CN108682562A - 一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用 - Google Patents

一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN108682562A
CN108682562A CN201810305022.7A CN201810305022A CN108682562A CN 108682562 A CN108682562 A CN 108682562A CN 201810305022 A CN201810305022 A CN 201810305022A CN 108682562 A CN108682562 A CN 108682562A
Authority
CN
China
Prior art keywords
doping
nanocomposite
preparation
acid iron
glyceric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810305022.7A
Other languages
English (en)
Other versions
CN108682562B (zh
Inventor
朱脉勇
陈齐
申小娟
吴述平
张侃
李松军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201810305022.7A priority Critical patent/CN108682562B/zh
Publication of CN108682562A publication Critical patent/CN108682562A/zh
Application granted granted Critical
Publication of CN108682562B publication Critical patent/CN108682562B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明属于超级电容器领域,具体涉及C掺杂的γ–Fe2O3纳米材料及其制备方法和应用。本发明制备C掺杂的γ–Fe2O3纳米材料的方法具体如下:首先将六水合氯化铁和尿素加入到丙三醇水溶液中混匀,水热反应得到甘油酸铁的前驱体;然后将甘油酸铁前驱体洗涤、离心、真空干燥,得到甘油酸铁;最后将甘油酸铁在管式炉的氮气氛围中进行热处理,得到C掺杂的γ–Fe2O3纳米材料。本发明制备的C掺杂的γ–Fe2O3纳米材料粒径小,比表面积大,将其应用于超级电容器中时,具有较大的放电比容量及良好的循环稳定性。本发明的制备方法成本低,简单易行、流程较短、操作易控,有望用于生产中。

Description

一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用
技术领域
本发明属于超级电容器领域,具体涉及一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用,特别涉及一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和在超级电容器中的应用。
背景技术
电化学电容器又称超级电容器,是一种兼具化学电源高能量密度与传统电容器良好循环稳定性的储能装置。其作为一种绿色环保的储能设备,未来可大规模应用于航空航天、电动汽车等方面。超级电容器根据其存储电荷的方式不同,主要分为两类:一类是类似于传统电容器,过程仅发生物理变化的双电层电容器。其工作原理主要是在电极材料两端接通电压后,依靠静电吸引电解液中的正负离子,使正负离子分别向两个电极移动,从而形成双电层;当移去电压后,吸附在电极材料两端的电子又恢复到杂乱无规则状态,能量得以释放,从而完成一次充放电过程,这种双电层之间存在一个位垒使两个电层上的相反电荷不能够相互中和,从而达到存储电荷的目的;另一类则是电极材料通过发生化学变化进行存储能量的赝电容器,其主要是依靠在电极材料表面或近表面发生快速可逆的法拉第氧化还原反应,进而使电荷得以存储并释放,完成一次充放电过程。
电容器的类型主要由电极材料来决定,双电层电容器电极材料主要为碳材料,包括:碳纳米管、碳球、石墨烯、碳纤维以及无定型碳等。由于并未涉及化学反应,因此其电容比容量比较小;而赝电容器电极材料主要包括金属氧化物和导电聚合物两类,导电聚合物主要包括:聚吡咯、聚苯胺、聚噻吩等;而金属氧化物主要包括:铁类氧化物(Fe2O3、Fe3O4、FeO等)、锰类氧化物(Mn2O3、Mn3O4、MnO等)、钴、镍类氧化物(Co2O3、Co3O4、CoO、NiO等)以及贵金属氧化物氧化钌(RuO2)等。而氧化钌(RuO2)价格昂贵且具有毒性,不适合大规模使用,因此研究人员都在探讨其它金属氧化物作为超级电容器的电极材料;铁类金属氧化物相对于其它金属氧化物(Mn、Co、Ni、Ti等)而言,价格更加低廉、来源更加丰富,在地壳中为仅次于铝的含量第二高的金属元素,因此铁的氧化物具有成本低,资源丰富,环境友好等特点,被广泛用作赝电容器的替代电极材料。
单一的金属氧化物作为电极材料时,虽然具有较高的放电比容量,但其由于在反应过程中发生化学变化,因此其循环稳定性不足;而单一的碳材料作为电极材料时,由于在反应过程中并未发生化学变化,因此具有较低的放电比容量,但具有良好的循环稳定性。综合两种材料的优势,将碳材料与金属氧化物材料进行复合,既可提高材料的放电比容量,亦可提高材料的循环稳定性,因此金属氧化物@碳材料可作为超级电容器的优异材料。
发明内容
本发明的目的在于克服现有技术中存在的缺陷,如:合成工艺复杂,原材料昂贵,所制得样品形貌不均一等,本发明提供了一种棒状甘油酸铁转化成的C掺杂γ–Fe2O3纳米复合材料的制备方法。
具体的,本发明采用如下的技术方案:
(1)合成甘油酸铁的前驱体:
将丙三醇和水两种溶剂混合均匀,依次加入六水合氯化铁和尿素,搅拌均匀后转移至高温高压反应釜中,在水热条件下反应,得到甘油酸铁的前驱体;
(2)制备甘油酸铁:
将甘油酸铁前驱体用去离子水和乙醇进行洗涤,离心、真空干燥,得到绿色粉末,即为甘油酸铁;
(3)制备C掺杂γ–Fe2O3纳米复合材料:
将步骤(2)中的甘油酸铁分别在管式炉的氮气氛围中进行热处理,得到C掺杂γ–Fe2O3纳米复合材料。
步骤1中,丙三醇和水的体积比为11~12: 0~1。
步骤1中,六水合氯化铁和尿素的摩尔比为1~5:1~5。
步骤1中,所述水热反应温度为200℃~250℃,反应时间是10h~20h。
步骤3中,热处理的温度为400℃~500℃,热处理时间为2h~6h,升温速率为1℃/min~10℃/min。
本发明还提供了C掺杂的γ–Fe2O3纳米复合材料,呈颗粒状,大小在10nm左右。
本发明还提供了C掺杂的γ–Fe2O3纳米复合材料的用途,所制备的C掺杂的γ–Fe2O3纳米复合材料用于超级电容器中。
与现有技术相比较,本发明的有益效果体现如下:
(1)本发明所用前驱体元素为铁元素,来源丰富,价格低廉。所制备的前驱体为短棒状的甘油酸铁,是一种甘油与铁离子形成的金属有机配位化合物,合成工艺简单,形貌均一。
(2)本发明所制备的C掺杂的γ–Fe2O3纳米复合材料具有纯度高、粒径小、比表面积大等特点,可与电解液中的电子充分接触,因此具有高的放电比容量,循环稳定性好等优点。
(3)本发明的制备方法简单易行、流程较短、操作易控,成本低,适于推广使用。本发明为降低成本,以六水合氯化铁提供铁源首先制备出纳米级短棒状的甘油酸铁金属有机配合物,并以此为前驱体,通过在氮气气氛下进一步的热处理得到了C掺杂的γ–Fe2O3纳米复合材料,呈颗粒状,大小在10nm左右。此种颗粒状的材料在电化学测试中均表现出较高的比容量及循环稳定性,在电流密度为1A/g下,比容量可达322 F/g,比容量较大,是一种具有良好应用前景的赝电容电极材料。
附图说明
图1(a)为本发明制备的甘油酸铁的X射线衍射(XRD)图谱;图1(b)为本发明制备的C掺杂的γ–Fe2O3纳米复合材料;图1(c)为本发明制备的C掺杂的γ–Fe2O3纳米复合材料的实物图;
图2为γ–Fe2O3纳米材料和本发明制备的C掺杂的γ–Fe2O3纳米复合材料的热重曲线图;
图3为本发明制备的甘油酸铁的扫描电镜图(a)和透射电镜图(b);
图4为本发明制备的C掺杂的γ–Fe2O3纳米复合材料透射电镜图;
图5为本发明制备的C掺杂的γ–Fe2O3纳米复合材料CV曲线(a)、GCD曲线(b)和循环曲线图(c)。
具体实施方式
下面结合附图对本发明作进一步描述:
实施例1:
制备C掺杂的γ–Fe2O3纳米复合材料:
(1)合成甘油酸铁的前驱体:
称取55mL的丙三醇和5mL的去离子水,混合均匀;再依次加入6 mmol的六水合氯化铁,6mmol的尿素,搅拌均匀后,将得到的混合溶液转移至高温高压反应釜中,在200℃下,反应10 h,得到甘油酸铁的前驱体。
(2)制备甘油酸铁:
将上述制备得到的甘油酸铁的前驱体自然冷却至室温,经去离子水洗涤3次,无水乙醇洗涤1次、离心分离、真空干燥,得到绿色粉末,即为甘油酸铁;
(3)制备C掺杂γ–Fe2O3纳米复合材料:
将0.2g甘油酸铁在管式炉的氮气氛围下进行热处理,热处理的温度为450℃,热处理时间为3h,升温速率为1℃/min,得到黑色磁性粉末,即为C掺杂的γ–Fe2O3纳米复合材料。
实施例2:
制备C掺杂的γ–Fe2O3纳米复合材料:
(1)合成甘油酸铁的前驱体:
称取60mL的丙三醇和5mL的去离子水,混合均匀;再依次加入1mmol的六水合氯化铁,5mmol的尿素,搅拌均匀后,将得到的混合溶液转移至高温高压反应釜中,在250℃下,反应15h,得到甘油酸铁的前驱体。
(2)制备甘油酸铁:
将上述制备得到的甘油酸铁的前驱体自然冷却至室温,经去离子水洗涤3次,无水乙醇洗涤1次、离心分离、真空干燥,得到绿色粉末,即为甘油酸铁;
(3)制备C掺杂的γ–Fe2O3纳米复合材料:
将2.5g甘油酸铁在管式炉的氮气氛围下进行热处理,热处理的温度为400℃,热处理时间为6h,升温速率为5℃/min,得到黑色磁性粉末,即为C掺杂的γ–Fe2O3纳米复合材料。
实施例3:
制备C掺杂的γ–Fe2O3纳米复合材料:
(1)合成甘油酸铁的前驱体:
称取55mL的丙三醇,依次加入5 mmol的六水合氯化铁,1mmol的尿素,搅拌均匀后,将得到的混合溶液转移至高温高压反应釜中,在225℃下,反应20h,得到甘油酸铁的前驱体。
(2)制备甘油酸铁:
将上述制备得到的甘油酸铁的前驱体自然冷却至室温,经去离子水洗涤3次,无水乙醇洗涤1次、离心分离、真空干燥,得到绿色粉末,即为甘油酸铁;
(3)制备C掺杂γ–Fe2O3纳米复合材料:
将5.0g甘油酸铁在管式炉的氮气氛围下进行热处理,热处理的温度为500℃,热处理时间为2h,升温速率为10℃/min,得到黑色磁性粉末,即为C掺杂的γ–Fe2O3纳米复合材料。
图1中可以看出,(a)为所合成绿色粉末的XRD图谱,合成前驱体的X射线衍射图显示,只有一个明显的衍射峰位于11°左右,这种衍射峰位置可归因于甘油中的铁甘油相,这是一种典型的以甘油为原料的铁基烷氧化合物,即证明这种合成的绿色粉末为甘油酸铁;(b)为甘油酸铁在氮气氛围下经过热处理之后,合成的黑色磁性粉末的XRD图谱,这些样品粉末具有良好的衍射峰,分别对应于γ-Fe2O3的(220)、(311)、(222)、(400)、(422)、(511)、(440)面,证明了此种材料属于γ–Fe2O3类材料;(c)本发明制备的C掺杂的γ–Fe2O3纳米复合材料的实物图,由图可知,此纳米材料为黑色粉末。
图2中可以看出,合成的黑色磁性粉末材料在300℃~500℃范围内曲线出现了明显的下降,这主要是由于碳的分解所致;再结合该黑色磁性粉末的XRD图可以得出黑色磁性粉末为C掺杂的γ-Fe2O3的纳米复合材料;对比γ-Fe2O3的纳米材料与C掺杂的γ-Fe2O3的纳米复合材料二者的热重曲线可以算出C掺杂γ–Fe2O3中碳的含量在13.46% 左右。
图3中可以看出,甘油酸铁的形貌清晰可见,制备的甘油酸铁为短棒状结构,长度在150nm~400nm之间,宽度在50nm左右。
图4中可以看出,所合成的C掺杂γ–Fe2O3纳米复合材料呈颗粒状,大小在10nm左右。
由实施例1-3所述的方法制得的C掺杂的γ–Fe2O3纳米复合材料进行如下实验:
电化学性能测试:
(1)电极浆料的制备:
将电极材料、导电剂(乙炔黑)和粘结剂(聚偏氟乙烯)按照75:15:10的比例分散于分散剂1-甲基-2-吡咯烷酮(NMP)中,混合均匀,即得到电极浆料。
(2)泡沫镍电极片的制备:
将泡沫镍切割成5cm×1cm的长方形小片,并在4cm处标记,得到1cm×1cm的预涂覆电浆材料表面。之后对泡沫镍进行洗涤,首先将泡沫镍浸泡在丙酮中,超声振荡15min,再将泡沫镍浸入1mol/L的盐酸溶液中,超声振荡15min;之后再将泡沫镍浸入去离子水中,超声振荡15min;最后再将泡沫镍浸入无水乙醇中,超声振荡15min。再将泡沫镍转移至真空干燥箱中,60℃下干燥12h,得到电极片。
(3)电极材料的制备:
将电浆材料均匀涂覆于泡沫镍电极片上,转移至真空干燥箱中,60℃下干燥12h,得到电极材料。
图5中可以看出,(a)为C掺杂γ–Fe2O3纳米复合材料的CV曲线图,可以看出有明显的氧化还原峰,表明其属于赝电容材料;(b)为C掺杂γ–Fe2O3纳米复合材料的恒定电流充放电曲线图(GCD),在电流密度为1A/g下,比容量可达322 F/g;(c)为C掺杂γ–Fe2O3纳米复合材料的循环性能图,在循环3500次后,仍有62.5%的比容量保持率。

Claims (10)

1.一种C掺杂的γ–Fe2O3纳米复合材料,其特征在于,所述C掺杂的γ–Fe2O3纳米复合材料呈颗粒状。
2.一种C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,包括以下步骤:
(1)合成甘油酸铁的前驱体:
将丙三醇和水两种溶剂混合均匀,依次加入六水合氯化铁、尿素,搅拌均匀后,将得到的混合液转移至反应釜中,在水热条件下反应,得到甘油酸铁的前驱体;
(2)制备甘油酸铁:
将步骤(1)中的甘油酸铁前驱体用去离子水、乙醇进行洗涤,离心、真空干燥,得到绿色粉末,即为甘油酸铁;
(3)制备C掺杂的γ–Fe2O3纳米复合材料:
将步骤(2)中的甘油酸铁在管式炉的氮气氛围中进行热处理,得到C掺杂的γ–Fe2O3纳米复合材料。
3.根据权利要求2所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,丙三醇和水的体积比为11~12:0~1。
4.根据权利要求2所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,六水合氯化铁和尿素的摩尔比为1~5:1~5。
5.根据权利要求2所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,所述水热反应温度为200℃~250℃,反应时间是10h~20h。
6.根据权利要求2所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(3)中,热处理的温度为400℃~500℃,升温速率为1℃/min~10℃/min。
7.根据权利要求2所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(3)中,热处理时间为2h~6h。
8.根据权利要求3所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,丙三醇和水的体积比为11:1。
9.根据权利要求4所述的C掺杂的γ–Fe2O3纳米复合材料的制备方法,其特征在于,步骤(1)中,六水合氯化铁和尿素的摩尔比为1:1。
10.根据权利要求2-9任意一项所述的制备方法制备的C掺杂的γ–Fe2O3纳米复合材料用于超级电容器中。
CN201810305022.7A 2018-04-08 2018-04-08 一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用 Active CN108682562B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810305022.7A CN108682562B (zh) 2018-04-08 2018-04-08 一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810305022.7A CN108682562B (zh) 2018-04-08 2018-04-08 一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN108682562A true CN108682562A (zh) 2018-10-19
CN108682562B CN108682562B (zh) 2019-11-05

Family

ID=63800808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810305022.7A Active CN108682562B (zh) 2018-04-08 2018-04-08 一种C掺杂的γ–Fe2O3纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN108682562B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850794A (zh) * 2021-01-08 2021-05-28 合肥工业大学 一种Zn掺杂分级球状Fe2O3材料的制备方法及其储能应用
CN115465848A (zh) * 2022-08-31 2022-12-13 合肥国轩高科动力能源有限公司 一种片状磷酸铁锂-碳复合材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390196A (en) * 1977-01-20 1978-08-08 Hitachi Maxell Ltd Preparation of magnetic powders
US4497723A (en) * 1982-06-30 1985-02-05 Basf Aktiengesellschaft Preparation of acicular, ferrimagnetic iron oxides
CN102509786A (zh) * 2011-10-11 2012-06-20 北京化工大学 一种多孔金属氧化物-碳复合薄膜电极及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5390196A (en) * 1977-01-20 1978-08-08 Hitachi Maxell Ltd Preparation of magnetic powders
US4497723A (en) * 1982-06-30 1985-02-05 Basf Aktiengesellschaft Preparation of acicular, ferrimagnetic iron oxides
JPH0543648B2 (zh) * 1982-06-30 1993-07-02 Basf Ag
CN102509786A (zh) * 2011-10-11 2012-06-20 北京化工大学 一种多孔金属氧化物-碳复合薄膜电极及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HAO-JIE CUI 等: "One step solvothermal synthesis of functional hybrid γ-Fe2O3/carbon hollow spheres with superior capacities for heavy metal removal", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *
NING ZHANG 等: "3D Porous γ-Fe2O3@C Nanocomposite as High-Performance Anode Material of Na-Ion Batteries", 《ADV. ENERGY MATER.》 *
XIAOPING DONG 等: "Synthesis and Magnetic Properties of Mesostructured γ-Fe2O3/Carbon Composites by a Co-casting Method", 《CHEM. MATER.》 *
夏英静: "氧化铁纳米结构的可控制备及表征", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
黄然: "氧化铁和石墨烯复合氧化铁的制备及其电化学性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112850794A (zh) * 2021-01-08 2021-05-28 合肥工业大学 一种Zn掺杂分级球状Fe2O3材料的制备方法及其储能应用
CN112850794B (zh) * 2021-01-08 2023-09-26 合肥工业大学 一种Zn掺杂分级球状Fe2O3材料的制备方法及其储能应用
CN115465848A (zh) * 2022-08-31 2022-12-13 合肥国轩高科动力能源有限公司 一种片状磷酸铁锂-碳复合材料的制备方法
CN115465848B (zh) * 2022-08-31 2024-03-08 合肥国轩高科动力能源有限公司 一种片状磷酸铁锂-碳复合材料的制备方法

Also Published As

Publication number Publication date
CN108682562B (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
Raj et al. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application
Huang et al. Facilely synthesized porous ZnCo 2 O 4 rodlike nanostructure for high-rate supercapacitors
Venkatachalam et al. Double hydroxide mediated synthesis of nanostructured ZnCo2O4 as high performance electrode material for supercapacitor applications
Yue et al. One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode
Bi et al. One-pot microwave synthesis of NiO/MnO2 composite as a high-performance electrode material for supercapacitors
Xu et al. Facile synthesis route of porous MnCo 2 O 4 and CoMn 2 O 4 nanowires and their excellent electrochemical properties in supercapacitors
Xie et al. Characterization of a manganese dioxide/carbon nanotube composite fabricated using an in situ coating method
Luo et al. Rapid synthesis of three-dimensional flower-like cobalt sulfide hierarchitectures by microwave assisted heating method for high-performance supercapacitors
Xiao et al. Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances
Balasubramanian et al. Fabrication of natural polymer assisted mesoporous Co3O4/carbon composites for supercapacitors
Hwang et al. Behavior of NiO–MnO2/MWCNT composites for use in a supercapacitor
Reddy et al. Architecture of superior hybrid electrode by the composition of Cu2O nanoflakes, novel cadmium ferrite (CdFe2O4) nanoparticles, and g-C3N4 sheets for symmetric and asymmetric supercapacitors
Gao et al. Effect of different templating agents on cobalt ferrite (CoFe 2 O 4) nanomaterials for high-performance supercapacitor
Lu et al. Solid-state chemical fabrication of one-dimensional mesoporous β-nickel molybdate nanorods as remarkable electrode material for supercapacitors
Yang et al. Construction of S-doped ZnCo2O4 microspindles with enhanced electrochemical performance for supercapacitors
Rajeshkhanna et al. High energy density symmetric capacitor using zinc cobaltate flowers grown in situ on Ni foam
Yuan et al. Cu-doped NiO for aqueous asymmetric electrochemical capacitors
CN108962626B (zh) 一种用于超级电容器的具有pn结结构的复合材料
Javed et al. Engineering the performance of negative electrode for supercapacitor by polyaniline coated Fe3O4 nanoparticles enables high stability up to 25,000 cycles
Zolfaghari et al. Electrochemical study on zeolitic imidazolate framework-67 modified MnFe2O4/CNT nanocomposite for supercapacitor electrode
Ma et al. Amorphous hierarchical porous manganese oxides for supercapacitors with excellent cycle performance and rate capability
Gao et al. Facile synthesis of nickel metal–organic framework derived hexagonal flaky NiO for supercapacitors
CN106971855B (zh) 一种铁酸镍纳米颗粒电极材料及制备方法和用途
Jokar et al. Growth control of cobalt oxide nanoparticles on reduced graphene oxide for enhancement of electrochemical capacitance
Dai et al. High-yield synthesis of carbon nanotube–porous nickel oxide nanosheet hybrid and its electrochemical capacitance performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant