block
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3581—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/14—External cavity lasers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2004—Confining in the direction perpendicular to the layer structure
- H01S5/2018—Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
- H01S5/2027—Reflecting region or layer, parallel to the active layer, e.g. to modify propagation of the mode in the laser or to influence transverse modes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/2205—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
- H01S5/2222—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
- H01S5/2227—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence
- H01S5/2228—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence quantum wells
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Semiconductor Lasers (AREA)
Abstract
半导体激光器装置具有有源层、第一层和表面金属膜。上述有源层层叠有多个量子阱层,能够通过子带间跃迁射出太赫兹波的激光。上述第一层设置在上述有源层之上,具有第一面,该第一面上以构成二维的栅格的方式设置有多个凹坑。上述表面金属膜设置在上述第一层之上,具有多个开口部。各个凹坑相对于与上述栅格的边平行的线是非对称的。上述激光穿过上述多个开口部,向与上述有源层大致垂直的方向出射。
Description
技术领域
本发明的实施方式涉及半导体激光器装置。
背景技术
在使用量子级联激光器作为太赫兹波的光源时,通过电子的子带间跃迁,能够进行30GHz~30THz的激光振荡。
在将端面发光型量子级联激光器作为光源时,需要使从端面扩展而射出的激光成为平行光的准直透镜,激光器装置的外形变大。
现有技术文献
专利文献
专利文献1:日本特开2009-231773号公报
发明内容
发明要解决的课题
提供能够高效率地射出平面波的太赫兹波的半导体激光器装置。
用于解决课题的手段
实施方式的半导体激光器装置具有有源层、第一层和表面金属膜。上述有源层层叠有多个量子阱层,能够通过子带间跃迁而射出太赫兹波的激光。上述第一层设置在上述有源层之上,具有第一面,该第一面上以构成二维的栅格(lattice)的方式设置有多个凹坑(pit)。上述表面金属膜设置在上述第一层之上,具有多个开口部。各个凹坑相对于与上述栅格的边平行的线是非对称的。上述激光穿过上述多个开口部向与上述有源层大致垂直的方向射出。
附图说明
图1是第一实施方式的半导体激光器装置的示意立体图。
图2是第一实施方式的半导体激光器装置的表面金属膜的示意平面图。
图3是关于第一实施方式的半导体激光器装置的表面金属膜的、表示相对于太赫兹波的频率的透射率的曲线图。
图4是表示表面金属膜的变形例的示意平面图。
图5是表示表面金属膜的配置的其他例的示意平面图。
图6是第一实施方式的半导体激光器装置中的面发光部的示意平面图。
图7是面发光部的第一电极的示意平面图。
图8是凹坑部的局部示意立体图。
图9是表示相对于凹坑数的电流注入均匀度依存性以及相对光提取效率依存性的曲线图。
图10是第二实施方式的半导体激光器装置的示意立体图。
图11是比较例的激光器装置的构成图。
具体实施方式
以下,参照附图,对本发明的实施方式进行说明。
图1是第一实施方式的半导体激光器装置的示意立体图。
半导体激光器装置5具有有源层25、第一层27和表面金属膜80。有源层25层叠有多个量子阱层,能够通过子带间跃迁射出太赫兹波的激光。另外,本说明书中,所谓太赫兹波,设为30GHz以上、30THz以下。
第一层27设置在有源层25之上,具有第一面21a,该第一面21a设置为,由多个凹坑101构成二维的栅格。表面金属膜80设置在第一层27之上,设有多个开口部80a。开口部80a例如能够做成金属网眼的间隙等。
各个的凹坑101的平面形状相对于与栅格的边平行的线是非对称的。此外,激光60穿过多个开口部80a向与有源层25的表面大致垂直的方向出射。穿过表面金属膜80的开口部80a而被射出的激光61的光强度利用测辐射热计等检测器90来测量。另外,本说明书中,大致垂直的方向设为相对于有源层25的表面为81度以上且99度以下。
本实施方式中,半导体激光器装置5还具有第一电极50,该第一电极50设置在第一层27与表面金属膜80之间,与第一层27的表面电连接但与表面金属膜80绝缘。图1中,表面金属膜80被图示为与第一电极50及第一层27的表面分离,但实际上夹着绝缘体等而层叠。
层叠体21具有第一层27、有源层25和第二层。在层叠体21的第一面21a,以二维栅格状设有具有开口端的多个凹坑101,作为周期性结构PC(光子晶体)起作用。例如,凹坑101被设为从层叠体21的第一面21a朝向深度方向切出三棱锥状的区域后的形状。
激光60能够在有源层25内沿QCL光谐振方向300进行光谐振,由周期性结构PC选择模式,进而通过衍射效应,沿与第一面21a大致垂直的光轴,被从第一面21a射出。即,从第一电极50起的下部的区域作为面发光部发挥功能。向层叠体21的上下供给电压。
图2是第一实施方式的半导体激光器装置的表面金属膜的示意平面图。
该图中,相对于4个凹坑101,设有表面金属膜80的1个开口部80a。激光60从面发光部向与有源层25的表面大致垂直向上的方向射出,该激光60穿过开口部80a向外部射出。激光60成为向箭头的方向偏光的TM(Transverse Magnetic:横向磁场)波。
关于构成周期性结构PC的正方栅格,在XY面内将2个正交的边D、E的交点设为栅格点G,将其栅格间隔设为M。栅格点G例如能够考虑是凹坑101的平面形状的重心等。各个凹坑101设为相对于正方栅格的2个边D、E中的1边分别非线对称。另外,栅格也可以不是正方栅格而是2边正交的栅格。
太赫兹波的一部分能够穿过开口部80a。例如,通过改变开口部80a的形状、尺寸,能够使波长为开口部80a的宽度以上的太赫兹波的透射率为50%以上。此外,设有开口部80a的表面金属膜80作为外部(LC)谐振器对太赫兹波起作用。如果包含电介质的微粒90附着在表面金属膜80的开口部80a附近,则外部谐振器的谐振频率变化。因此,透射光谱的峰值频率偏移。即,第一实施方式通过对表面金属膜80使用超材料,能够高效率地射出平面波太赫兹波。
此外,在第一实施方式的半导体激光器装置5中,由于使表面金属膜80为外部谐振器,所以能够使透射峰值频率偏移。通过检测透射峰值频率的偏移,能够进行微粒的检测。例如,设包含微生物、大肠菌等细菌的微粒90附着在开口部80a的表面金属膜80的开口部80a附近。
如果激光的波长接近于可见光,则由微粒90引起的透射率的变化减少与微粒90的截面积相当的区域的量,因此是比较小的。相对于此,如果激光的波长接近于太赫兹波,则即使微粒90的量较少,谐振频率的偏移量也较大,从而透射率的变化涉及较宽的频率范围。因此,能够高精度地检测微粒90的有无。微粒90包含PM2.5等。
图3是关于第一实施方式的半导体激光器装置的表面金属膜的、表示相对于太赫兹波的频率的透射率的曲线图。
纵轴是透射率(%),横轴是太赫兹波的频率(THz)。在将大肠菌固定化之后,使水滴下后测量了透射光谱。分别用虚线表示初始状态,用点线表示大肠菌固定化后,用实线表示水的滴下后。透射光谱强度能够用分光计等测量。
若将大肠菌固定化,峰值频率相对于初始状态下降了大致25GHz。若使水滴下,则峰值频率下降了大致300GHz(透射率为约33%)。相对于水的太赫兹波的吸收系数为可见光的吸收系数的大致10 6倍等,是较高的。因此,向固定化了的微粒90滴下了水之后的谐振频率的偏移量变大,微粒90的检测精度提高。
另外,仅为不含微粒90的水的情况下的谐振频率的偏移量大于存在微粒90时的偏移量。激光60的单一波长例如能够设定在包含初始光谱的峰值附近和将水滴下后的微粒光谱的峰值附近在内的范围内。
图4是表示表面金属膜的变形例的示意平面图。
在图4的变形例中,开口部80a的平面形状为十字。另外,在将微粒90直接置于表面金属膜80上的情况下,半导体激光器装置5的芯片也可以在测量后替换。如果放置对太赫兹波透明的板之上的微粒90,则不需要更换芯片。
图5是表示表面金属膜的开口部的配置的其他例的示意平面图。
开口部的间距也可以与二维衍射光栅的间距M相同。或者,开口部的间距不需要是二维衍射光栅的间距M的整数倍。即,开口部80a配置为使谐振频率错开即可。
图6是第一实施方式的半导体激光器装置中的面发光部的示意平面图。
凹坑101成为从层叠体21的第一面21a朝向下方切下三棱锥或截三棱锥等而得到的形状。另外,凹坑101的形状不限于此。该图中,凹坑101的开口端用直角三角形表示。夹着直角的2个边分别平行于框部50a、50b的2个边,斜边平行于第1电极50的条形部50c。
有源层25是包含阱层和势垒层的量子阱层所构成的子带间跃迁发光区域、和缓和区域交替层叠的结构。量子阱例如包含掺杂有Si且由In 0.669Ga 0.331As构成的阱层、和掺杂有Si且由In 0.362Al 0.638As构成的势垒层。量子阱层更优选的是由至少2个阱层和多个势垒层交替层叠而成的多重量子阱(MQW:Multi-Quantum Well)构造。此外,缓和区域也能够包含量子阱层。
QCL是偏光方向与有源层25的表面平行的TM(Transverse Magnetic:横向磁)偏光,如像pn结面发光激光器那样将有源层在表面和背面夹着,这样,在谐振器反射镜中偏光与光的行进方向一致从而不发生受激发射。即,不可能实现VCSEL(Veryical CavitySurface Emitting Laser:面发光型激光器)。
对此,第一实施方式的QCL中,受激发射光的行进方向是与有源层25的表面平行的方向,所以受激发射光能够谐振且放大。进而,在是周期性的、且周期性结构中具有各向异性的构造的情况下,能够在与有源层25的表面大致垂直的方向上提取受激发射光。即,能够在比到目前为止仅能由QCL实现的中红外区域长的波长区域,实现面发光型的激光器。
面发光型激光器不需要如端面发光型激光器那样通过劈裂(cleaving)而形成谐振器,能够防止由劈裂引起的成品率下降。进而,端面发光型激光器由于通过劈裂才首先形成谐振器,所以需要在劈裂后进行检查,与能够保持晶圆的状态用自动探测器等进行检查的LED等相比,花费检查的成本。
对此,第一实施方式的QCL能够在晶圆状态下通过自动探测器进行评价,在检查成本及成品率方面,能够期待降低成本的显著效果,容易实现到目前为止高价的QCL的低价格化、量产化。
图7是面发光部的第一电极的示意平面图。
条形部50c设置为,宽度为L1,在与条形部50c正交的方向上间距为L2。在条形部50c所夹着的区域中,配置有多个凹坑101。
图8是凹坑部的局部示意立体图。
层叠体21中,能够在第一层27之上还具有接触层28。此外,能够在第一面21a之上设置SiO 2等的绝缘体层40。另外,若在凹坑内还设置SiO 2等的绝缘体层,则能够将表面金属膜80平坦化。
图9是表示相对于凹坑数的电流注入均匀度依存性以及相对光提取效率依存性的曲线图。
横轴表示电极的条形部50c的1周期内的凹坑数,纵轴表示电流注入的均匀度以及相对光提取效率。关于电流注入的均匀度,在第一电极50的条形部50c具有一维周期性结构的情况下,将沿着与条形部50c正交的方向的1周期内包含2个凹坑的情况设为100来进行标准化。
此外,关于相对光提取效率,在第一电极50的条形部50c具有一维周期性结构的情况下,将在沿着与条形部50c正交的方向的1周期内包含50个凹坑的情况设为100而标准化。
随着沿与条形部50c正交的方向的1周期内的凹坑101的数量增加,电流注入的均匀度下降但相对光提取效率增加。即,通过将1周期内的凹坑101的数量设为5以上且20以下,能够兼顾电流注入的均匀度和激光的提取效率。这样,根据第一电极50的开口部50d的面积与电流注入的效率的关系、以及第一电极50的周期性结构对光提取时的衍射效应带来影响的关系,求取最优解。
图10是第二实施方式的半导体激光器装置的示意立体图。
第二实施方式的半导体激光器装置中,没有设置第一电极。即,表面金属膜80作为第一电极发挥功能,对面发光部供给电压。第二实施方式由于不需要第一电极,从而能够使制造工序简单,容易降低成本。在更换半导体激光器装置5的芯片的情况下,低成本是优选的。在图10中,将表面金属膜80和面发光部的表面(第一层27的表面)分离而图示,但实际上是紧密接合的。
图11是比较例的激光器装置的结构图。
作为光源的半导体激光器元件105设为射出单一模式的激光的端面发光型的QCL。端面发光型QCL从脊波导(ridge waveguide)向与其端面正交的方向射出激光。该情况下,光束发散,其断面为椭圆形状。因此,用准直透镜200等使发散的射出光成为平行光。
从光源105照射出的平行光在被反射板180反射后,被透镜202聚光而向测辐射热计等检测器190入射,其光强度被检测。反射板180能够设为具有开口部的金属板。太赫兹波下的这样的光学结构使激光器装置的平面形状为几十cm×几十cm等而成为大型,其调整也并不容易。
对此,根据本实施方式的半导体激光器装置,从面发光部向有源层25的大致垂直上方射出太赫兹波。因此,不需要复杂的结构且大型的光学系统,所以能够实现能够高效率地射出平面太赫兹波并且小型的半导体激光器装置。
对本发明的几个实施方式进行了说明,这些实施方式是作为例子提示的,并不意欲限定发明的范围。这些新的实施方式能够以其他各种方式实施,在不脱离发明主旨的范围内能够进行各种省略、替换、变更。这些实施方式及其变形包含在发明的范围及主旨中,并且包含在权利要求记载的发明及其等同范围内。
Claims (9)
1.一种半导体激光器装置,其中,
具备:
有源层,层叠有多个量子阱层,能够通过子带间跃迁射出太赫兹波的激光;
第一层,设置在上述有源层之上,具有位于远离上述有源层一侧的第一面,该第一面上以构成二维的第一栅格的方式设置有多个凹坑;以及
表面金属膜,设置在上述第一层之上,设有多个开口部,
各个凹坑的平面形状相对于与上述栅格的边平行的线是非对称的,
上述激光穿过上述多个开口部,向与上述有源层大致垂直的方向射出。
2.如权利要求1所述的半导体激光器装置,其中,
上述第一层的上述第一栅格由凹坑构成,该凹坑具有将上述第一层中的规定区域从上述第一面朝向深度方向切下后的形状。
3.如权利要求1所述的半导体激光器装置,其中,
上述开口部构成二维的第二栅格。
4.如权利要求2所述的半导体激光器装置,其中,
上述开口部构成二维的第二栅格。
5.如权利要求3所述的半导体激光器装置,其中,
上述第二栅格的间距与上述第一栅格的间距不同。
6.如权利要求4所述的半导体激光器装置,其中,
上述第二栅格的间距与上述第一栅格的间距不同。
7.如权利要求1~6中任一项所述的半导体激光器装置,其中,
还具备第一电极,该第一电极设置在上述第一层与上述表面金属膜之间,与上述第一层的表面电连接但与上述表面金属膜绝缘。
8.如权利要求7所述的半导体激光器装置,其中,
上述第一电极具有框部和多个条形部,上述多个条形部的两端部与框部相连结,
上述多个条形部具有规定的间距且相互平行地配置,并且与上述框部倾斜交叉。
9.如权利要求8所述的半导体激光器装置,其中,
上述第一电极的开口部的平面形状相对于与上述第一层的上述栅格的边平行的线是非对称的。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016051671A JP6808336B2 (ja) | 2016-03-15 | 2016-03-15 | 半導体レーザ装置 |
JP2016-051671 | 2016-03-15 | ||
PCT/JP2016/075859 WO2017158876A1 (ja) | 2016-03-15 | 2016-09-02 | 半導体レーザ装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108701964A CN108701964A (zh) | 2018-10-23 |
CN108701964B true CN108701964B (zh) | 2020-10-27 |
Family
ID=59851381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201680083246.7A Active CN108701964B (zh) | 2016-03-15 | 2016-09-02 | 半导体激光器装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20190081456A1 (zh) |
EP (1) | EP3432428B1 (zh) |
JP (1) | JP6808336B2 (zh) |
CN (1) | CN108701964B (zh) |
WO (1) | WO2017158876A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110718763B (zh) * | 2019-09-17 | 2020-08-04 | 北京航空航天大学 | 一种基于cmos工艺的可调谐超材料器件 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6400744B1 (en) * | 2000-02-25 | 2002-06-04 | Lucent Technologies, Inc. | Apparatus comprising a quantum cascade laser having improved distributed feedback for single-mode operation |
US6826223B1 (en) * | 2003-05-28 | 2004-11-30 | The United States Of America As Represented By The Secretary Of The Navy | Surface-emitting photonic crystal distributed feedback laser systems and methods |
US7535946B2 (en) * | 2006-11-16 | 2009-05-19 | Canon Kabushiki Kaisha | Structure using photonic crystal and surface emitting laser |
JP4906704B2 (ja) * | 2007-02-08 | 2012-03-28 | キヤノン株式会社 | 面発光レーザ、及び面発光レーザを備えた発光装置 |
US20080197369A1 (en) * | 2007-02-20 | 2008-08-21 | Cree, Inc. | Double flip semiconductor device and method for fabrication |
US7545841B2 (en) * | 2007-04-24 | 2009-06-09 | Hewlett-Packard Development Company, L.P. | Composite material with proximal gain medium |
JP4719198B2 (ja) * | 2007-09-12 | 2011-07-06 | 日本電信電話株式会社 | 半導体レーザモジュールおよびレーザ光源 |
JP5216384B2 (ja) * | 2008-03-19 | 2013-06-19 | 株式会社東芝 | 発光装置 |
JP5028529B2 (ja) * | 2008-10-14 | 2012-09-19 | 国立大学法人東北大学 | 試料分析方法 |
WO2011046648A2 (en) * | 2009-07-10 | 2011-04-21 | Massachusetts Institute Of Technology | Efficient teraherts sources based on difference-frequency generation in triply-resonant photonic resonators |
WO2011108510A1 (ja) * | 2010-03-01 | 2011-09-09 | 国立大学法人京都大学 | フォトニック結晶レーザ |
CN101895057A (zh) * | 2010-05-24 | 2010-11-24 | 中国科学院长春光学精密机械与物理研究所 | 一种互注入锁定的二维表面发射激光器阵列 |
US8805147B2 (en) * | 2011-05-17 | 2014-08-12 | Canon Kabushiki Kaisha | Waveguide, apparatus including the waveguide, and method of manufacturing the waveguide |
JP5771818B2 (ja) * | 2011-06-13 | 2015-09-02 | 国立研究開発法人理化学研究所 | メタマテリアル用の単位共振器、共振器アレイおよびメタマテリアルの製造方法 |
GB201117480D0 (en) * | 2011-10-10 | 2011-11-23 | Palikaras George | Filter |
CN202394003U (zh) * | 2011-12-19 | 2012-08-22 | 东南大学 | 一种太赫兹波高速调制器 |
CN102570307A (zh) * | 2012-02-02 | 2012-07-11 | 中国科学院上海微系统与信息技术研究所 | 一种单模大功率太赫兹量子级联激光器及其制作工艺 |
JP2013165152A (ja) * | 2012-02-10 | 2013-08-22 | Nippon Telegr & Teleph Corp <Ntt> | プラズモン薄膜レーザ |
US9088133B2 (en) * | 2012-02-28 | 2015-07-21 | Kyoto University | Two-dimensional photonic crystal surface emitting laser |
JP2013222810A (ja) * | 2012-04-16 | 2013-10-28 | Hamamatsu Photonics Kk | 半導体レーザ装置 |
JP2014027264A (ja) * | 2012-06-22 | 2014-02-06 | Canon Inc | 面発光レーザ |
US8831058B2 (en) * | 2012-09-06 | 2014-09-09 | Bae Systems Information And Electronic Systems Integration Inc. | Hyperbolic metamaterials as distributed bragg mirrors for high power VCSEL devices |
JP6213915B2 (ja) * | 2013-03-04 | 2017-10-18 | 国立大学法人京都大学 | 半導体レーザ素子 |
EP2966737B1 (en) * | 2013-03-08 | 2019-05-01 | Japan Science and Technology Agency | Two-dimensional photonic crystal surface-emitting laser |
EP3570101A1 (en) * | 2014-01-10 | 2019-11-20 | King's College London | Device and method |
JP6182230B1 (ja) * | 2016-03-15 | 2017-08-16 | 株式会社東芝 | 面発光量子カスケードレーザ |
JP2017168591A (ja) * | 2016-03-15 | 2017-09-21 | 株式会社東芝 | 半導体レーザ装置 |
-
2016
- 2016-03-15 JP JP2016051671A patent/JP6808336B2/ja active Active
- 2016-09-02 WO PCT/JP2016/075859 patent/WO2017158876A1/ja active Application Filing
- 2016-09-02 CN CN201680083246.7A patent/CN108701964B/zh active Active
- 2016-09-02 US US16/084,490 patent/US20190081456A1/en not_active Abandoned
- 2016-09-02 EP EP16894493.2A patent/EP3432428B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017168595A (ja) | 2017-09-21 |
WO2017158876A1 (ja) | 2017-09-21 |
JP6808336B2 (ja) | 2021-01-06 |
EP3432428A1 (en) | 2019-01-23 |
US20190081456A1 (en) | 2019-03-14 |
EP3432428B1 (en) | 2021-10-20 |
CN108701964A (zh) | 2018-10-23 |
EP3432428A4 (en) | 2019-12-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9893493B2 (en) | Surface emitting quantum cascade laser | |
US7352941B2 (en) | Method and apparatus for electromagnetic resonance and amplification using negative index material | |
EP3457506B1 (en) | Surface emitting quantum cascade laser | |
US8249126B2 (en) | Photonic crystal and surface emitting laser using such photonic crystal | |
US8149892B2 (en) | Structure having photonic crystal and surface-emitting laser | |
US7205941B2 (en) | Composite material with powered resonant cells | |
JP6305056B2 (ja) | 2次元フォトニック結晶面発光レーザ | |
EP1610427B1 (en) | Two-dimensional photonic crystal surface-emitting laser | |
US20020118710A1 (en) | Thin-film large-area coherent light source, filter and amplifier apparatus and method | |
US7242702B2 (en) | Thin-film large-area coherent light source, filter and amplifier apparatus and method | |
US20130266034A1 (en) | Methods and apparatuses for engineering electromagnetic radiation | |
US10014662B2 (en) | Quantum cascade laser | |
US20070075318A1 (en) | Two-dimensional photonic crystal surface-emitting laser | |
WO2004003607A2 (en) | Photonic bandgap structure | |
CN102684694A (zh) | 原子振荡器用光学模块以及原子振荡器 | |
WO2012154209A1 (en) | Highly unidirectional microcavity resonators | |
Ferrari et al. | Design and analysis of blue InGaN/GaN plasmonic LED for high-speed, high-efficiency optical communications | |
JP2023526771A (ja) | トポロジー絶縁体表面発光レーザシステム | |
Chiu et al. | Photonic crystal surface emitting lasers with naturally formed periodic ITO structures | |
CN108701964B (zh) | 半导体激光器装置 | |
JP2017188700A (ja) | 面発光量子カスケードレーザ | |
Gu et al. | Ultra-compact beam-steering device based on Bragg reflector waveguide amplifier with number of resolution points over 100 | |
EP1813981A1 (en) | Optical parametric oscillator having a semiconductor microcavity | |
JP6774400B2 (ja) | 面発光量子カスケードレーザ | |
WO2015080666A1 (en) | Light source including a nanoparticle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |