CN108696387A - 用于过程控制系统中的无线网状网络的预测性连通性诊断 - Google Patents

用于过程控制系统中的无线网状网络的预测性连通性诊断 Download PDF

Info

Publication number
CN108696387A
CN108696387A CN201810326756.3A CN201810326756A CN108696387A CN 108696387 A CN108696387 A CN 108696387A CN 201810326756 A CN201810326756 A CN 201810326756A CN 108696387 A CN108696387 A CN 108696387A
Authority
CN
China
Prior art keywords
radio node
mesh network
wireless
communication
failure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810326756.3A
Other languages
English (en)
Other versions
CN108696387B (zh
Inventor
W·G·戴安辛
N·T·迈耶
W·G·S·利奥诺
P·P·纳蒂维达德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisher Rosemount Systems Inc
Original Assignee
Fisher Rosemount Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisher Rosemount Systems Inc filed Critical Fisher Rosemount Systems Inc
Publication of CN108696387A publication Critical patent/CN108696387A/zh
Application granted granted Critical
Publication of CN108696387B publication Critical patent/CN108696387B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • H04W84/22Self-organising networks, e.g. ad-hoc networks or sensor networks with access to wired networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

用于过程控制系统中的无线网状网络的预测性无线连通性诊断包括响应于连通性状况生成预测的夹点和潜在的夹点。连通性状况是无线网状网络内通信能力的预期故障。预测的夹点是根据无线网状网络内的通信能力和通信路径的故障而生成的。潜在的夹点是根据通信能力的故障和针对每个无线节点的直接无线通信的邻居数量而生成的。潜在的夹点是具有小于阈值数量的与无线节点直接无线通信的相邻无线通信设备的无线节点。

Description

用于过程控制系统中的无线网状网络的预测性连通性诊断
技术领域
本公开内容总体涉及过程控制系统,并且更具体地,涉及预测性诊断以识别过程控制系统中的网状网络中的潜在连通性问题。
背景技术
过程控制系统广泛用于制造产品或控制过程(例如,化学制造、发电厂控制等)的制造厂和/或工厂中。过程控制系统也用于自然资源的采集,诸如,举例来说,石油和天然气钻探和处理过程等。实际上,几乎任何制造过程、资源采集过程等都可以通过应用一个或多个过程控制系统来自动化。相信过程控制系统最终还会将在农业领域得到更广泛的使用。
分布式过程控制系统(如在化学、石油或其它过程中使用的那些分布式过程控制系统)通常包括一个或多个集中式或分散式过程控制器,其经由模拟、数字或组合的模拟/数字总线或经由无线通信链路或网络通信地耦合到至少一个主机或操作员工作站以及一个或多个过程控制和仪器设备 (诸如现场设备)。通常位于工厂或其它工业环境内的过程控制器(有时称为“控制器”)接收指示过程测量结果的信号(有时称为“控制输入”),并使用由这些信号携带的信息来实施控制例程,控制例程基于控制输入和控制例程的内部逻辑使控制器生成控制信号(有时称为“控制输出”)。控制器通过总线或其它通信链路发送所生成的控制信号,以控制现场设备的操作。在某些情况下,控制器可以与由智能现场设备(诸如高速可寻址远程变送器Fieldbus(有时也称为“Fieldbus”)现场设备)实施的控制程序相配合。此外,在许多情况下,可能存在在工厂或其它工业设置中操作以执行某个不受过程控制器直接控制的功能的工厂或其它工业装备,诸如振动检测装备、旋转装备、发电机装备等。
典型地与控制器(其可以是例如阀、阀定位器、开关、变送器、和传感器(例如,温度、压力和流率传感器))相关联的现场设备可以位于过程环境内,并且通常执行物理或过程控制功能。例如,阀可以响应于从控制器接收到的控制输出而打开或关闭,或者可以向控制器发送过程参数的测量结果,使得控制器可以将该测量结果用作控制输入。诸如符合公知的 Fieldbus协议的现场设备之类的智能现场设备也可以执行控制计算、报警功能、以及通常在控制器内实施的其它控制功能。现场设备可以被配置为根据各种通信协议与控制器和/或其它现场设备进行通信。例如,工厂可以包括传统的模拟4-20mA现场设备、现场设备、Fieldbus现场设备和/ 或其它类型的现场设备。
过程控制器接收指示由现场设备获得的或与现场设备相关联的过程测量结果或过程变量的信号和/或与现场设备有关的其它信息,并且执行控制器应用,该控制器应用运行例如不同的控制模块,其做出过程控制决策、基于所接收的信息生成控制信号、并与在现场设备中正在执行的控制模块或块配合。控制器中的控制模块通过通信线路或链路将控制信号发送到现场设备,从而控制过程工厂或系统的至少一部分的操作。
来自现场设备和控制器的信息通常通过数据高速通道可用于一个或多个其它硬件设备(诸如操作员工作站、个人计算机、或计算设备、数据历史库、报告生成器、集中式数据库、或其它集中式管理计算设备),其通常但不总是置于控制室或远离较严酷的工厂环境的其它位置。这些硬件设备中的每一个通常(但不总是)跨整个过程工厂或整个过程工厂的一部分集中。这些硬件设备运行可以例如使操作员能够执行关于控制过程和/或操作过程工厂的功能的应用,诸如改变过程控制例程的设置、修改控制器或现场设备内的控制模块的操作、查看过程的当前状态、查看现场设备和控制器生成的警报、模拟过程操作以培训人员或测试过程控制软件、保存和更新配置数据库等。硬件设备、控制器和现场设备使用的数据高速通道可以包括有线通信路径、无线通信路径或有线和无线通信路径的组合。
作为示例,由艾默生过程管理公司销售的DeltaVTM控制系统包括储存在过程工厂内的不同位置处的不同设备内并由其执行的多个应用。驻留在一个或多个操作员工作站或计算设备中的配置应用使用户能够创建或更改过程控制模块并经由数据高速通道将这些过程控制模块下载到专用的分布式控制器。通常,这些控制模块由通信互连的功能块组成,这些功能块基于其输入执行控制方案内的功能,并且向控制方案内的其它功能块提供输出。配置应用还可以允许配置设计者创建或改变操作员接口,其通过查看应用来使用,以向操作员显示数据并且使操作员能够改变过程控制例程内的设置(诸如设定点)。每个专用控制器以及在一些情况下一个或多个现场设备储存并执行相应的控制器应用,该控制器应用运行向其分配并下载到其的控制模块,以执行实际的过程控制功能。可以在一个或多个操作员工作站上(或者在与操作员工作站和数据高速通道通信连接的一个或多个远程计算设备上)执行的查看应用经由数据高速通道从控制器应用接收数据,并使用操作员接口向过程控制系统设计者、操作员、或用户显示该数据,并且可以提供诸如操作者视图、工程师视图、技术人员视图等之类的许多不同视图中的任何视图。数据历史库应用通常储存在数据历史库设备中并且由其执行,该数据历史库设备收集和储存跨数据高速通道提供的一些或全部数据,而配置数据库应用可以在附接到数据高速通道的另一计算机中运行,以储存当前过程控制例程配置和与其关联的数据。替代地,配置数据库可以与配置应用位于相同的工作站中。
如上所述,操作员显示应用通常在一个或多个工作站中在全系统的基础上执行,并向操作员或维护人员提供关于控制系统或工厂内的设备的操作状态的显示。典型地,这些显示采用警报显示、控制显示、维护显示的形式,其中,警报显示接收由过程工厂内的控制器或设备生成的警报,控制显示指示过程工厂内的控制器和其它设备的操作状态,维护显示指示过程工厂内的设备的操作状态等等。这些显示通常被配置为以已知方式显示从过程工厂内的过程控制模块或设备接收的信息或数据。在一些已知的系统中,显示器具有与通信地连接到物理或逻辑元件的物理或逻辑元件相关联的图形,以接收关于物理或逻辑元件的数据。图形可以基于接收到的数据来在显示屏上改变,以例示例如储罐是半满的,例示由流量传感器等测量的流量。
传统的模拟4-20mA现场设备经由被配置为承载指示测量或控制命令的4-20mA DC信号的二线制通信链路(有时称为“回路”或“电流回路”) 与控制器通信。例如,液位变送器可以感测储罐液位,并经由回路传送与该测量结果相对应的电流信号(例如,对于0%满的4mA信号,对于50%满的12mA信号、和对于100%满的20mA信号)。控制器接收电流信号,基于电流信号来确定储罐液位测量结果,并基于储罐液位测量结果采取某些行动(例如,打开或关闭入口阀)。模拟4-20mA现场设备通常有两种类型,包括四线制现场设备和二线制现场设备。四线制现场设备通常依赖于用于通信的第一组线(即,回路),以及用于供电的第二组线。二线制现场设备依赖于回路进行通信和供电。这些二线制现场设备可以被称为“回路供电的”现场设备。
由于设计的简单性和有效性,过程工厂经常实施传统的4-20mA系统。不幸的是,传统的4-20mA电流回路一次只能传送一个过程信号。因此,在管道承载材料上的包括控制阀和流量变送器的装配(set-up)可能需要三个独立的电流回路:一个用于承载指示阀的控制命令的4-20mA信号(例如,移动阀至60%打开);第二个用于承载指示阀的实际位置的4-20mA信号(例如,使得控制器知道阀已经响应于控制命令的程度);第三个用于承载指示所测量的流量的4-20mA信号。结果,具有大量现场设备的工厂中的传统 4-20mA装配可能需要大量布线,这可能是昂贵的并且可能在建立和维护通信系统时导致复杂性。
最近,过程控制行业已经开始在过程控制环境内实施数字通信。例如,协议使用回路DC幅值来发送和接收模拟信号,而且还将AC数字载波信号叠加在DC信号上,以实现与智能现场仪表的双向现场通信。又如, Fieldbus协议在二线制总线(有时称为“区段”或“Fieldbus区段”)上提供全数字通信。这种二线制Fieldbus区段可以耦合到多个现场设备,以向多个现场设备(经由区段上可用的DC电压)提供电力,并通过现场设备实现通信(经由叠加在DC供电电压上的AC数字通信信号)。一般而言,因为连接的现场设备使用相同的区段进行通信并且并行连接,所以只有一个现场设备可以通过区段在任何给定时间发送消息。因此,区段上的通信由被指定为链路活动调度器(LAS)的设备来协调。LAS负责在连接到区段的现场设备之间传递令牌。只有具有令牌的设备可以在特定时间通过区段进行通信。
这些数字通信协议通常使得更多的现场设备能够连接到特定的通信链路,支持现场设备与控制器之间更多和更快的通信,和/或允许现场设备将更多和不同类型的信息(诸如与现场设备本身的状态和配置有关的信息) 发送到过程控制器以及控制网络中或连接到控制网络的其它设备。此外,这些标准数字协议使得不同制造商生产的现场设备能够在同一个过程控制网络内一起使用。
过程工厂内的各种设备可以以物理和/或逻辑组进行互联以创建逻辑过程,诸如控制回路。同样地,控制回路可以与其它控制回路和/或设备互连以创建子单元。子单元可以与其它子单元互连来创建单元,该单元又可以与其它单元互连以创建区域。过程工厂通常包括互连区域,并且商业实体通常包括可以互连的过程工厂。结果,过程工厂包括具有互连资产的多个级别的层次结构,并且商业企业可以包括互联的过程工厂。换而言之,与过程工厂、或过程工厂本身相关的资产可以组合在一起以形成更高级别的资产。
因此,过程控制系统设计的一个特别重要的方面涉及其中现场设备通信地耦合到彼此、耦合到过程控制系统或过程工厂内的控制器和其它系统或设备的方式。通常,使现场设备能够在过程控制系统内起作用的各种通信信道、链路和路径通常统称为输入/输出(I/O)通信网络。
用于实施I/O通信网络的通信网络拓扑和物理连接或路径可以对现场设备通信的鲁棒性或完整性具有实质影响,特别是当I/O通信网络经受与过程控制系统相关联的环境因素或状况时。例如,许多工业控制应用使现场设备及其相关联的I/O通信网络经受恶劣的物理环境(例如,高、低或高度可变的环境温度、振动、腐蚀性气体或液体等)、艰难的电气环境(例如,高噪声环境、差的电能质量、瞬态电压等)等等。在任何情况下,环境因素会损坏一个或多个现场设备、控制器等之间通信的完整性。在某些情况下,这种受损通信可能会防止过程控制系统以有效或适当的方式执行其控制例程,这可能导致降低的过程控制系统效率和/或盈利能力、装备的过度磨损或损坏、可能损坏或毁坏装备的危险状况、建筑结构、环境和/或人员等。
为了最小化环境因素的影响并确保一致的通信路径,过程控制系统中使用的I/O通信网络历来是硬接线网络,其中,接线被包裹在环境保护材料中,诸如绝缘、屏蔽和导管。而且,这些过程控制系统内的现场设备通常使用硬接线分层拓扑中通信地耦合到控制器、工作站、和其它过程控制系统部件,在硬接线分层拓扑结构中,非智能现场设备使用模拟接口(例如, 4-20mA、0-10VDC等硬接线接口或I/O板)直接耦合到控制器。智能现场设备(诸如Fieldbus设备)也经由硬接线数字数据总线耦合,数字数据总线经由智能现场设备接口与控制器耦合。
虽然硬接线I/O通信网络可以初始地提供鲁棒的I/O通信网络,但是由于环境应力(例如,腐蚀性气体或液体、振动、湿度等),它们的鲁棒性会随着时间而严重地降级。例如,由于腐蚀、氧化等原因,与I/O通信网络布线相关联的接触电阻可能显著增加。另外,布线绝缘体和/或屏蔽件可能会降级或发生故障,从而造成环境电气干扰或噪声可能更容易破坏经由I/O通信网络接线传输的信号的状况。在某些情况下,发生故障的绝缘体可能导致短路状况,从而导致相关联的I/O通信接线的完全故障。
另外,硬接线的I/O通信网络通常安装昂贵,特别是在其中I/O通信网络与分布在相对大的地理区域上的大型工业工厂或设施相关联的情况下,例如,消耗数英亩土地的炼油厂或化工厂。在许多情况下,与I/O通信网络相关联的布线必须跨越很长的距离和/或通过许多结构(例如,墙壁、建筑物、装备等)的下方或周围。这种长的布线行进通常涉及大量的劳动力、材料和费用。此外,这种长的布线行进由于布线阻抗和耦合电干扰(这两者都可能导致不可靠的通信)而尤其容易受到信号衰减的影响。
此外,当需要修改或更新时,这样的硬接线I/O通信网络通常难以重新配置。添加新的现场设备通常需要在新的现场设备与控制器之间安装接线。以这种方式改装过程工厂可能非常困难并且昂贵,这是由于在较老的过程控制工厂和/或系统中经常发现的较长的布线行进和空间限制。在沿着可用的布线路径等插入的导管、装备和/或结构内的高接线数量可能显著增加与将现场设备改装或添加到现有系统相关联的难度。将现有现场设备与具有不同现场布线要求的新设备交换在其中必须安装更多和/或不同接线以容纳新设备的情况下可能会出现相同的困难。这种修改通常可能导致重大的工厂停机。
已经使用无线I/O通信网络来减轻与硬接线I/O网络相关联的一些困难,并且减轻在过程控制系统内部署传感器和致动器所涉及的成本。无线 I/O通信网络也被建议用于过程控制系统及其部分,这些系统及其部分对于硬接线I/O通信网络而言是相对不可访问或不适合的。例如,Shepard等人于2008年10月14日的获得授权的标题为“WirelessArchitecture And Support For Process Control Systems”的美国专利No.7,436,797(其内容通过引用明确地并入本文)公开了相对廉价的无线网状网络可以单独或与点对点通信相结合被部署在过程控制系统内,以产生可以容易地建立、配置、改变和监控的鲁棒的无线通信网络,从而使无线通信网络更鲁棒、更便宜、更可靠。
无线网状通信网络(或者网状网络拓扑)利用多个节点,每个节点不仅可以作为客户端来接收和发送其自己的数据,而且还可以作为转发器或中继以通过网络向其它节点传播数据。每个节点都连接到另一个相邻节点,并且优选连接到多个相邻节点,每个相邻节点可以连接到附加的相邻节点。其结果是提供通过网络从一个节点到另一个节点的多个通信路径的节点网络,从而创建即使通信路径被破坏或阻塞时也允许连续连接和重新配置的相对便宜、鲁棒的网络。
在无线网状网络中,每个设备(节点)都可以经由直接无线连接或者经由通过邻近设备的连接间接地连接到网关。每个设备都具有通常与设备到无线网关或邻近设备的物理接近度相关的信号强度。在其中没有直接连接到无线网关的情况下,每个设备都通过另一个具有到网关或另一个设备的对等设备连接到网关。用于将另一节点与网关的连接链接到一起的中继节点的数量被称为连接路径中的跳数。每个设备使用连接路径,并且其中建立设备到设备连接的顺序被称为通信路由。
在过程控制中使用的一个这样的无线网状网络是由HART通信基金会开发的网状网络(诸如由国际标准IEC 62591描述的网状网络)。一般而言,网状网络是具有网关和多个设备(无线节点)的多跳通信网络。网络以网状拓扑结构组织,并且每个设备都能够为其它设备路由消息,以便将数据中继到网关或从网关中继数据。设备能够自我诊断,并生成它们自己的警告和无线通信统计数据。还存在附加诊断功能以识别无线节点何时为夹点(pinch point)。夹点是无线节点,其故障将导致至少一个其它无线节点不再具有到无线网状网络的网关的通信路径。在考虑无线网状网络的情况下,可以收集和分析关于设备和通信连通性状况的数据 (诸如电池状况、差的通信(例如,低通信路径稳定性))和夹点设备。然而,尽管这种诊断提供了关于设备和网络的现有连通性状况的信息,但缺乏对连通性状况可能对无线网状通信网络的其余部分产生的潜在影响的诊断。
发明内容
无线网状网络内的连通性状况(诸如,识别的夹点、低电池电量状况和低通信路径稳定性)触发对无线网状网络的其余部分的预测分析。连通性状况是无线网状网络内通信能力的预期故障。例如,被识别为夹点设备的无线节点的故障可能导致网络内的其它无线节点失去与无线网状网络的网关的通信。类似地,无线节点的电池故障可能在无线网状网络中的其它无线节点之外创建夹点。这样的连通性状况还可能导致使得无线节点具有少于最佳数量的相邻无线通信设备(即,网关和/或直接通信中的其它无线节点)的故障,使得它需要附加的相邻设备。预测分析根据通信能力故障生成预测的夹点和潜在的夹点。换言之,如同通信能力已经发生故障那样分析无线网状网络,以便识别将由于通信故障而变成夹点的无线节点,或者由于具有少于直接无线通信中的相邻无线通信设备的最佳数量而可能变成潜在夹点的无线节点。以这种方式,可以识别无线网状网络的预测状态。
附图说明
图1是根据本公开内容的分布式控制系统的组合框图和示意图;
图2是根据本公开内容的在过程环境的一部分内的无线通信网络的组合框图和示意图;
图3是根据本公开内容的其中无线网状网络包括对应于各个现场设备的多个无线节点的无线通信环境的示意图;
图4是例示了根据本公开内容的以表格形式的图3的无线网状网络的拓扑的图表;
图5是根据本公开内容的用于识别无线网状网络内的夹点和取决于夹点的无线节点的夹点分析例程的流程图;
图6是根据本公开内容的用于预测通信设备故障和通信路径故障的预测性诊断例程的流程图;
图7是根据本公开内容的其中图3的无线网状网络具有预测的通信设备故障的无线通信环境的示意图;
图8是根据本公开内容的其中图7的无线网状网络在夹点处具有预测的通信设备故障的无线通信环境的示意图;
图9是根据本公开内容的其中图3的无线网状网络具有预测的通信路径故障的无线通信环境的示意图;
图10是用于在通信故障的情况下预测夹点的图6的预测性夹点分析例程的流程图;
图11是用于在通信故障的情况下预测需要附加邻居的无线节点的图6 的预测性邻居分析例程的流程图;
图12是根据本公开内容的其中图3的无线网状网络具有预测的通信路径故障和预测的通信设备故障的无线通信环境的示意图;和
图13是根据本公开内容的以表格形式例示图12的无线网状网络的拓扑的图表。
具体实施方式
图1是在过程控制系统、过程工厂或其它工业设置10中操作的示例性过程控制网络100的框图和示意图。过程控制网络100可以包括网络骨干 105,其直接或间接地提供各个其它设备之间的连接。网络骨干105可以包括也被称为通信路径或通信链路的无线和/或有线通信信道。在各实施例中,耦合到网络骨干105的设备包括接入点72的组合,接入点72可以是手持式或其它便携式计算设备(诸如膝上型计算机、平板电脑、手持式智能设备、便携式测试设备(PTD)等),以及诸如个人计算机、工作站等的主计算机13,它们各自具有显示屏幕14以及各种其它输入/输出设备(未示出)、服务器150等。
如图1所例示,控制器11经由输入/输出(I/O)卡26和28连接到现场设备15-22,其可以实施任何期望的过程控制通信协议,诸如以下中的一个或多个:HART、Fieldbus、CAN、Profibus等。在图1中,控制器11通信地连接到现场设备15-22,以执行对现场设备15-22的控制并因此对工厂的控制。通常,现场设备15-22可以是任何类型的设备,诸如传感器、阀、变送器、定位器等,而I/O卡26和28可以是符合任何期望的通信或控制器协议的任何类型的I/O设备。例如,现场设备15-22和/或I/O卡26和28 可以根据HART协议或Fieldbus协议来配置。控制器11包括实施或监督储存在存储器32中的一个或多个过程控制例程38(或其任何模块、块、或其子例程)的处理器30。一般而言,控制器11与设备15-22和主计算机进行通信,以便以任何期望的方式控制过程。此外,控制器11使用通常被称为功能块(未示出)的控制策略或方案来实施,其中,每个功能块是总体控制例程的对象或其它部分(例如,子例程),总体控制例程与其它功能块结合操作以实施过程控制系统10内的过程控制回路。功能块通常执行输入功能、控制功能、或输出功能中的一个,输入功能是诸如与变送器、传感器或其它过程参数测量设备相关联的输入功能,控制功能是诸如与执行PID、模糊逻辑等控制的控制例程相关联的控制功能,输出功能控制某个设备(诸如阀)的操作以执行过程控制系统10内的某个物理功能。当然,混合和其它类型的功能块存在并且可以被利用。功能块可以储存在控制器11或其它设备中并由它们执行。
如图1所例示,无线网关35、和无线通信网络70同样通信地耦合到网络骨干105。无线通信网络70可以包括无线设备(也称为无线节点)40-58,其包括无线现场设备40-46、无线适配器52a和52b、接入点55a和55b、以及路由器58。无线适配器52a和52b可以分别连接到非无线现场设备48 和50。尽管图1仅描绘了连接到网络骨干105的一些设备中的单个设备,但将理解的是,每个设备都可以在网络骨干105上具有多个实例,事实上,过程工厂10可以包括多个网络骨干105。类似地,过程控制网络100可以包括多个网关和无线通信网络70。
控制器11可以经由网络骨干105和无线网关35通信地连接到无线现场设备40-46。控制器11可以操作以使用现场设备15-22和40-50中的至少一些现场设备来实施批量过程或连续过程。可以是例如由艾默生过程管理公司出售的DeltaVTM控制器的控制器11通信地连接到过程控制网络骨干 105。控制器11还可以使用与例如标准4-20mA设备、I/O卡26、28和/或任何智能通信协议(诸如Fieldbus协议、协议、 Wireless协议等)相关联的任何期望的硬件和软件,通信地连接到现场设备15-22和40-50。在图1所例示的实施例中,控制器11、现场设备15-22 和I/O卡26、28是有线设备,并且现场设备40-46是无线现场设备。
控制器11的处理器30实施或监督一个或多个过程控制例程(储存在存储器32中),其可以包括控制回路。处理器30可以与现场设备15-22和 40-50通信以及与通信连接到骨干105的其它节点通信。应该注意,本文描述的任何控制例程或模块(包括质量预测和故障检测模块或功能块)的部分可以由不同的控制器或其它设备实施或执行(如果期望的话)。同样地,将在过程控制系统内实施的本文描述的控制例程或模块可以采取任何形式,包括软件、固件、硬件等。控制例程可以以任何期望的软件格式来实施,诸如使用面向对象的编程、梯形逻辑、顺序功能图表、功能框图、或使用任何其它软件编程语言或设计范例。具体地,控制例程可以由用户通过主计算机14或接入点72来实施。控制例程可以储存在任何期望类型的存储器中,诸如随机存取存储器(RAM)或只读存储器(ROM)。同样地,控制例程可以被硬编码成例如一个或多个EPROM、EEPROM、专用集成电路(ASIC)、或任何其它硬件或固件元件。因此,控制器11可以被配置为以任何期望的方式实施控制策略或控制例程。
仍参考图1,无线现场设备40-46使用诸如协议之类的无线协议在无线通信网络70中进行通信。这种无线现场设备40-46可以直接与也被配置为进行无线通信(例如,使用无线协议)的过程控制网络100 的一个或多个其它节点直接通信。为了与未被配置为进行无线通信的一个或多个其它节点通信,无线现场设备40-46可以利用连接到骨干105的无线网关35。当然,现场设备15-22和40-46可以符合任何其它期望的一个或多个标准或协议,诸如任何有线或无线协议,包括将来开发的任何标准或协议。
无线网关35是可以提供对无线通信网络70的各种无线设备40-58的访问的供应商设备的示例。具体地,无线网关35提供无线设备40-58与过程控制网络100的其它节点(包括控制器11)之间的通信耦合。在一些情况下,无线网关35在隧穿(tunneling)有线和无线协议栈的一个或多个共享层时通过路由、缓冲、和定时服务提供与有线和无线协议栈的较低层(例如,地址转换、路由、数据包分段、优先化等)的通信耦合。在其它情况下,无线网关35可以在不共享任何协议层的有线和无线协议之间转换命令。
类似于有线现场设备15-22,无线通信网络70的无线现场设备40-46 可以执行过程工厂10内的物理控制功能(例如,打开或关闭阀或者对过程参数进行测量)。然而,无线现场设备40-46被配置为使用无线通信网络70 的无线通信协议进行通信,而有线现场设备15-22被配置为使用有线通信协议(例如,现场总线等)进行通信。因此,无线通信网络70的无线现场设备40-46、无线网关和其它无线节点52-58是无线通信数据包的生产者和消费者,而有线现场设备15-22是有线通信数据包的生产者和消费者。
在一些场景下,无线通信网络70可以包括非无线设备。例如,图1的现场设备48可以是传统的4-20mA设备,并且现场设备50可以是传统的有线HART设备。为了在网络70内通信,现场设备48和50可以经由无线适配器52a或52b连接到无线通信网络70。另外,无线适配器52a、52b可以支持诸如Fieldbus、PROFIBUS、DeviceNet等的其它通信协议。此外,无线通信网络70可以包括一个或多个网络接入点55a、55b,其可以是与无线网关35进行有线通信的单独的物理设备,或者可以与无线网关35一起提供为整体设备。无线通信网络70还可以包括一个或多个路由器58,以将数据包从一个无线设备转发到无线通信网络70内的另一个无线设备。无线设备32-46和52-58可以通过无线通信网络70的无线链路60 彼此通信并且与无线网关35通信。
在某些实施例中,过程控制网络100可以包括连接到网络骨干105的其它节点,这些其他节点使用其它无线协议进行通信。例如,过程控制网络100可以包括利用其它无线协议(诸如WiFi或其它符合IEEE802.11的无线局域网协议,诸如WiMAX(全球微波接入互操作性)、LTE(长期演进) 或其它ITU-R(国际电信联盟无线电通信部门)兼容的协议的移动通信协议,诸如近场通信(NFC)和蓝牙等的短波长无线电通信、或其它无线通信协议的一个或多个无线接入点72。通常,这样的无线接入点72允许手持式或其它便携式计算设备通过与无线通信网络70不同并且支持与无线通信网络70不同的无线协议的相应无线网络进行通信。例如,便携式计算设备可以是移动工作站或由用户在过程工厂内使用的诊断测试装备。在一些实施例中,便携式计算设备使用无线接入点72通过过程控制网络100进行通信。在一些场景下,除了便携式计算设备之外,一个或多个过程控制设备 (例如,控制器11、有线现场设备15-22、或无线设备35、40-58)也可以使用由接入点72支持的无线网络进行通信。
尽管图1例示了具有有限数量的现场设备15-22、40-50的单个控制器 11,但这仅仅是说明性的和非限制性的实施例。任何数量的控制器11可以被包括在过程控制网络100的供应商设备中,并且任何控制器11可以与任何数量的有线或无线现场设备15-22、40-50通信以控制工厂10中的过程。此外,过程工厂10还可以包括任意数量的无线网关35、路由器58、接入点55、72、主计算机13和/或无线通信网络70。
例如,可以在整个过程控制系统中部署无线网络,如上面通过引用并入的美国专利No.7,436,797中所公开的。结果,过程控制系统内的一些或全部I/O设备(诸如传感器和致动器)可以使用硬接线技术、无线技术或它们的组合来部署并通信地耦合到过程控制系统。例如,可以在控制器11、主计算机13、和现场设备15-22中的一些之间维持硬接线通信,而可以在控制器11、主计算机13、和现场设备40-50之间建立无线通信。此外,无线技术可以包括但不限于WiFi或其它符合IEEE802.11的无线局域网协议,诸如WiMAX(全球微波接入互操作性)、LTE(长期演进)或其它ITU-R (国际电信联盟无线电通信部门)兼容的协议的移动通信协议,诸如近场通信(NFC)和蓝牙等的短波长无线电通信或其它无线通信协议,以及卫星、Wi-Max、和其它远距离无线传输。具体地,无线技术可以包括任何商用现成的无线产品以传送过程控制数据。网络协议可以在无线技术之上实施,或者可以针对无线通信开发新的过程控制标准,诸如
图2例示了图1的无线通信网络70,其可以用于在图1中所例示的不同设备之间提供通信,并且具体地,在图1的控制器12(或相关联的I/O 设备22)与现场设备25-39之间,在控制器11与主工作站13之间或图1 的主工作站13与现场设备40-50之间提供通信。但是,应该理解,图2的无线通信网络70可用于在过程工厂或过程环境内的任何其它类型的设备或设备组之间提供通信。
图2的无线通信网络70被例示为包括各通信节点,其包括一个或多个基节点62、一个或多个转发器节点64、一个或多个环境节点66(在图2中被例示为节点66a和66b)和一个或多个现场节点68(在图2中被例示为节点68a、68b和68c)。一般而言,无线通信网络70的节点操作为自我修复的网状类型的通信网络(也称为无线网状网络),其中,每个节点都接收通信,判断通信最终是否去往该节点,如果不是,则转发(repeat)通信或将通信传递给通信范围内的任何其它节点。如已知的,无线网状网络中的任何节点可以与范围内的任何其它节点通信,以在无线网状网络内转发通信,并且特定的通信信号可以在到达期望的目的地之前经过多个节点。
如图2所例示,基节点62包括或通信地耦合到工作站或主计算机13,主计算机13例如可以是图1的主机或工作站13中的任何一个。虽然基节点62被例示为经由硬接线的以太网连接72链接到到工作站13,但是可以替代地使用任何其它通信链路。基节点62包括无线转换或通信单元74和无线收发机76,以影响通过网络70的无线通信。具体地,无线转换单元74从主计算机13获取信号,并将这些信号编码成无线通信信号,无线通信信号然后经由收发机76的发射机部分通过无线通信网络70发送。相反,无线转换单元74解码经由收发机76的接收机部分接收到的信号,以判断该信号是否去往基节点62,并且如果是,则进一步解码该信号,以剥离无线编码,从而在网络70内的不同节点64、66或68处生成由发送方生成的原始信号。
如将理解的,以类似的方式,包括转发器节点64、环境节点66和现场节点68的其它通信节点中的每个包括通信单元和无线收发机(未示出),用于编码、发送以及解码经由无线网状网络70发送的信号。尽管通信网络 70内的不同类型的节点64、66、68在一些重要方面有所不同,但是这些节点中的每个节点通常操作以接收无线信号,充分地解码信号,以判断信号是去往该节点(还是去往连接到无线无线通信网络70外部的该节点的设备),并且如果信号不是去往该节点并且之前没有被该节点发送的话,则转发或重新发送该信号。以这种方式,信号从始发节点发送到无线通信范围内的所有节点,范围内不是目的地节点的每个节点然后向该节点的范围内的所有其它节点重新发送该信号,并且过程继续,直到信号被传播到至少一个其它节点的范围内的所有节点。然而,转发器节点64操作以简单地转发无线通信网络70内的信号,从而将来自一个节点的信号通过转发器节点 64中继到第二节点62、66或68。基本上,转发器节点64的功能是充当两个不同节点之间的链路,以确保当这些节点不在或可能不在彼此的直接无线通信范围内时,信号能够在两个不同节点之间传播。因为转发器节点64 通常不与节点处的其它设备连接,所以转发器节点64仅需要对接收到的信号进行充分解码,以判断该信号是否是先前已经由转发器节点转发的信号 (即,由转发器节点在先前时间发送以及由于无线通信网络70中的不同节点的转发功能而在转发器节点处简单地被接收的信号)。如果转发器节点之前没有接收到特定信号,则转发器节点64简单地操作以通过经由转发器节点64的收发机重新发送该信号来转发该信号。然而,应当注意的是,假设存在足够数量的彼此通信的其它节点66、68以避免孤立节点和/或夹点,转发器节点64可能在无线网状网络内不是必需的。换言之,当节点必须依靠单个节点或有限数量的节点来将消息路由到基节点62时,网络内可能出现夹点(也称为通信瓶颈)。转发器节点64可用于减轻夹点或夹点的风险(即,夹点在节点66、68发生故障的情况下出现的风险)。
另一方面,每个现场节点68通常耦合到过程工厂环境内的一个或多个设备,并且一般而言,耦合到一个或多个设备,如图2中的现场设备80-85 所例示。类似于图1,现场设备80-85可以是任何类型的现场设备,包括例如四线制设备、二线制设备、HART设备、设备、Fieldbus 设备、4-20mA设备、智能或非智能设备等,诸如图1的设备40-50。为了说明起见,图2的现场设备80-85被例示为符合HART通信协议的HART 现场设备。当然,设备80-85可以是任何类型的设备,诸如传感器/变送器设备、阀、开关等,诸如现场设备。另外,设备80-85可以不同于传统的现场设备,诸如控制器12、I/O设备22A-20B、工作站14、或任何其它类型的设备。还应该理解的是,现场节点68(以及节点66)可以与其所对应的设备集成,从而创建无线设备,诸如无线控制器、无线I/O设备、无线工作站、无线现场设备等。
在任何情况下,现场节点68a、68b、68c都包括附接到它们相应的现场设备80-85以从现场设备80-85接收通信并将通信发送到现场设备80-85 的信号线。当然,这些信号线可以直接连接到设备80-85(在这个示例中,是HART设备),或者连接到已经附接到现场设备80-85的标准HART通信线路。如果期望的话,现场设备80-85除了连接到现场节点68a、68b、68c 之外,还可以连接到诸如图1的I/O设备20A或22A的其它设备,或者经由硬接线通信线路连接到任何其它期望的设备。另外,如图2所例示,任何特定的现场节点68a、68b、68c可以连接到多个现场设备(如关于连接到四个不同现场设备82-85的现场节点68c所例示),并且每个现场节点68a、 68b、68c操作以将信号中继到其所连接的现场设备80-85,以及从其所连接的现场设备80-85中继信号。
为了辅助无线通信网络70的操作的管理,使用环境节点66。在这种情况下,环境节点66a和66b包括或可通信地连接到测量环境参数(诸如湿度、温度、气压、降雨量、或任何其它环境参数)的设备或传感器,这些环境参数可能影响发生在无线通信网络70内的无线通信。该信息在分析和预测无线通信网络70内的问题方面可能是有用的,这是因为无线通信中的许多中断至少部分归因于环境状况。如果期望的话,环境传感器可以是任何类型的传感器,并且可以包括例如HART传感器/变送器、4-20mA传感器或任何设计或配置的板上传感器。当然,如果这样期望的话,每个环境节点66a、66b都可以包括一个或多个环境传感器,并且不同的环境节点可以包括相同或不同类型或种类的环境传感器。同样地,如果期望的话,节点66a、66b中的一个或多个节点可以包括电磁环境噪声测量设备,以测量环境电磁噪声水平,尤其是以由无线通信网络70使用的来发送信号的波长。当然,如果无线通信网络70使用除RF频谱之外的频谱,则可以在一个或多个环境节点66中包括不同类型的噪声测量设备。另外,尽管图2的环境节点66被描述为包括环境测量设备或传感器,但是任何其它节点68都可以包括那些测量设备,从而分析工具能够在分析无线通信网络70的操作时确定每个节点处的环境状况。
应注意的是,图2是示意图,并且环境节点66a、66b相对于现场节点68a-68c的布置并不旨在相对于它们在实际过程控制区域中的实际布置。相反,环境节点66a、66b(以及未绘出的其它环境节点或单个环境节点)旨在以逻辑和策略的方式布置在过程控制区域周围,如图3和图4概念性地示出的。
图3是作为无线网状网络的无线通信网络70进一步概念图示,其中无线网关35与节点WD1-WD12通信,节点WD1-WD12对应于诸如现场设备 40-50之类的各现场设备和诸如控制器12之类的控制器,其中,网关35和节点WD1-WD12构成无线网状网络70。与节点对应的现场设备和控制器通常被认为是智能测量的启用无线的过程设备。因为现场设备和控制器是启用无线的过程设备,所以它们在无线网状网络70内通信并与经由网关35 与工作站13、服务器150和/或连接到接入点72的计算设备通信,如图1 所示。因此,与传统的硬接线网络一样,无线启用的过程设备能够与工作站13、服务器150等交换过程数据,并且在无线网状配置中,每个启用无线的现场设备和控制器不仅作为客户端来接收和发送自己的数据,也可以作为转发器或中继器将数据通过网络传播到其它过程设备。因此,每个启用无线的现场设备和控制器都是无线网状网络70内的无线节点。如本文中使用的术语“无线节点”是指无线网状网络70内的物理的启用无线的过程设备的逻辑表示。
无线网关35和无线节点WD1-WD12使用诸如协议 (IEC 62591)的无线通信协议进行通信,但是也可以使用其它无线协议。协议是用于无线网状网络70内的通信的时分多址(TDMA) 信道接入和信道跳跃。可以在无线网关35上实施网络管理器软件,以便调度节点WD1-WD12与无线网关35之间的通信,并定义无线网状网络70内的通信路径。尽管图3示出了仅具有单个网关35的无线网状网络70,但可以提供多于一个的网关,在这种情况下,网关可共享网络管理器软件。同样地,尽管只示出了十二个无线节点,但无线网状网络可以很容易地具有数十或数百个组成网络的节点。
类似于在图1中经由通信链路105连接到主工作站或计算机13、和/ 或服务器150的网络70,无线网状网络70又连接到主工作站或计算机、服务器和其它计算设备。网关35可以对应于上面的基节点62,并且使用多个不同的协议(诸如上面提到的那些协议)经由以太网连接105使无线网状网络70与主工作站13和/或服务器150相互联系。因此,虽然无线网关35 可以经由硬接线以太网连接链接到工作站104,但是可以代替使用任何其它通信链路,诸如无线通信链路,其示例在上面提供。
尽管不一定代表无线节点WD1-WD12相对于它们在实际过程控制区域中的实际布置的布置,但图3确实概念性地表示无线节点WD1-WD12相对于彼此以及相对于无线网关35的布置。例如,在相对于无线网关35的无线网状网络中,无线节点WD3最接近的,无线节点WD1是次最接近的,然后是无线节点WD2等。相对于无线节点WD1,网关35是最接近的,无线节点WD2是次最接近的,并且无线节点WD5是下一个最接近的,等等,对于无线网状网络70中的每个节点以此类推。注意,只有那些直接通信的节点被认为是彼此相对(即,彼此相邻)。还应该注意的是,尽管图3以二维方式描绘了无线网状网络70,但实际上,无线网状网络可以在所有三个维度上展开,使得节点可以位于网关35和/或相邻的无线节点的水平位置的上方或下方。另外,无线节点可以邻近于彼此,因此通常被认为是邻居,但是由于某种形式的电磁和/或结构干扰,无线节点不能以其它方式彼此建立通信链路。
图3中所示的无线网状网络的零跳数在图4中以表格形式示出。换言之,行中的无线节点(以及网关,如果适用的话)的列表表示每个节点的邻居。然而,并不一定指示消息通过网络的路由,特别是对于其中数据包可以选取到其目的地的多个路由中的任何路由的网状网络。
参考图4,无线网关35与无线节点WD1至WD5直接通信,因此无线网关35与WD2至WD5中的任何一个之间的跳数为零。转到图4的表格的第二行,将注意到,无线节点WD1与网关35、无线节点WD2、和无线节点WD4中的每一个之间的跳数也是零,因为无线节点WD1在图3中被例示为与网关35和无线节点WD2和WD4中的每一个直接通信。同样地,图 4中的表格的其余行中的每一行示出了无线节点WD2-WD12中的每个节点的零跳数。如图3和图4所示,网关35具有五个相邻节点(即,WD1-WD5),并且每个无线节点都具有至少三个相邻无线通信设备(即,网关35和/或相邻节点)。这可以遵循最佳实践的问题,以便维持鲁棒的自我修复网状网络,由此网关35需要具有至少五个邻居,并且每个无线节点需要具有至少三个邻居。当然,取决于特定的最佳实践要求,也可以应用其它标准来确定无线网状网络的拓扑结构。
当现场设备和控制器在过程控制系统内实施时,根据最佳实践规则将无线节点添加到网络。同样地,现场设备和控制器可以脱机或从过程控制系统中移除,从而从网络中移除无线节点。随着无线节点被添加或从网络中移除,通信路径可能会改变。因此,网关35、主计算机13和/或服务器 150可以使用各种诊断工具周期性地收集关于网络的信息,以便识别、定义和/或更新其中的通信路径/路由。
如已知的,网关35可以收集关于无线网状网络70的信息,包括关于每个无线节点WD1-WD12的信息。例如,如上面关于无线网状网络70所提到的,网络管理器软件可以用于调度通信并定义无线网状网络70内的通信路径。具体地,网络管理器定义从网关35发送到各个无线节点 WD1-WD12的消息的通信路径,反之亦然。通信路由由网络管理器使用从无线节点WD1-WD12中的每个节点接收的信息来分配。随着每个无线节点被引入到网络中,无线节点与范围内的其它无线节点通信,以确定其邻居 (即,与无线节点直接活动通信的其它无线节点或网关35)。每个无线节点在与邻居进行的每次通信期间,除了关于与其邻居进行通信的统计数据以外,还测量接收到的信号强度,其被称为接收到的信号强度指标(RSSI),RSSI是对接收到的信号功率的度量。
关于每个节点的邻居和对应的RSSI的信息可以被传送到网关35并由网络管理器软件使用。例如,网络管理器软件可以使用邻居信息和RSSI信息,来确定用于传入和传出消息的通信路由。对于每个通信路径,网络管理器软件都会识别路径中各个跳跃的相邻节点。通信路径内的节点可以被分类为父节点或子节点,其中,父节点是通过其自身为另一个设备(其子节点)传递通信的设备,并且子节点是通过另一个设备(父节点)进行通信以到达第三设备或网关的设备。
无线节点WD1-WD12中的每个节点周期性地将其通信统计数据报告给网关35。网络管理器软件使用这些统计数据来确定通信路由,并为消息分配时隙。通信统计数据可以包括邻居的识别、来自每个邻居的接收到的信号强度指标(RSSI)、到每个邻居的接收到的信号强度指标(RSSI)、与每个邻居成功通信的百分比、到特定节点的父节点和子节点的数量、父节点与子节点比率、父节点与邻居比率、和子节点与邻居比率,节点是否在网关35的范围内、以及无线节点是否与网关35直接通信。另外,每个无线节点都可以报告其电池状况的指示,诸如剩余电量、电池稳定性、充电率/时间、以及其它电池诊断。
另外,使用诸如网络管理器软件之类的诊断工具,可以根据通信统计数据确定网状网络内的每个无线节点的连通性状态/状况,包括无线网状网络70内的连通性状况的识别,其中,连通性状况是网状网络内通信能力的预期故障。无线网状网络内的故障的示例包括但不限于通信设备故障(即,无线节点与其它节点或网关通信的故障)、通信路径故障(即,两个相邻无线节点不能彼此通信,尽管仍然可以与其它邻居通信)、以及夹点(即,其故障将导致至少一个其它无线节点不再具有到网关的通信路径的无线节点)。作为一个示例,网络管理器软件可以利用夹点诊断工具来确定网状网络内的夹点。在题为“Wireless MeshNetwork With Pinch Point and Low Battery Alerts”的美国申请公开No.2011/0164512中公开了夹点分析的示例,其内容明确地通过引用并入本文。如其中所公开的,存在几种用于确定网络内的夹点的方法。例如,对于网关的最小数量的邻居的最佳实践可以用作夹点状况的指示(例如,如果少于5个的设备与网关直接通信(或者在网关的范围内),或者如果少于某一百分比的网状网络中所有无线节点在网关的范围内)。然而,应当注意,这指示可能的夹点存在,但不一定哪个或哪些无线节点充当夹点。
识别夹点的另一种方法利用每个无线节点的最大数量的邻居。如果特定无线节点具有大量邻居(例如,大于阈值数量),则这可以指示它是夹点。
识别夹点的另一种方法利用每个无线节点的父节点与子节点比率,父节点与邻居和/或子节点与邻居比率。如果无线节点具有异常大的或异常小的父节点与子节点比率、父节点与邻居或子节点与邻居比率,则可以识别夹点。父节点与子节点比率、父节点与邻居比率、或子节点与邻居比率与网络内平均值的统计偏差也可以被用作为夹点的指示。另外,特定无线节点处的邻居数量相对于网络内每个无线节点的平均邻居数量的统计偏差可以指示该特定无线节点是夹点。
关于图5示出了又一种识别夹点的方法,其基于无线节点与网关35之间的通信路径来使用由无线节点提供的邻居信息以识别夹点,而不需要设备的父/子节点信息。图5是示出对网状网络内的每个无线节点(X)进行评估以判断其是否为夹点的夹点分析例程200的流程图。在框202处,在评估无线节点X时,例程访问具有邻居的无线节点(A)的列表,不包括正在评估中的无线节点X。对于列表中的每个无线节点A,例程200从假定没有无线节点A可以到达网关开始。对于具有邻居的无线节点的列表中的每个无线节点A,例程200在框204处判断无线节点A是否将网关作为邻居。如果无线节点A将网关作为邻居(即,与邻居直接通信),则在框 206处,无线节点A被添加到能够与网关通信的无线节点(C)的列表。另外,在框208处,无线节点A被从不能到达网关的无线节点的列表(A) 移除。在框210处,例程200随后行进到列表内的下一个无线节点A。替代地,如果在框204处,无线节点A不将网关作为邻居,则在框210处,例程200行进到下一个无线节点A。如果存在另一个无线节点A要测试,则例程200返回到框202并重复该过程。这继续直到最后的无线节点A已经被评估。
已经如上所述评估了无线节点A中的每个无线节点,并且移除了将网关作为邻居的那些节点,则在框212处的无线节点的结果列表(B)是无线节点的列表(A)中具有不包括网关的邻居的那些无线节点。换言之,无线节点的结果列表(B)是不将网关作为邻居并且仍被假定为不能够间接到达网关(即,与网关通信)的那些节点。
例程200然后继续在框214处测试无线节点的列表(B)中的无法到达网关的每个无线节点。具体地,例程200判断无线节点B是否具有能够到达网关的无线节点的列表(C)中的相邻无线节点C。如果无线节点B具有可以到达网关的无线节点的列表(C)中的邻居,则认为节点B与网关间接通信,并且在框216处,将无线节点B添加到可以到达网关的无线节点的列表(C)。另外,在框218处,无线节点B从不能到达网关的无线节点的列表(B)中移除。然后,在框220处,例程200行进到列表内的下一个无线节点B。替代地,如果在框214处,无线节点B不具有来自无线节点的列表(C)的邻居,则例程200在框220处行进到下一无线节点B。如果存在要测试的另一个无线节点B,则例程200返回到框212并重复该过程。这继续直到无线节点的列表(B)中的最后一个无线节点B已经被评估。
在如上已经评估了无线节点B中的每个无线节点,并且已经移除了将无线节点C作为邻居的节点B之后,例程200在框222处判断不能到达网关的设备的列表(B)是否为空。如果答案是肯定的,则在框214处,无线节点X不被认为是夹点,这是因为例程200已经确定除了无线节点X之外的所有无线节点都能够与网关通信,并且对于无线节点X,例程200结束。
另一方面,如果如在框222处判断的,无法到达网关的无线节点的列表(B)不是空的,则在框224处,例程200判断在最近的迭代中,无线节点B是否从不能到达网关的无线节点(B)的列表中移除。如果答案是肯定的,则例程200返回到框212,以评估剩余的无线节点B中的任何节点是否现在将无线节点C作为邻居,每次无线节点B从无线节点的列表(B) 中移除并且被添加到无线节点的列表(C)时,无线节点的列表(C)被更新。如果答案为否,则在框226处,正在评估的无线节点X被识别为夹点,这是因为无线节点的列表(B)中剩余的无线节点在没有无线节点X的情况下无法到达网关。此时,例程200结束。针对被识别为在网状网络16内具有邻居的每个无线节点X重复图5中所例示的过程。当使用图5的例程200 已经评估了所有无线节点时,结果是被识别为网状网络内的夹点的无线节点的完整列表。
另一种常用的诊断工具是诸如跟踪路由之类的跟踪工具,其确定网络中的通信的路由,并测量跨网络的消息的传送延迟。如通常所知的,跟踪路由发送寻址到目的地节点的一系列回应请求数据包。跟踪路由通过调整存活时间(TTL)(跳跃限制)网络参数来确定遍历通信路径中的中间节点。 TTL(跳跃限制)值在通信路径中的每个节点处递减,当TTL值已达到零时丢弃数据包,并且错误消息返回到指示超时的消息源头。对于所发送的数据包的每个连续集合,TTL值(跳跃限制)增加,其中第一数据包集合具有1的跳跃限制值,期望它们不被第一节点转发。第一节点然后将错误消息返回到源头。下一数据包集合具有2的跳跃限制值,从而它们不会被转发超出通信路径中的第二节点,并且第二节点发送错误应答。这继续直到目的地节点接收数据包并且返回回应应答消息。跟踪路由使用所返回的消息来生成数据包已经遍历的节点列表。针对沿路径的每个节点所返回的时间戳值都是延时(延迟)值,通常以毫秒为单位进行测量。因此,可以针对网络确定跳数和延迟值,并且转而可以针对网络确定通信路由。
现在参考图6,网络管理器可以执行预测性诊断例程300,其参考图3 的示例性无线网状网络70来示出和解释。总之,预测性诊断例程300基于关于网络70内的无线节点WD1-WD12所收集的信息来识别无线网状网络 70内的连通性状况。如果连通性状况存在,则预测性诊断例程300假设无线网状网络70内的与连通性状况有关的通信能力的故障,并且分析无线网状网络70,以识别哪些无线节点将受到通信故障的影响,从而预测无线网状网络70的未来状态。
在框302处开始,预测性诊断例程300对关于网络70内的无线节点 WD1-WD12中的每个节点的信息进行分析。这种信息可以包括但不限于由无线节点WD1-WD12中的每个节点向上面提到的网关35报告的通信统计数据。无线网状网络70内的连通性状况可以根据通信统计数据来确定,包括无线节点WD1-WD12的通信能力或无线节点WD1-WD12中的通信能力的预期故障。例如,连通性状况可能由夹点、低电池电量、和通信路径不稳定性引起。在每种情况下,预期连通性状况将最终发生故障,从而导致无线网状网络70内的通信能力的故障。
夹点可指代其故障将导致至少一个其它无线节点不再具有到网关35的通信路径的无线节点。上面描述了用于识别无线网状网络70内的夹点的各种诊断,其中,参照图5公开了示例性方法。
低电池电量可以指代电池中耗尽的电储存,如由电池中的电荷水平(例如,剩余50%电荷),完成电池放电的时间(例如,2天直到完全放电),到阈值放电的时间(例如,2天直到90%放电)等所表示的。关于阈值放电,阈值可以取决于与无线节点相关联的现场设备的关键性而变化,以使得更关键的现场设备与比不那么关键的现场设备(例如,90%放电)更高的阈值(例如,70%放电)相关联。本领域普通技术人员很容易理解评估现场设备的关键性,并且在本文中不需要进一步描述。低电池电量还可以指电池的耗尽的健康状况,如由例如放电速率、充电容量、无线节点的自我诊断等所表示。
低稳定性可以指代相邻无线通信设备之间(例如,无线节点之间或无线节点与网关35之间)的通信路径中的不稳定性。例如,如图3所示,无线节点WD5与WD6之间的通信路径中的不稳定性用断开的通信线路指示。无线节点WD5和/或WD6可以提供通信统计数据,诸如低于特定阈值的无线节点WD5与WD6之间的成功传输的百分比,或者低于特定阈值的无线节点WD5与WD6之间的所接收/所传送的RSSI,其可以指示无线节点WD5 与WD6之间的通信路径中的不稳定性。
夹点、低电池电量、和通信路径不稳定性中的每一个都可能导致无线网状通信网络70内的通信能力的故障。例如,如果无线节点WD6具有低电池电量,则电池的故障会导致WD6中的通信设备故障(即,它不能与其邻居WD3、WD5、WD7、WD8和WD9通信,因此无法在无线网状网络 70内通信)。通信路径不稳定性可能导致相邻无线通信设备之间(即,无线节点之间或无线节点与网关35之间)的通信路径故障,这又可能创建新的夹点或潜在的夹点(即,无线节点具有小于所需阈值的邻居)。此外,涉及夹点的通信路径不稳定性可能导致夹点的通信设备故障和/或取决于夹点到达网关35的无线节点的通信设备故障。夹点本身可能会减少通过夹点进行通信的无线节点的通信可靠性,以及限制通过夹点进行通信的无线节点的带宽。此外,夹点可能耗费附加电力来发送增加的通信负载,这可能导致电池供电的无线节点的电池电量的更快耗尽,这又导致夹点中的通信设备故障和依赖于加点达到网关35的无线节点的通信设备故障。
回到图6,如果如在框304处确定的,不存在连通性状况,则预测性诊断例程300继续在框302处分析无线节点WD1-WD12。另一方面,如果存在一个或多个连通性状况,则预测性诊断例程300继续执行各种分析以预测对无线网状通信网络70的影响,并且更具体地,在连通性状况导致通信能力故障的情况下,对无线节点WD1-WD12中的每个无线节点的影响。至少,预测性诊断例程300通过假设连通性状况所预期的通信能力已经发生故障,来在无线网状网络70内生成预测的夹点和潜在的夹点。
例如,预测性诊断例程300可以通过假设具有低电量的无线节点由于电池故障(例如,耗尽的电荷)而不再在在无线网状网络70内通信,来对低电量状况作出响应。图7概念性地示出了如果无线节点WD6具有低电量状况的这种假设。更具体地,预测性诊断例程300假设无线节点WD6经历了通信设备故障,并且不再在无线网状网络70内通信。
另外,预测性诊断例程300可以通过假设充当夹点的无线节点不再在无线网状网络70内通信来对夹点状况作出响应。如图7所示,无线节点 WD7由于无线节点WD6的通信故障而成为无线节点WD8和WD9的夹点 (即,无线节点WD8和WD9只能经由无线节点WD7与网关35通信)。图8概念性地示出了如果无线节点WD7是夹点的这个假设。更具体地,在无线节点WD7为夹点的情况下,预测性诊断例程300假设无线节点WD7 经历了通信设备故障,并且不再在在无线网状网络70内通信。
作为另一示例,预测性诊断例程300可以通过假设两个无线通信设备之间的通信路径已经发生故障以使得两个无线通信设备不再彼此通信,来对低稳定性状况作出响应。图9概念性地示出了如果如图3中的虚线所示的无线节点WD5与WD6之间的通信路径不稳定的这种假设。更具体地,预测性诊断例程300假设由于通信路径故障,无线节点WD6不再与无线节点WD5通信,尽管二者都可以继续在无线网状网络70内以其它方式进行通信。
返回参考图6,在进行任何预测分析之前,在框306处,预测性诊断例程300可以判断具有连通性状况的无线节点是否是夹点。即,如果具有连通性状况的无线节点不是夹点,则它避免了在框308处对夹点分析的需要。然而,如果具有连通性状况的无线节点是夹点,则在框308处的夹点分析判断哪些无线节点依赖于夹点到达网关35。在一个实施例中,可以使用由夹点报告的邻居信息,特别是子节点信息来识别依赖于夹点的无线节点。然而,仅靠这一点并不一定提供关于依赖于夹点的所有无线节点的信息;仅提供关于与夹点直接通信并且属于夹点的子节点的无线节点的信息。因此,每个子节点的邻居信息还可以用于识别依赖于夹点到达网关35的节点。
作为替代的实施例,图5中的夹点分析例程200可用于识别取决于夹点的无线节点。然而,代替将例程200应用于无线网状网络70内的无线节点WD1-WD12中的每个无线节点,仅需要将例程200应用于充当夹点的无线节点WD7。代替识别夹点,例程200可以使用夹点WD7作为无线节点X来执行。更具体地,例程200的结果执行将包括对被假设为不能够到达网关35的无线节点的列表(B)中的每个无线节点进行评估,以及移除将无线节点C作为邻居的那些节点。这消除了可以经由不涉及夹点的通信路径与无线网关35进行通信的那些无线节点。在预测性诊断例程300的框308 处,在框224之后在无线节点的列表(B)中剩余的任何无线节点都被认为依赖于夹点。换言之,预测性诊断例程300可以使用无线节点的结果列表(B)作为在夹点中发生通信故障的情况下无法到达网关35的无线节点的标识。因此,在由于连通性状况而导致夹点WD7具有通信设备故障的情况下,无线节点WD8和WD9被预测为失去与网关35的通信。
在框308处进行夹点分析以识别受到夹点的通信设备故障影响的无线节点之后,预测性诊断例程300行进至框310以进行预测性夹点分析。即使在具有连通性状况的无线节点不是如框306处所确定的夹点的情况下,预测性诊断例程300也可以行进到预测性夹点分析310,而不在框308处执行夹点分析。
框310处的预测性夹点分析根据每个无线节点与网关35之间的通信能力和通信路径的故障来生成无线网状网络70内的预测的夹点。更具体地,图10描绘了示例性的预测性夹点分析例程400,其可以作为框310处的预测性夹点分析来执行。在框402处开始,预测性夹点分析例程假设与连通性状况相关联的通信能力的故障已经发生。如上所述,这可以包括但不限于如图7中概念性地示出的在低电量状况的情况下的通信设备故障,如图8 中概念性示出的在夹点状况的情况下的通信设备故障,以及如图9中概念性示出的在低稳定性状况的情况下的通信路径故障。
取决于发生的连通性状况,如果例如通信能力故障是由两个无线网络通信设备之间的通信路径中的不稳定性造成的,则预测性夹点分析例程400 在框404处移除通信路径,或者如果例如通信故障是由低电量状况或夹点造成的,则预测性夹点分析例程400在框408处移除无线节点。在移除通信路径或无线节点时,预测性夹点分析例程400可以如同通信能力已经发生故障那样有效地模拟无线网状网络70,以便个体地预测连通性状况对无线节点以及预测连通性状况对无线网状网网络70整体的影响。作为一个示例,预测性夹点分析例程400可临时修改由网关35接收的通信统计数据或基于来自无线节点的通信统计结果来修改诊断结果。尽管参照通信能力的一个故障的模拟进行了描述,但预测性夹点分析可以模拟由于多个连通性问题的多个故障。
例如,在通信路径在框404处在无线节点WD5与WD6之间被移除的情况下,由网络管理器分配的通信路由可以被修改以移除无线节点WD5与 WD6之间的通信路径。另外,或者替代地,可以针对无线节点WD5和WD6 中的每一个相对于彼此更新(即,关于无线节点WD6的信息不反映无线节点WD5有邻居,反之亦然)邻居的标识、来自邻居的接收到的信号强度指标(RSSI)、到邻居的接收到的信号强度指标(RSSI)、与邻居成功通信的百分比、到该特定节点的父节点和子节点的数量、父节点与子节点的比率、父节点与邻居的比率、和子节点与邻居的比率。
在另一实例中,在其中无线节点从无线网状网络70中移除的情况下(例如,由于通信设备故障而导致的无线节点WD6),由网络管理器分配的涉及WD6的通信路由可以被修改为沿着不涉及WD6的另一个通讯路由而重新路由消息。另外或者替代地,可以针对将WD6作为邻居以使得关于无线节点WD6的信息未反映在对于无线网状网络70的任何通信统计数据中的每个无线节点,更新邻居的标识、来自邻居的接收到的信号强度指标 (RSSI)、到邻居的接收到的信号强度指标(RSSI)、与邻居成功通信的百分比、到该特定节点的父节点和子节点的数量、父节点与子节点的比率、父节点与邻居的比率、和子节点与邻居的比率。
在框404处移除通信路径时,预测性夹点分析例程400在框408处执行诸如图5的夹点分析之类的夹点分析,而无需通信路径。类似地,在框 406处移除无线节点时,预测性夹点分析例程400在框410处执行诸如图5 的夹点分析之类的夹点分析,而无需无线节点。夹点分析可以被认为是对无线节点WD1-WD12中的每一个与网关35之间的通信路径的分析,以便找到无线网状网络70内的夹点。因此,预测性夹点分析例程400根据无线节点WD1-WD12与网关35之间的通信能力和结果通信路径的故障而生成预测的夹点。
再次参考图5,结合图9和图10,可以针对无线网状通信网络70内的每个无线节点执行夹点分析例程200,除了前面的步骤中移除的通信路径或无线节点。因此,如果无线节点WD6报告低电量状况并在框408处被移除,则可以关于剩余的无线节点WD1-WD5和WD7-WD12执行夹点分析例程 200。换言之,例程200评估每个无线节点(X),其中,无线节点(X)是WD1-WD5和WD7-WD12。在评估WD1、WD2、WD4、WD5和WD8-WD12 中的每个作为无线节点(X)时,WD3将网关35作为邻居,如在框204处确定的,并且在框206处被添加到到达网关35的节点的列表(C)。在框 212处,WD7被包括在不将网关35作为邻居的节点的列表(B)中,框214 处的对WD7的测试将把可以到达网关35的无线节点的列表(C)中的WD3 和/或WD12作为邻居,并且在框214处的对WD8和WD9中的每一个的测试进而将把WD7作为邻居。然而,当WD7被评估为无线节点(X)时,在框214处的对WD8和WD9的测试将不把WD7作为邻居,也不会将无线节点的列表(C)中的任何其它无线节点作为邻居。因此,夹点分析例程 200确定无线节点WD7是夹点。如图7中概念性地示出的,如果WD6处存在通信设备故障,则WD6处的低电量状况导致WD7处的潜在的夹点。
另一方面,如果在无线节点WD5与WD6之间的通信路径中存在低稳定性状况,并且在框404处移除了通信路径,则可以在所有无线节点 WD1-WD12但WD5和WD6不是邻居的情况下执行夹点分析例程200。换言之,例程200评估每个无线节点(X),其中,无线节点(X)是WD1-WD12。如框204处所确定的,WD5将网关35作为邻居,并且在框206处被添加到到达网关35的节点的列表(C)。然而,当WD6在框212处被包括在不将网关35作为邻居的节点的列表(B)中时,在框214处的对WD6的测试将可以到达网关35的无线节点的列表(C)中的WD5作为邻居(但是, WD6将把可以到达网关35的无线节点的列表(C)中的WD3作为邻居)。如图9概念性地所示,WD5与WD6之间的低稳定性状况不会导致潜在的夹点,即使在WD5与WD6之间存在通信路径故障。因此,预测性夹点分析例程400可以确定在连通性状况导致无线网状通信网络70内的通信能力的故障的情况下哪些(如果有的话)无线节点可以成为夹点。
回头参考图6,预测性诊断例程300还在框312处进行预测性邻居分析。尽管被示出为在预测性夹点分析310之后执行,但预测性邻居分析312可以在预测性夹点分析310之前,或者可以同时进行分析。然而,类似于预测性夹点分析310,即使在具有连通性状况的无线节点不是夹点(如在框 306处所确定的)的情况下,预测性诊断例程300也可以进行到预测性邻居分析312,而无需进行框308处的夹点分析。
预测性邻居分析312根据通信能力以及与每个无线节点直接无线通信的相邻无线通信设备的故障来生成无线网状网络70内的潜在夹点。潜在的夹点是具有小于阈值数量的与无线节点直接无线通信的相邻无线通信设备的无线节点。换言之,如果存在通信能力故障并且无线节点被留下比最佳实践所建立的更少的相邻无线通信设备,则该无线节点在无线网状网络70 内的通信能力的另一故障的情况下可能成为夹点。
更具体地,图11描绘了示例性的预测性邻居分析例程500,其可以被执行为框312处的预测性邻居分析。从框502处开始,预测性邻居例程500 假设与连通性状况相关联的通信能力的故障已经发生。如上所述,这可以包括但不限于如图7中概念性地示出的低电量状况的情况下的通信设备故障、如图8中概念性地示出的在夹点状况的情况下的通信设备故障、以及如图9中概念性地示出的在低稳定性状况的情况下的通信路径故障。
再次,取决于发生的连通性状况,预测性邻居分析例程500在框504 处移除通信路径,或者在框508处移除无线节点。在移除通信路径和/或无线节点时,预测性邻居分析例程500可以如同通信能力已经发生故障那样有效地模拟无线网状网络70,以便个体地预测连通性状况对无线节点的影响并预测连通性状况对无线网状网络70整体的影响。虽然参照通信能力的一个故障的模拟进行了描述,但预测性邻居分析例程500可以模拟由于多个连通性问题而引起的多个故障。
作为一个示例,预测性夹点分析例程500可通过临时修改由网关35接收的通信统计数据或基于来自无线节点的通信统计数据修改诊断结果,来模拟通信路径的故障。这种修改的示例包括但不限于修改所分配的通信路由以移除不稳定的通信路径,修改邻居的标识,可以针对无线节点中的每一个相对于彼此更新来自邻居的接收到的信号强度指标(RSSI)、到邻居的接收到的信号强度指标(RSSI)、与邻居成功通信的百分比、到该特定节点的父节点和子节点的数量、父节点与子节点的比率、父节点与邻居的比率、和子节点与邻居的比率。
在另一实例中,在其中无线节点从无线网状网络70中移除的情况下,由网络管理器分配的涉及被移除节点的通信路由可以被修改为沿着不涉及被移除节点的另一个通信路由而重新路由消息。另外或者替代地,可以针对将WD6作为邻居以使得关于被移除的无线节点的信息未反映在对于无线网状网络70的任何通信统计数据中的每个无线节点,更新邻居的标识、来自邻居的接收到的信号强度指标(RSSI)、到邻居的接收到的信号强度指标(RSSI)、与邻居成功通信的百分比、到该特定节点的父节点和子节点的数量、父节点与子节点的比率、父节点与邻居的比率、和子节点与邻居的比率。
图12概念性地示出了由于低电量状况导致的无线节点WD3处的通信设备故障,以及由于无线节点WD5与WD6之间的通信路径中的低稳定性而导致的通信路径故障。图13示出了作为通信设备和通信路径故障的结果的以表格形式的更新的网状网络拓扑结构,其反映了网关35和无线节点 WD5、WD6、WD7和WD10不再将WD3作为邻居,以及WD5和WD6 不再将彼此作为邻居的假设。在分析无线网状网络的拓扑结构时,预测性邻居分析例程500在框506和510处确定WD5和WD6之间的通信路径故障和WD3的通信设备故障导致网关35仅具有四个邻居、并且无线节点 WD5仅具有两个邻居。使用五/三最佳实践标准的示例,网关35和无线节点WD5都是潜在的夹点。换言之,在最佳实践是网关35具有至少五个相邻节点并且每个无线节点具有至少三个相邻节点(即,网关35和/或相邻节点)的情况下,为了维持鲁棒的自愈网状网络,网关35和无线节点WD5 均落在该阈值以下。此外,预测性诊断例程300将使用上述的预测性夹点例程400将无线节点WD7和WD12识别为潜在的夹点,其中,WD7与 WD12之间的后续通信的不稳定性可能导致无线节点WD6-WD9的通信故障。因此,在连通性状况导致无线网状通信网络70内的通信能力的故障的情况下,预测性邻居分析例程500可以判断哪些(如果有的话)无线节点可能称为潜在的夹点。
返回参考图6,在框314处,预测性诊断例程300利用来自夹点分析 308、预测性夹点分析310、和预测性邻居分析312的结果来识别无线网状网络70的未来状态,包括无线网状网络70中的所有预测的或潜在的夹点、潜在的通信设备故障、潜在的通信路径故障等。例如,预测性诊断例程300 可以提供过程控制网络100、过程控制系统、过程工厂、工业设置10等内的所有无线网状通信网络、或它们在图形用户界面(GUI)上的任何子集的概览,图形用户界面可以显示在例如工作站13的显示屏14上。对于具有可能导致潜在或预测的夹点或通信丢失的连通性状况的任何无线网络,GUI 可以在图形上高亮受影响的网络。使用可选择的图标,GUI可以响应于选择受影响的网络的用户输入来调出列出与无线节点相关联的现场设备的无线网络的概览报告,以及每个现场设备的当前状态和每个现场设备的预测状态。附加信息可以包括针对每个无线节点的邻居数量、电池剩余电量、通信稳定性、网关等。在替代方案中,GUI可以生成类似于图3中所示的显示,该显示以图形方式示出了无线网状网络的拓扑结构,其中连通性状况被高亮(例如,针对稳定性高亮的通信路径,针对低电池剩余电量高亮的无线节点,针对夹点高亮的无线节点等)。每个通信路径、无线节点和网关可以以图形方式表示并且是可选择的,其中选择高亮的路径或无线节点生成网络拓扑结构的新图像,其示出预测的夹点、潜在的夹点、通信路径故障、通信设备故障等,类似于图7、8、9和12所示的那些。
以下附加考虑适用于上述讨论。在整个说明书中,被描述为由任何设备或例程执行的动作通常指代根据机器可读指令操纵或变换数据的处理器的动作或过程。机器可读指令可以被储存在通信地耦合到处理器的存储器设备上并从其中获取。换言之,本文描述的方法可以通过储存在计算机可读介质上(即在存储器设备上)的机器可执行指令集合来体现。这些指令在被对应设备(例如,服务器、用户接口设备等)的一个或多个处理器执行时,使处理器执行该方法。在本文中将指令、例程、模块、过程、服务、程序、和/或应用称为储存或保存在计算机可读存储器或计算机可读介质上的情况下,词语“储存”和“保存”意图排除暂时性信号。
此外,尽管术语“操作员”、“人员”、“人”、“用户”、“技术人员”、以及其它术语被用于描述过程工厂环境中可以使用本文描述的系统、装置和方法或者与本文描述的系统、装置和方法交互的人员,但是这些术语并不旨在是限制性的。在描述中使用特定术语的情况下,该术语由于工厂人员参与的传统活动而被部分使用,但并不旨在限制可能参与该特定活动的人员。
另外,在整个说明书中,多个实例可以实施被描述为单个实例的部件、操作或结构。尽管一个或多个方法的个体操作被例示和描述为单独的操作,但是个体操作中的一个或多个可以同时执行,并且不要求以所例示的顺序执行操作。在示例性配置中被呈现为单独部件的结构和功能可以被实施为组合结构或部件。类似地,被呈现为单个部件的结构和功能可以被实施为单独的部件。这些和其它变化、修改、添加、和改进落入本文主题的范围内。
除非另有特别说明,否则本文使用诸如“处理”、“计算”、“运算”、“确定”、“识别”、“呈现”、“导致呈现”、“导致显示”、“显示”等的讨论可指代机器(例如,计算机)的动作或过程,该机器(例如,计算机)操纵或转换被表示为一个或多个存储器(例如,易失性存储器、非易失性存储器或它们的组合)、寄存器或接收、储存、发送、或显示信息的其它机器部件内的物理(例如,电子、磁、生物或光学)量的数据。
当用软件实施时,本文中所描述的任何应用、服务、和引擎中可储存在任何有形的非暂时性计算机可读存储器中,诸如在磁盘、激光盘、固态存储设备、分子存储器储存设备、或其它储存介质上,在计算机或处理器的RAM或ROM中,等等。尽管本文公开的示例性系统被公开为除了其它部件之外,包括在硬件上执行的软件和/或固件,但应该注意的是,这样的系统仅仅是说明性的,不应被认为是限制性的。例如,可以设想,这些硬件、软件、和固件部件中的任何一个或全部可以专门用硬件、专门用软件、或者用硬件和软件的任何组合来体现。因此,本领域的普通技术人员将容易理解,提供的示例不是实施这种系统的唯一方式。
因此,尽管已经参考还在仅用于说明而不是限制本发明的特定示例描述了本发明,但是对于本领域的普通技术人员来说显而易见的是,可以对所公开的实施例进行改变、添加或删除,而不偏离本发明的精神和范围。
还应该理解的是,除非在本专利中使用句子“如本文所使用的,术语‘______’在此被定义为是指……”的术语或类似的句子,无意以明示或暗示的方式将该术语的含义限制超出其普通或通常的含义,且该术语不应被解释为限制于基于本专利的任何部分(除了权利要求的语言)做出的陈述的范围中。就本专利最开始的权利要求书中记载的任何术语在本专利中以与单一含义一致的方式被引用而言,这是为了清楚起见而完成的,只是为了不使读者混淆,并且并不是旨在通过暗示或其它方式将该权利要求术语限制为该单一含义。最后,除非所要求保护的元素是通过叙述“装置”和没有叙述任何结构的功能来定义的,否则并不旨在任何权利要求元素的范围基于35U.S.C.§112(f)和/或pre-AIA 35U.S.C.§112(f)第6段的适用来解释。
此外,虽然前述文本阐述了许多不同实施例的具体实施例,但应理解的是,本专利的范围由本专利最开始阐述的权利要求的词语来限定。具体实施例仅被解释为示例性的,并没有描述每个可能的实施例,这是因为描述每个可能的实施例即使不是不可能也是不切实际的。可以使用当前技术或在本专利申请日之后开发的技术来实施许多替代实施例,这些替代实施例仍然落入权利要求书的范围内。

Claims (41)

1.一种用于在过程控制系统中提供通信的无线网状网络的预测性无线连接诊断的方法,所述无线网状网络包括以网状拓扑结构组织的多个无线节点,其中,所述无线网状网络具有至少一个连通性状况,所述连通性状况是所述无线网状网络内的通信能力的预期故障,所述方法包括:
响应于所述连通性状况,根据所述无线网状网络内的所述通信能力以及所述多个无线节点中的每个无线节点与所述无线网状网络的网关之间的通信路径的故障,来生成所述网状网络内的预测的夹点,夹点是其故障将导致至少一个其它无线节点不再具有到所述无线网状网络的所述网关的通信路径的无线节点,并且预测的夹点是在所述无线网状网络内的所述通信能力发生故障时将成为夹点的无线节点;
响应于所述连通性状况,根据所述无线网状网络内的所述通信能力以及与所述多个无线节点中的每个无线节点直接无线通信的多个相邻无线通信设备的故障,来生成所述无线网状网络内的潜在的夹点,潜在的夹点是具有小于阈值数量的与所述无线节点直接无线通信的相邻无线通信设备的无线节点;以及
应用所述预测的夹点和所述潜在的夹点来识别所述无线网状网络的未来状态。
2.根据权利要求1所述的方法,其中,所述连通性状况包括所述无线网状网络内的无线节点与相邻无线通信设备直接和无线通信的能力的预期故障,并且其中,所述无线节点是所述无线网状网络内的夹点,所述方法还包括:
响应于所述连通性状况,根据所述夹点与所述相邻无线通信设备直接和无线通信以及经由所述夹点与所述网关间接无线通信的所述多个无线节点中的每个无线节点之间的通信路径的故障,来生成所述网状网络内的无线节点的预测的通信故障,通信故障包括无线节点与所述网关之间的通信路径中的故障;以及
应用所述预测的通信故障来识别所述无线网状网络的未来状态。
3.根据权利要求2所述的方法,其中,所述夹点与所述相邻无线通信设备直接和无线通信的能力的预期故障是由所述夹点中的电池的状态引起的,其中,所述预期故障包括所述夹点的所述电池的预期故障。
4.根据权利要求3所述的方法,其中,所述电池的所述状态包括所述电池中的耗尽的电力储存和所述电池的耗尽的健康状况中的一个或多个。
5.根据权利要求3所述的方法,其中,所述多个无线节点中的每个无线节点对应于所述过程控制系统内的现场设备,所述无线节点将所述现场设备通信地耦合至所述无线网状网络,并且其中,所述电池的所述状态由阈值来限定,针对每个无线节点的所述阈值取决于对应的现场设备对所述过程控制系统的关键性。
6.根据权利要求2所述的方法,其中,所述夹点与所述相邻无线通信设备直接和无线通信的能力的预期故障是由所述夹点与所述相邻无线通信设备之间的通信路径中的不稳定性引起的,并且,所述预期故障包括所述夹点与所述相邻无线通信设备之间的所述通信路径的预期故障。
7.根据权利要求1所述的方法,其中,所述无线网状网络内的通信能力的所述预期故障是由所述无线节点中的电池的状态引起的,并且,所述预期故障包括所述无线节点的所述电池的预期故障。
8.根据权利要求7所述的方法,其中,所述电池的所述状态包括所述电池中的耗尽的电力储存和所述电池的耗尽的健康状况中的一个或多个。
9.根据权利要求7所述的方法,其中,所述多个无线节点中的每个无线节点对应于所述过程控制系统内的现场设备,所述无线节点将所述现场设备通信地耦合至所述无线网状网络,并且其中,所述电池的所述状态由阈值限定,针对每个无线节点的阈值取决于对应的现场设备对所述过程控制系统的关键性。
10.根据权利要求1所述的方法,其中,所述连通性状况是由无线节点与相邻无线通信设备之间的直接无线通信中的不稳定性引起的,并且,所述预期故障包括所述无线节点与所述相邻无线通信设备之间的通信路径的预期故障。
11.根据权利要求1所述的方法,其中,应用所述潜在的夹点来识别所述无线网状网络的未来状态包括:将每个潜在的夹点识别为需要与所述潜在的夹点直接无线通信的附加的相邻无线通信设备。
12.根据权利要求11所述的方法,其中,与所分析的无线节点直接无线通信的阈值数量的相邻无线通信设备包括:所述网关与至少五个无线节点直接无线通信,并且每个无线节点与至少三个相邻无线通信设备直接无线通信。
13.根据权利要求1所述的方法,其中,相邻无线通信设备是所述无线网状网络的所述网关和另一个无线节点中的一个。
14.一种用于过程控制系统中的无线网状网络的预测性无线连通性诊断的方法,所述无线网状网络包括以网状拓扑结构组织的多个无线节点,其中,所述无线网状网络具有至少一个连通性状况,所述连通性状况是所述无线网状网络内的通信能力的预期故障,所述方法包括:
响应于所述连通性状况,如同在所述无线网状网络内发生所述通信能力的故障那样模拟所述无线网状网络;
针对所述模拟网状网络内的夹点分析所述模拟网状网络,夹点是其故障将导致至少一个其它无线节点不再具有到所述无线网状网络的网关的通信路径的无线节点;
响应于对所述模拟网状网络的分析,如果在所述无线网状网络内发生所述通信能力的故障,则将一个或多个无线节点识别为预测的夹点;
分析所述模拟网状网络中的每个无线节点,用于与所分析的无线节点直接无线通信的所述模拟无线网状网络中的相邻无线通信设备的数量;
响应于对所述模拟网状网络中的每个无线节点的分析,如果在所述无线网状网络内发生所述通信能力的故障并且相邻无线通信设备的数量低于相邻无线通信设备的阈值数量,则将一个或多个无线节点识别为潜在的夹点;以及
应用所述预测的夹点和所述潜在的夹点以识别所述无线网状网络的未来状态。
15.根据权利要求14所述的方法,其中,所述连通性状况包括所述无线网状网络内的无线节点与相邻无线通信设备直接和无线通信的能力的预期故障,并且其中,所述无线节点是所述无线网状网络内的夹点,所述方法还包括:
分析所述夹点,用于与所分析的夹点直接无线通信的相邻无线节点;以及
响应于对所述夹点的分析,识别仅经由所述夹点与所述网关间接无线通信的无线节点。
16.根据权利要求15所述的方法,其中,如同在所述无线网状网络内发生所述通信能力的故障那样模拟所述无线网状网络包括:在没有所述夹点的情况下模拟所述无线网状网络。
17.根据权利要求15所述的方法,还包括:在所述无线节点与所述相邻无线通信设备直接和无线通信的能力发生故障时,预测仅经由所述夹点与所述网关间接无线通信的每个所识别的无线节点将失去与所述网关的通信。
18.根据权利要求15所述的方法,其中,所述无线网状网络内的所述无线节点与所述相邻无线通信设备直接和无线通信的能力的所述预期故障是由所述无线节点中的低电池剩余电量引起的,并且,所述预期故障包括所述无线节点的所述电池的预期故障。
19.根据权利要求18所述的方法,其中,所述低电池剩余电量包括所述电池中的耗尽的电力储存和所述电池的耗尽的健康状况中的一个或多个。
20.根据权利要求15所述的方法,其中,所述无线网状网络内的所述无线节点与所述相邻无线通信设备直接和无线通信的能力的预期故障是由所述夹点与所述相邻无线通信设备之间的直接无线通信中的不稳定性引起的,并且,所述预期故障包括所述夹点与所述相邻无线通信设备之间的通信路径的预期故障。
21.根据权利要求14所述的方法,其中,所述连通性状况是由无线节点中的低电池剩余电量引起的,并且,所述预期故障包括所述无线节点的所述电池的预期故障。
22.根据权利要求21所述的方法,其中,所述低电池剩余电量包括所述电池中的耗尽的电力储存和所述电池的耗尽的健康状况中的一个或多个。
23.根据权利要求14所述的方法,其中,所述连通性状况是由无线节点与相邻无线通信设备之间的直接无线通信中的不稳定性引起的,并且,所述预期故障包括所述无线节点与所述相邻无线通信设备之间的直接无线通信的故障。
24.根据权利要求23所述的方法,其中,如同在所述无线网状网络内发生所述通信能力的故障那样模拟所述无线网状网络包括:在所述无线节点与所述相邻无线通信设备之间没有直接无线通信的情况下模拟所述无线网状网络。
25.根据权利要求14所述的方法,其中,将一个或多个无线节点识别为潜在的夹点包括:将所述潜在的夹点识别为需要与所述潜在的夹点直接无线通信的附加的相邻无线通信设备。
26.根据权利要求25所述的方法,其中,所述模拟无线网状网络中的与所分析的无线节点直接无线通信的所述阈值数量的相邻无线通信设备包括:所述模拟无线网状网络中的所述网关与至少五个无线节点直接无线通信,并且所述模拟无线网状网络中的每个无线节点与至少三个相邻无线通信设备直接无线通信。
27.根据权利要求14所述的方法,其中,相邻无线通信设备是所述无线网状网络的所述网关和另一个无线节点中的一个。
28.一种无线网状网络,包括:
网关;
多个无线节点,所述多个无线节点通信地耦合到所述网关,每个无线节点适于将无线节点状况数据发送到所述无线网关;
网络管理器,所述网络管理器通信地耦合到所述网关并且适于执行以下操作:
调度所述无线节点与所述网关中的通信,
定义所述网关与所述无线节点之间的通信路径,以及
根据来自所述多个无线节点的所述无线节点状况数据来识别所述网状网络内的连通性状况,连通性状况是所述无线网状网络内的通信能力的预期故障,
根据所述无线网状网络内的通信能力和所述通信路径的故障来预测所述网状网络内的夹点,夹点是其故障将导致至少一个其它无线节点不再具有到所述无线网状网络的所述网关的通信路径的无线节点,
并且预测的夹点是在所述无线网状网络内的所述通信能力发生故障时可能成为夹点的无线节点,以及
根据所述无线网状网络内的所述通信能力以及与所述多个无线节点中的每个无线节点直接无线通信的相邻无线通信设备的故障,来预测所述无线网状网络内的潜在的夹点,潜在的夹点是具有小于阈值数量的与所述无线节点直接无线通信的相邻无线通信设备的无线节点。
29.根据权利要求28所述的无线网状网络,其中,所述连通性状况包括所述无线网状网络内的无线节点与相邻无线通信设备直接和无线通信的能力的预期故障,并且其中,所述无线节点是所述无线网状网络内的夹点,所述网络管理器还适于执行以下操作:
根据所述夹点与所述相邻无线通信设备直接和无线通信以及所述通信路径的故障,来预测所述网状网络内的无线节点的通信故障,所述通信故障包括无线节点与所述网关之间的通信路径以及经由所述夹点与所述网关间接无线通信的故障。
30.根据权利要求29所述的无线网状网络,其中,所述夹点与所述相邻无线通信设备直接和无线通信的能力的预期故障是由所述夹点中的电池的状态引起的,其中,所述预期故障包括所述夹点的所述电池的预期故障。
31.根据权利要求30所述的无线网状网络,其中,所述电池的所述状态包括所述电池中的耗尽的电力储存和所述电池的耗尽的健康状况中的一个或多个。
32.根据权利要求30所述的无线网状网络,其中,所述多个无线节点中的每个无线节点对应于所述过程控制系统内的现场设备,所述无线节点将所述现场设备通信地耦合到所述无线网状网络,并且其中,所述电池的所述状态由阈值限定,针对每个无线节点的所述阈值取决于对应的现场设备对所述过程控制系统的关键性。
33.根据权利要求29所述的无线网状网络,其中,所述夹点与所述相邻无线通信设备直接和无线通信的能力的预期故障是由所述夹点与所述相邻无线通信设备之间的通信路径的不稳定性引起的,并且,所述预期故障包括所述夹点与所述相邻无线通信设备之间的所述通信路径的预期故障。
34.根据权利要求28所述的无线网状网络,其中,所述连通性状况是由所述无线节点中的电池的状态引起的,并且,所述预期故障包括所述无线节点的所述电池的预期故障。
35.根据权利要求34所述的无线网状网络,其中,所述电池的所述状态包括所述电池中的耗尽的电力储存和所述电池的耗尽的健康状况中的一个或多个。
36.根据权利要求34所述的无线网状网络,其中,所述多个无线节点中的每个无线节点对应于所述过程控制系统内的现场设备,所述无线节点将所述现场设备通信地耦合至所述无线网状网络,并且其中,所述电池的所述状态由阈值限定,针对每个无线节点的所述阈值取决于对应的现场设备对所述过程控制系统的关键性。
37.根据权利要求28所述的无线网状网络,其中,所述连通性状况是由无线节点与相邻无线通信设备之间的直接无线通信中的不稳定性引起的,并且,所述预期故障包括所述无线节点与所述相邻无线通信设备之间的通信路径的故障。
38.根据权利要求28所述的无线网状网络,其中,所述网络管理器还适于将每个潜在的夹点识别为需要与所述潜在的夹点直接无线通信的另外的相邻无线通信设备。
39.根据权利要求38所述的无线网状网络,其中,与所分析的无线节点直接无线通信的所述阈值数量的相邻无线通信设备包括:所述网关与至少五个无线节点直接无线通信,并且每个无线节点与至少三个相邻无线通信设备直接无线通信。
40.根据权利要求28所述的无线网状网络,其中,相邻无线通信设备是所述无线网状网络的所述网关和另一个无线节点中的一个。
41.根据权利要求28所述的无线网状网络,其中,来自每个无线节点的所述无线节点状况数据包括以下各项中的一个或多个:针对所述无线节点的电池状况数据、与所述无线节点直接无线通信的相邻无线通信设备的标识、来自相邻无线通信设备的所接收的信号强度以及所述无线节点与所述相邻无线通信设备之间的成功通信的百分比。
CN201810326756.3A 2017-04-12 2018-04-12 用于过程控制系统中的无线网状网络的预测性连通性诊断 Active CN108696387B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/485,752 US10116523B1 (en) 2017-04-12 2017-04-12 Predictive connectivity diagnostics for a wireless mesh network in a process control system
US15/485,752 2017-04-12

Publications (2)

Publication Number Publication Date
CN108696387A true CN108696387A (zh) 2018-10-23
CN108696387B CN108696387B (zh) 2022-05-03

Family

ID=62142338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810326756.3A Active CN108696387B (zh) 2017-04-12 2018-04-12 用于过程控制系统中的无线网状网络的预测性连通性诊断

Country Status (5)

Country Link
US (1) US10116523B1 (zh)
JP (1) JP7193247B2 (zh)
CN (1) CN108696387B (zh)
DE (1) DE102018108582A1 (zh)
GB (1) GB2563133B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113645072A (zh) * 2021-08-10 2021-11-12 生迪智慧科技有限公司 主备网关部署方法及装置
WO2022185325A1 (en) * 2021-03-04 2022-09-09 Telefonaktiebolaget Lm Ericsson (Publ) First node, second node, communications system and methods performed thereby for handling a prediction of an event
CN116099147A (zh) * 2023-03-09 2023-05-12 重新定义(杭州)科技发展有限公司 一种智能消防管理系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2963434A1 (fr) * 2017-04-06 2018-10-06 Hydro-Quebec Verification de signal pour les compteurs communicants
US11259176B2 (en) * 2018-02-08 2022-02-22 Signify Holding B.V. Method of and a system and node device for locating information available at a node device in a network of communicatively interconnected node devices
DE102019105096A1 (de) * 2019-02-28 2020-09-03 Endress+Hauser SE+Co. KG Verfahren zum Betreiben eines drahtlosen Feldgerätenetzwerkes
US11102829B2 (en) * 2019-11-22 2021-08-24 Zebra Technologies Corporation Charge-based peripheral device selection
US11924738B1 (en) * 2020-01-29 2024-03-05 Amazon Technologies, Inc. Managing connections in a mesh network having multiple provisioner devices
US11871222B1 (en) 2020-01-29 2024-01-09 Amazon Technologies, Inc. Managing connections in a mesh network
US11757759B2 (en) * 2020-08-31 2023-09-12 Ciena Corporation Hop limit/TTL propagation mode aware relayed MPLS/SRv6 traceroute
CN114500244A (zh) * 2020-11-13 2022-05-13 中兴通讯股份有限公司 网络故障诊断方法、装置、计算机设备和可读介质
WO2023043162A1 (en) * 2021-09-15 2023-03-23 Samsung Electronics Co., Ltd. Method and electronic device for identifying aggressor nodes in a communication network
US11962508B2 (en) * 2021-12-31 2024-04-16 Uab 360 It Device-enabled access control in a mesh network
WO2024127507A1 (ja) * 2022-12-13 2024-06-20 日本電信電話株式会社 学習データ生成装置、学習データ生成方法、及び学習データ生成プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401472A (zh) * 2006-01-11 2009-04-01 费希尔-罗斯蒙德系统公司 无线网状网络中现场设备消息路由的可视映射
CN102088752A (zh) * 2011-03-10 2011-06-08 张毅昆 用于无线多跳网络的锁定路由方法
CN102271379A (zh) * 2011-05-09 2011-12-07 陈志奎 一种基于上下文感知技术的物联网节点节能路由方法
CN104813621A (zh) * 2012-09-28 2015-07-29 奥普蒂斯蜂窝技术有限责任公司 用于无线网状网络中的多跳路由的链路自适应
CN105900378A (zh) * 2014-01-06 2016-08-24 思科技术公司 使用基于早期学习机器的故障预测来触发重新路由
CN106464520A (zh) * 2014-03-31 2017-02-22 西门子公司 对网络中的有故障的节点的检测

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7436797B2 (en) 2003-06-18 2008-10-14 Fisher-Rosemount Systems, Inc. Wireless architecture and support for process control systems
GB0418959D0 (en) * 2004-08-25 2004-09-29 Nortel Networks Ltd Mesh network evaluation methods
US8103316B2 (en) * 2006-09-29 2012-01-24 Rosemount Inc. Power management system for a field device on a wireless network
US7957775B2 (en) 2007-11-05 2011-06-07 International Business Machines Corporation Low battery notification service for wireless device users
CN102165811B (zh) 2008-09-25 2014-07-30 费希尔-罗斯蒙德系统公司 具有节制点的无线网状网络和用于识别无线网状网络内的节制点的方法
CN102111290B (zh) * 2009-12-28 2014-12-10 国际商业机器公司 寻找可追溯网络中源故障节点的方法和系统
JP5376068B2 (ja) * 2010-11-29 2013-12-25 富士通株式会社 無線通信装置および無線ネットワークにおける迂回経路探索方法
US20130197955A1 (en) * 2012-01-31 2013-08-01 Fisher-Rosemount Systems, Inc. Apparatus and method for establishing maintenance routes within a process control system
GB2515923B8 (en) * 2014-02-25 2015-06-17 Cambridge Silicon Radio Ltd Linking ad hoc networks
US9887874B2 (en) * 2014-05-13 2018-02-06 Cisco Technology, Inc. Soft rerouting in a network using predictive reliability metrics
JP6448414B2 (ja) * 2015-03-03 2019-01-09 シャープ株式会社 無線テレメータシステム及び無線通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401472A (zh) * 2006-01-11 2009-04-01 费希尔-罗斯蒙德系统公司 无线网状网络中现场设备消息路由的可视映射
CN102088752A (zh) * 2011-03-10 2011-06-08 张毅昆 用于无线多跳网络的锁定路由方法
CN102271379A (zh) * 2011-05-09 2011-12-07 陈志奎 一种基于上下文感知技术的物联网节点节能路由方法
CN104813621A (zh) * 2012-09-28 2015-07-29 奥普蒂斯蜂窝技术有限责任公司 用于无线网状网络中的多跳路由的链路自适应
CN105900378A (zh) * 2014-01-06 2016-08-24 思科技术公司 使用基于早期学习机器的故障预测来触发重新路由
CN106464520A (zh) * 2014-03-31 2017-02-22 西门子公司 对网络中的有故障的节点的检测

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185325A1 (en) * 2021-03-04 2022-09-09 Telefonaktiebolaget Lm Ericsson (Publ) First node, second node, communications system and methods performed thereby for handling a prediction of an event
CN113645072A (zh) * 2021-08-10 2021-11-12 生迪智慧科技有限公司 主备网关部署方法及装置
CN113645072B (zh) * 2021-08-10 2023-11-07 生迪智慧科技有限公司 主备网关部署方法及装置
CN116099147A (zh) * 2023-03-09 2023-05-12 重新定义(杭州)科技发展有限公司 一种智能消防管理系统
CN116099147B (zh) * 2023-03-09 2024-04-16 重新定义(杭州)科技发展有限公司 一种智能消防管理系统

Also Published As

Publication number Publication date
GB2563133A (en) 2018-12-05
US10116523B1 (en) 2018-10-30
JP2018186496A (ja) 2018-11-22
DE102018108582A1 (de) 2018-10-18
CN108696387B (zh) 2022-05-03
GB2563133B (en) 2021-09-01
JP7193247B2 (ja) 2022-12-20
US20180302294A1 (en) 2018-10-18
GB201805570D0 (en) 2018-05-16

Similar Documents

Publication Publication Date Title
CN108696387A (zh) 用于过程控制系统中的无线网状网络的预测性连通性诊断
CN108809696B (zh) 无线网状网络之间转移的多个无线节点智能排序的方法和系统
US12014300B2 (en) Apparatus and method for establishing maintenance routes within a process control system
CN109426227B (zh) 高性能控制服务器系统
CN101682541B (zh) 使用有向图在网络上路由包的方法和设备
JP5174453B2 (ja) ジオリファレンス処理を利用するワイヤレスアーキテクチャ
JP4919711B2 (ja) 工程管理システム用ワイヤレスアーキテクチャおよびサポート
CN101682547B (zh) 无线hart协议中的高效寻址
CN101682535B (zh) 无线网络中的自适应调度
CN102736600B (zh) 用于将无线数据合并到已建过程控制系统中的设备及方法
Ehrlich et al. State of the art and future applications of industrial wireless sensor networks
CN101682546A (zh) 在过程控制环境下与现场设备的有线和无线混合通信
CN101682545A (zh) 无线协议适配器
Winter et al. WirelessHART routing analysis software
EP3417643B1 (en) Forming a wireless communication network for a process control system determining relay devices according to transmission delay and coverage constraints
CN104244275A (zh) 用于报告无线网络内的通信路径质量的设备和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant