CN108667502A - 一种基于机器学习的空间调制天线选择方法 - Google Patents

一种基于机器学习的空间调制天线选择方法 Download PDF

Info

Publication number
CN108667502A
CN108667502A CN201810389917.3A CN201810389917A CN108667502A CN 108667502 A CN108667502 A CN 108667502A CN 201810389917 A CN201810389917 A CN 201810389917A CN 108667502 A CN108667502 A CN 108667502A
Authority
CN
China
Prior art keywords
antenna
vector
label
sample
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810389917.3A
Other languages
English (en)
Inventor
江科
游龙飞
杨平
肖悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810389917.3A priority Critical patent/CN108667502A/zh
Publication of CN108667502A publication Critical patent/CN108667502A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection

Abstract

本发明属于通信抗干扰技术领域,具体的说是涉及一种基于机器学习的空间调制天线选择方法。本发明主要利用机器学习的方法,首先产生信道样本进行训练,训练好之后,每当信道矩阵发生变化时,只需利用信道矩阵找到对应的分类即可,无需繁琐的计算,从而大幅度降低了复杂度。此外,在学习模型训练好之后,只要信道的随机分布不发生改变,便无需进行新的训练。本发明的有益效果为,本发明提出的基于机器学习的天线选择算法,因为无需重复繁琐的计算,大幅度降低了计算复杂度。

Description

一种基于机器学习的空间调制天线选择方法
技术领域
本发明属于通信抗干扰技术领域,涉及空间调制技术(Spatial Modulation,SM),多输入多输出技术(Multiple-Input Multiple-Output,MIMO),天线选择技术(AntennaSelection),机器学习(Machine Learning),欧氏距离最优化天线选择(EuclideanDistance optimized Antenna Selection,EDAS)。
背景技术
在传统的空间调制技术中,如天线选择,每当信道矩阵发生变化时,都需要根据天线选择标准或者功率分配标准进行选择或分配,每一次选择或分配都有繁琐的计算和比较过程,从而使得整个过程变得重复繁琐。传统的天线选择算法以欧氏距离最优化天线选择(Euclidean Distance optimized Antenna Selection,EDAS)为主,其主要思想为最大化最小欧氏距离,并以EDAS算法为标准,进行复杂度优化,需要重复计算进行,使得最小欧氏距离最大化。虽然后续也陆续有研究者提出更低复杂度的算法,避免了在给定某次信道矩阵下的重复运算,但整个过程仍然是具有重复性的,例如某两次的信道矩阵相同或相近,传统的天线选择算法仍需进行两次相应的运算,不利于有效利用资源。
发明内容
传统的天线选择的算法,以EDAS为例,需要重复进行使得最小欧氏距离最大化的数学公式,如公式(1)
的重复计算,其中,是从原始完整信道矩阵中选取Ns列所组成的信道子矩阵, 为所有可能的发送信号集合,这一系列计算将消耗大量资源,不利于系统系能的提升。
本发明的目的,就是针对空间调制系统中传统天线选择时的重复繁琐计算,提出一种基于机器学习的天线选择算法。利用机器学习的方法,首先产生信道样本进行训练,训练好之后,每当信道矩阵发生变化时,只需利用信道矩阵找到对应的分类即可,无需繁琐的计算,从而大幅度降低了复杂度。此外,在学习模型训练好之后,只要信道的随机分布不发生改变,便无需进行新的训练。并且在选择样本特征时,相较于传统方法选用信道矩阵H的元素模值作为特征,本发明选用HHH的元素模值作为特征,更接近接相关性矩阵的表达式,能够取得较好的效果。
本发明的技术方案如下:
假设一个有Nt根发送天线,Nr根接收天线的空间调制系统,并从Nt根发送天线中选取Ns根天线进行发送。假设为被选中天线索引向量的集合,其中是第n种天线组合的被选中天线索引构成的向量,NS为所有可能的天线组合数,即基于机器学习的天线选择主要包括如下内容:
A.训练集合的构造
训练集合的构造主要分为三个方面:(1)从信道矩阵中生成训练样本;(2)设计关键性能指标(Key Performance Indicator,KPI);(3)基于KPI给出样本贴标签。
(1)生成训练样本:训练样本作为已知的变量被输入到学习系统中,在空间调制系统中,假设有M个Nr×Nt维的信道矩阵Hm作为训练样本。因为训练样本需要是一个实值的向量,所以需要将信道样本Hm处理为一个N维的实值特征向量,特征可以是角度,量级,以及矩阵元素hi,j的实虚部等。另外,提取出的特征向量还需要做归一化处理,以避免训练时出现重大偏差。本发明中训练集合生成的过程如下:
1)从信道矩阵中得到实值的特征向量;
2)直至为所有的Hm(m=1,2,...,M)生成特征向量;
3)生成训练数据矩阵
4)归一化矩阵D,并生成归一化特征矩阵T,其中
ti,j=(di,j-Ei{di,j})/(maxi{di,j}-mini{di,j}) 公式(2)
(2)设计关键KPI:关键性能指标(KPI)是用来决定为样本贴上何种标签,一般地,在通信中,KPI可以是频谱效率,能量效率,BER,接收信号能量等。本发明根据公式(1)设计KPI。
(3)标签:假设是标签集合,是天线组合集合,设计标签集合和设计天线组合集合是对等的。在天线选择中,相关性越小的天线被选中,其性能也会更好一些。因此,在设计天线组合集合时,选择相关性较小的一些天线集合,以提升训练性能。而若不知道天线间相关性,或天线间均不相关,则天线组合集合为包含所有可能的天线组合。表1给出了标签集合到天线组合集合的映射表,其中,Nt=6,Nr=2,Ns=2,加粗部分为相关性较小的组合。
表1标签和天线组合间的映射
l=1,s1=[1,2] l=6,s1=[2,3] l=11,s1=[3,5]
l=2,s1=[1,3] l=7,s1=[2,4] l=12,s1=[3,6]
l=3,s1=[1,4] l=8,s1=[2,5] l=13,s1=[4,5]
l=4,s1=[1,5] l=9,s1=[2,6] l=14,s1=[4,6]
l=5,s1=[1,6] l=10,s1=[3,4] l=15,s1=[5,6]
贴标签过程如下:
1)对于第m个样本Hm,计算每一种组合sn对应的KPI。
2)找出能使KPI最好的天线组合以及其对应的标签l*,令l*作为标签向量的第m个元素cm
3)重复上述步骤,直至得到所有样本Hm(m=1,2,...,M)的对应标签。
B.建立学习系统
在上述过程中,我们已经得到了样本的特征矩阵T和标签向量c,现在利用特征矩阵和标签向量建立学习系统。为方便表示,令tr[m]表示矩阵T的第m行。本发明涉及的机器学习过程中,采用KNN和SVM分类器。
(1)多级KNN分类器:从训练样本集合{tr[m]}中,找出离新的观测样本tr最近的k个样本,然后基于多数票决,为tr贴上标签l*
(2)多级SVM分类器:SVM采用一对其它的二元分类策略,主要过程如下:
1)假设Tl时标签为l的样本特征向量作为行向量所构成的子训练数据矩阵。于是对于所有的可得到一个子训练数据矩阵集合{Tl}。然后运行SVM来对两个训练群Tl的分类。
2)生成二元标签向量bl=[bl[1],...,bl[M]]T,当cm=l时,bl[m]=1,否则bl[m]=0。
3)用两个训练群和相应的二元标签向量bl,根据公式(3)来解决二选一的逻辑回归问题:
其中,C是惩罚因子,是代价函数,是学习参数向量,是高斯径向基核函数向量,其第q个元素
fq(tr[m])=exp(-||tr[q]-tr[m]||2/(2σ2))
给出了tr[q]和tr[m]间的相似度。
4)重复上述步骤3),直至遍历完所有
C.基于SVM分类器的天线选择
在得到所有的θl后,就可以利用公式(3)建立一个天线选择系统,在输入一个新的信道矩阵后,首先处理为特征向量tr,然后输入分类器即可预知其所属类别的标签,即选出的天线组合索引。
D.样本特征提取的优化
分类器最终的分类效果受样本特征选取的影响很大,在选取信道矩阵的特征时,传统方法中采用的是以信道矩阵H的元素的模作为特征,但并未进一步研究此特征是否还可以得到优化。为了得到更好的分类效果,本发明中采用了以HHH的元素的模作为特征,可知此公式接近于相关性矩阵的表达式,而相关性与最终的天线选择结果存在较大的关系,因此以此公式的元素来提取特征能取得较好的效果。
E.仿真结果
仿真的结果如配图2和配图3所示。结果表明支持向量机算法的分类效果要好于K最邻近算法,且采用以HHH的元素模值作为特征的性能要远远好于以信道矩阵H的元素模值作为特征的性能,但对于K最邻近算法来说,采用以HHH性能要略差于采用H的性能。另外,随机选择的性能与无天线选择的性能相同,在高信噪比时,采用以HHH的元素模值作为特征的支持向量机的性能EDAS算法相比大约有2dB的性能损失,但由于支持向量机算法在训练好之后,只要信道矩阵的分布不发生改变,便无需再进行重复计算,复杂度远远低于EDAS算法。
本发明的有益效果为,本发明提出的基于机器学习的天线选择算法,因为无需重复繁琐的计算,大幅度降低了计算复杂度。而选择HHH的元素模值作为特征,能够有效提高系统的性能。
附图说明
图1为本发明中的基于机器学习的天线选择算法的流程图;
图2为在不同的分类方法下采用不同的样本特征的性能对比,(Nt=4,Nr=2,Ns=2,QPSK)其中,无天线选择表示配置为Nt=2,Nr=2的传统空间调制系统性能;
图3为不同天线选择方法的性能对比,(Nt=4,Nr=2,Ns=2,QPSK);其中,无天线选择表示配置为Nt=2,Nr=2的传统空间调制系统性能。
具体实施方式
下面将结合配图,给出本发明的具体实施例。需要说明的是:实施例中的参数并不影响本发明的一般性。
下面对该发明提出的一种基于机器学习的发送端天线选择算法算法进行说明。考虑一个Nt×Nr的空间调制系统,其中Nt是发射天线数,Nr是接收天线数。设为被选中天线索引向量的集合,其中是第n种天线组合的被选中天线索引构成的向量,NS为所有可能的天线组合数,即基于机器学习的天线选择算法主要包括如下步骤:
A、训练集合的构造
(1)按如下过程生成训练样本
1)从信道矩阵中得到实值的特征向量;
2)直至为所有的Hm(m=1,2,...,M)生成特征向量;
3)生成训练数据矩阵
4)归一化矩阵D,并生成归一化特征矩阵T。
(2)设计关键KPI,可以是频谱效率,能量效率,BER,接收信号能量等
(3)按如下过程给样本贴标签
1)对于第m个样本Hm,计算每一种组合sn对应的KPI;
2)找出能使KPI最好的天线组合以及其对应的标签l*,令l*作为标签向量的第m个元素cm
3)重复上述步骤,直至得到所有样本Hm(m=1,2,...,M)的对应标签。
B.按如下过程利用特征矩阵T和标签向量c建立学习系统
(1)多级KNN分类器:从训练样本集合{tr[m]}中,找出离新的观测样本tr最近的k个样本,然后基于多数票决,为tr贴上标签l*
(2)多级SVM分类器:SVM采用一对其它的二元分类策略,主要过程如下:
1)假设Tl时标签为l的样本特征向量作为行向量所构成的子训练数据矩阵。于是对于所有的可得到一个子训练数据矩阵集合{Tl}。然后运行SVM来对两个训练群Tl分类;
2)生成二元标签向量bl=[bl[1],...,bl[M]]T,当cm=l时,bl[m]=1,否则bl[m]=0;
3)用两个训练群和相应的二元标签向量bl,根据公式(3)来解决二选一的逻辑回归问题:
其中,C是惩罚因子,是代价函数,是学习参数向量,是高斯径向基核函数向量,其第q个元素
fq(tr[m])=exp(-||tr[q]-tr[m]||2/(2σ2))
给出了tr[q]和tr[m]间的相似度。
4)重复上述步骤3),直至遍历完所有
C.基于SVM分类器,在得到所有的θl后,利用公式(3)建立一个天线选择系统,在输入一个新的信道矩阵后,输入分类器即可预知其所属类别的标签,即选出的天线组合索引,完成天线选择。
D.样本特征提取的优化
分类器最终的分类效果受样本特征选取的影响很大,在选取信道矩阵的特征时,传统方法中采用的是以信道矩阵H的元素的模作为特征,而本发明采用了以HHH的元素的模作为特征,得到更好的分类效果,信道的HHH比信道矩阵H更接近于相关性矩阵的表达式,而相关性与最终的天线选择结果存在较大的关系,因此以HHH的元素来提取特征能取得较好的效果。
本发明的有益效果在于,通过机器学习的方法,训练信道样本,当信道矩阵发生变化时,利用信道矩阵找到对应的分类即可,无需重复繁琐的计算,在学习模型训练好之后,只要信道的随机分布不发生改变,便无需进行新的训练,大幅降低了复杂度。另外,相较于传统机器学习的方法,本发明选用信道HHH的元素的模作为特征,更接近于相关性矩阵的表达式,能够有效提高系统的性能。

Claims (1)

1.一种基于机器学习的空间调制天线选择方法,设定空间调制系统中有Nt根发送天线,Nr根接收天线,并从Nt根发送天线中选取Ns根天线进行发送,定义为被选中天线索引向量的集合,其中是第n种天线组合的被选中天线索引构成的向量,NS为所有可能的天线组合数,即其特征在于,所述方法包括以下步骤:
a、构造训练集合:
a1、设有M个Nr×Nt维的信道矩阵作为训练样本,具体包括:
a11、从信道矩阵Hm生成实值特征向量dm
a12、重复步骤a11,直至为所有的Hm(m=1,2,...,M)生成特征向量;
a13、生成训练数据矩阵
a14、归一化矩阵D,并生成归一化特征矩阵T,其中T里面元素为:
ti,j=(di,j-Ei{di,j})/(maxi{di,j}-mini{di,j}) (1)
a2、采用关键KPI来决定为样本贴上何种标签,所述关键KPI为频谱效率、能量效率、BER和接收信号能量中的一种,具体为:
a21、对于第m个样本Hm,计算每一种组合sn对应的KPI;
a23、找出能使KPI最好的天线组合以及其对应的标签l*,令l*作为标签向量的第m个元素cm
a24、重复上述步骤,直至得到所有样本Hm(m=1,2,...,M)的对应标签;
b、按如下过程利用特征矩阵T和标签向量c建立学习系统:
b1、建立多级KNN分类器:从训练样本集合{tr[m]}中,找出离新的观测样本tr最近的k个样本,然后基于多数票决,为tr贴上标签l*
b2、建立多级SVM分类器,即SVM采用一对其它的二元分类策略,主要过程如下:
b21、假设Tl时标签为l的样本特征向量作为行向量所构成的子训练数据矩阵;对于所有的得到一个子训练数据矩阵集合{Tl};然后运行SVM来对两个训练群Tl分类;
b22、生成二元标签向量bl=[bl[1],...,bl[M]]T,当cm=l时,bl[m]=1,否则bl[m]=0;
b23、用两个训练群和相应的二元标签向量bl,根据如下公式来解决二选一的逻辑回归问题:
其中,C是惩罚因子,是代价函数,是学习参数向量,是高斯径向基核函数向量,其第q个元素
fq(tr[m])=exp(-||tr[q]-tr[m]||2/(2σ2))
给出了tr[q]和tr[m]间的相似度;
b24、重复步骤b23,直至遍历完所有建立SVM分类器;
c、基于SVM分类器,在得到所有的θl后,利用公式(2)建立一个天线选择系统,在输入一个新的信道矩阵后,输入分类器即可预知其所属类别的标签,即选出的天线组合索引,完成天线选择。
CN201810389917.3A 2018-04-27 2018-04-27 一种基于机器学习的空间调制天线选择方法 Pending CN108667502A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810389917.3A CN108667502A (zh) 2018-04-27 2018-04-27 一种基于机器学习的空间调制天线选择方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810389917.3A CN108667502A (zh) 2018-04-27 2018-04-27 一种基于机器学习的空间调制天线选择方法

Publications (1)

Publication Number Publication Date
CN108667502A true CN108667502A (zh) 2018-10-16

Family

ID=63780383

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810389917.3A Pending CN108667502A (zh) 2018-04-27 2018-04-27 一种基于机器学习的空间调制天线选择方法

Country Status (1)

Country Link
CN (1) CN108667502A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302217A (zh) * 2018-12-06 2019-02-01 玉林师范学院 一种高效的mimo系统发射天线选择方法
CN109919226A (zh) * 2019-03-07 2019-06-21 西北工业大学深圳研究院 一种基于机器学习的不可信中继网络天线选择方法
CN111769862A (zh) * 2020-06-28 2020-10-13 南京理工大学 一种基于深度学习的空间调制网络中联合检测算法
CN111934778A (zh) * 2020-07-01 2020-11-13 华中科技大学 一种光纤通信系统中发射端的优化设计方法及系统
CN112737650A (zh) * 2020-12-30 2021-04-30 玉林师范学院 基于机器学习的mimo系统发射天线选择方法
CN113411106A (zh) * 2021-05-31 2021-09-17 海南大学 安全空间调制系统中基于深度学习的功率分配方法
CN113612587A (zh) * 2020-05-29 2021-11-05 南京理工大学 基于深度学习的空间调制接收端译码方法
CN114629532A (zh) * 2022-03-09 2022-06-14 玉林师范学院 一种准确快速的mimo系统发射天线选择方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202018A (zh) * 2011-06-16 2011-09-28 北京工业大学 一种基于支持向量机的信道估计方法
US20160066137A1 (en) * 2014-09-03 2016-03-03 CloudLeaf, Inc. Systems, methods and devices for asset status determination
CN106982086A (zh) * 2017-03-29 2017-07-25 中山大学 一种基于收发天线选择的空间调制方法
CN107133293A (zh) * 2017-04-25 2017-09-05 中国科学院计算技术研究所 一种适用于多标签分类的ML‑kNN改进方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202018A (zh) * 2011-06-16 2011-09-28 北京工业大学 一种基于支持向量机的信道估计方法
US20160066137A1 (en) * 2014-09-03 2016-03-03 CloudLeaf, Inc. Systems, methods and devices for asset status determination
CN106982086A (zh) * 2017-03-29 2017-07-25 中山大学 一种基于收发天线选择的空间调制方法
CN107133293A (zh) * 2017-04-25 2017-09-05 中国科学院计算技术研究所 一种适用于多标签分类的ML‑kNN改进方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JINGON JOUNG: "Machine Learning-Based Antenna Selection in Wireless Communications", 《 IEEE COMMUNICATIONS LETTERS》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109302217A (zh) * 2018-12-06 2019-02-01 玉林师范学院 一种高效的mimo系统发射天线选择方法
CN109302217B (zh) * 2018-12-06 2021-10-22 玉林师范学院 一种高效的mimo系统发射天线选择方法
CN109919226A (zh) * 2019-03-07 2019-06-21 西北工业大学深圳研究院 一种基于机器学习的不可信中继网络天线选择方法
CN109919226B (zh) * 2019-03-07 2022-05-24 西北工业大学深圳研究院 一种基于机器学习的不可信中继网络天线选择方法
CN113612587A (zh) * 2020-05-29 2021-11-05 南京理工大学 基于深度学习的空间调制接收端译码方法
CN111769862A (zh) * 2020-06-28 2020-10-13 南京理工大学 一种基于深度学习的空间调制网络中联合检测算法
CN111934778A (zh) * 2020-07-01 2020-11-13 华中科技大学 一种光纤通信系统中发射端的优化设计方法及系统
CN111934778B (zh) * 2020-07-01 2021-07-27 华中科技大学 一种光纤通信系统中发射端的优化设计方法及系统
CN112737650B (zh) * 2020-12-30 2022-02-22 玉林师范学院 基于机器学习的mimo系统发射天线选择方法
CN112737650A (zh) * 2020-12-30 2021-04-30 玉林师范学院 基于机器学习的mimo系统发射天线选择方法
CN113411106A (zh) * 2021-05-31 2021-09-17 海南大学 安全空间调制系统中基于深度学习的功率分配方法
CN114629532A (zh) * 2022-03-09 2022-06-14 玉林师范学院 一种准确快速的mimo系统发射天线选择方法
CN114629532B (zh) * 2022-03-09 2023-03-14 玉林师范学院 一种准确快速的mimo系统发射天线选择方法

Similar Documents

Publication Publication Date Title
CN108667502A (zh) 一种基于机器学习的空间调制天线选择方法
Liu et al. Deep transfer learning for signal detection in ambient backscatter communications
Lee et al. Transmit power control using deep neural network for underlay device-to-device communication
CN110557177A (zh) 毫米波大规模MIMO系统中基于DenseNet的混合预编码方法
Yang et al. Machine learning enabling analog beam selection for concurrent transmissions in millimeter-wave V2V communications
CN109299698B (zh) 一种基于支持向量机的无线信道场景识别方法
CN109714091B (zh) 一种在毫米波mimo系统中基于分层设计的迭代混合预编码方法
CN112468202B (zh) 低复杂度毫米波大规模mimo混合预编码方法
Shen et al. Transfer learning for mixed-integer resource allocation problems in wireless networks
CN113965233A (zh) 一种基于深度学习的多用户宽带毫米波通信资源分配方法及系统
Xu et al. Optimizing federated learning on device heterogeneity with a sampling strategy
Chai et al. HPNet: A compressed neural network for robust hybrid precoding in multi-user massive MIMO systems
CN113872655B (zh) 一种多播波束赋形快速计算方法
Yu et al. Deep learning based user scheduling for massive MIMO downlink system
Bhardwaj et al. Deep learning-based MIMO and NOMA energy conservation and sum data rate management system
CN109302217A (zh) 一种高效的mimo系统发射天线选择方法
CN108306662B (zh) 一种基于数据驱动的混合波束成形中的模拟波束选择方法
CN106899530B (zh) 一种基于门限值的天线组合和调制阶数联合优化方法
Wang et al. Adversarial learning-based spectrum sensing in cognitive radio
CN112737650B (zh) 基于机器学习的mimo系统发射天线选择方法
CN113078931B (zh) 基于qga-omp算法的毫米波大规模mimo混合预编码方法及系统
Liu et al. Deep Learning Aided Two-Stage Multi-Finger Beam Training in Millimeter-Wave Communication
CN108564178A (zh) 一种基于机器学习的功率分配方法
CN114337883A (zh) 协方差矩阵Cholesky分解的CNN协作频谱感知方法及系统
CN114629532B (zh) 一种准确快速的mimo系统发射天线选择方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20181016