CN108667305B - 串联谐振全桥变换器的变压器磁密控制方法 - Google Patents

串联谐振全桥变换器的变压器磁密控制方法 Download PDF

Info

Publication number
CN108667305B
CN108667305B CN201810366920.3A CN201810366920A CN108667305B CN 108667305 B CN108667305 B CN 108667305B CN 201810366920 A CN201810366920 A CN 201810366920A CN 108667305 B CN108667305 B CN 108667305B
Authority
CN
China
Prior art keywords
switch
full bridge
flux density
transformer
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810366920.3A
Other languages
English (en)
Other versions
CN108667305A (zh
Inventor
陈武
宁光富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Guodian Environmental Protection Technology Co., Ltd.
Original Assignee
NANJING GUODIAN ENVIRONMENTAL PROTECTION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING GUODIAN ENVIRONMENTAL PROTECTION TECHNOLOGY Co Ltd filed Critical NANJING GUODIAN ENVIRONMENTAL PROTECTION TECHNOLOGY Co Ltd
Priority to CN201810366920.3A priority Critical patent/CN108667305B/zh
Publication of CN108667305A publication Critical patent/CN108667305A/zh
Application granted granted Critical
Publication of CN108667305B publication Critical patent/CN108667305B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明公开了一种串联谐振全桥变换器的变压器磁密控制方法,包括:控制第一开关管Q1和第三开关管Q3之间移相半个开关周期0.5Ts,两者的占空比相同且为半个串联谐振周期0.5Tr;第二开关管Q2超前第四开关管Q4半个开关周期0.5Ts,且两者在一个开关周期内开关两次;第二开关管Q2的第一次开通起点滞后第一开关管Q1的半个串联谐振周期0.5Tr,只导通半个串联谐振周期0.5Tr;第二开关管Q2的第二次开通起点滞后第一开关管Q1半个开关周期0.5Ts,且导通时间应大于0.5Tr但小于一个串联谐振周期Tr。通过改变开关频率来控制变换器传输功率大小。本发明在相同输出电压条件下,变压器励磁电流和磁密的最大值不受开关频率和功率变化的影响,解决在轻载下变压器易饱和的难题。

Description

串联谐振全桥变换器的变压器磁密控制方法
技术领域
本发明涉及一种串联谐振全桥变换器的变压器磁密控制方法,属于电力电子的技术领域。
背景技术
高压脉冲电源可为激光核聚变、离子束武器、高能微波、MARX发生器、雷达发射器等提供巨大的脉冲能量。作为重要的脉冲动力源,高压脉冲电源有工频和高频两种方式,与工频电源相比,高频电源在效率、功率密度、体积、质量等方面更具优势。随着新的开关器件与功率变换技术的发展,可以实现软开关的高频谐振型变换器得到了广泛应用。其中串联谐振全桥DC/DC变换器在断续谐振电流模式下具有充电电流恒定、控制简单和软开关实现容易等特点,因此广泛应用于高压电容器充电、静电除尘等系统中。然而,串联谐振全桥DC/DC变换器通常采用变频控制,随着所需能量的变化,频率变化范围很大,这导致了磁性元件的设计难题,尤其是大功率变压器在低频下很容易出现饱和现象,限制了变换器的工作范围也增加了变压器的体积和成本。
发明内容
本发明所要解决的技术问题在于克服现有技术的不足,提供一种串联谐振全桥变换器的变压器磁密控制方法,解决传统的串联谐振全桥变换器通常采用变频控制技术,其简单易实现,但存在谐振电流峰值大和磁性元件设计困难等问题。尤其是变压器的磁密会随着功率和开关频率的变小快速上升,存在很大的变压器饱和风险的问题。
本发明具体采用以下技术方案解决上述技术问题:
串联谐振全桥变换器的变压器磁密控制方法,包括:
在一个开关周期内,控制串联谐振全桥变换器内第一开关管Q1和第三开关管Q3之间移相半个开关周期0.5Ts,两者的占空比相同且为半个串联谐振周期0.5Tr;并且,控制第二开关管Q2超前第四开关管Q4半个开关周期0.5Ts,且两者在一个开关周期内开关两次;控制第二开关管Q2的第一次开通起点滞后第一开关管Q1的开通起点半个串联谐振周期0.5Tr,第一次只导通半个串联谐振周期0.5Tr;控制第二开关管Q2的第二次开通起点滞后第一开关管Q1的开通起点半个开关周期0.5Ts,且第二次导通时间应大于半个串联谐振周期0.5Tr但小于一个串联谐振周期Tr。所述开关周期内通过改变开关频率来实现变换器传输功率大小的控制。
进一步地,作为本发明的一种优选技术方案:所述串联谐振全桥变换器工作于电流断续模式,且在电流断续阶段变压器原边电压始终为零。
进一步地,作为本发明的一种优选技术方案:所述串联谐振全桥变换器传输功率的大小与开关频率成正比。
进一步地,作为本发明的一种优选技术方案:所述第一至第四开关管均为零电流开通和关断。
本发明采用上述技术方案,能产生如下技术效果:
相对于串联谐振变换器传统的变频控制技术,本发明具有如下优点:1)相同参数下,谐振电流峰值可以降低50%以上;2)变压器励磁电流和磁密的最大值只与谐振元件有关,不受开关频率和功率变化的影响,在相同输出电压的条件下,可彻底解决传统串联谐振变换器在低频下变压器易饱和的难题,同时大大方便了变压器的设计,也减小了其体积和成本。同时,本发明依然保留了原有的零电流软开关特性。
附图说明
图1(a)和图1(b)是本发明串联谐振全桥变换器的主电路和本发明的典型控制波形图;
图2是本发明主电路工作于模态一的电流通路图;
图3是本发明主电路工作于模态二的电流通路图;
图4是本发明主电路工作于模态三的电流通路图;
图5是本发明主电路工作于模态四的电流通路图;
图6是本发明主电路工作于模态二的另外一种电流通路图;
图7是本发明主电路工作于模态三的另外一种电流通路图;
图8是本发明另外一种能实现完全相同功能的控制波形。
具体实施方式
下面结合说明书附图对本发明的实施方式进行描述。
本发明提供串联谐振全桥变换器的变压器磁密控制方法,一是可以将谐振电流峰值降低50%以上;二是变压器励磁电流和磁密的最大值只与谐振元件有关,不受开关频率和功率变化的影响,在相同输出电压的条件下,可彻底解决传统串联谐振变换器在低频下变压器易饱和的难题。
实施例1:参见图1(a)和图1(b),该串联谐振全桥变换器的变压器磁密控制方法具体为:控制第一开关管Q1和第三开关管Q3之间移相半个开关周期0.5Ts,两者的占空比相同且为半个串联谐振周期0.5Tr;第二开关管Q2超前第四开关管Q4半个开关周期0.5Ts,且两者在一个开关周期内开关两次;第二开关管Q2的第一次开通起点滞后第一开关管Q1的开通起点半个串联谐振周期0.5Tr,第一次只导通半个串联谐振周期0.5Tr;第二开关管Q2的第二次开通起点滞后第一开关管Q1的开通起点半个开关周期0.5Ts,且第二次导通时间应大于半个串联谐振周期0.5Tr但小于一个串联谐振周期Tr。通过改变开关频率来调节变换器传输功率的大小,且变换器传输功率的大小与开关频率成正比。变换器工作于电流断续模式,且在电流断续阶段变压器原边电压v1始终为零。所有开关管都能实现零电流开通和关断。
工作原理:参见图1的主电路和典型控制波形,t0≤t<t8为一个完整的开关周期:t0≤t<t4为正半开关周期,含四个工作模态;t4≤t<t8负半开关周期,含四个工作模态。本发明在正半开关周期和负半开关周期的工作模态具有对称性,且本发明在变换器传输功率不同时的工作原理相同。下面将结合图2~4的正半开关周期的四个工作模态叙述本发明的具体工作原理。所述四个工作模态如下:
如图2所示,模态一:t0≤t<t1。
t0时刻是一个新的开关周期的起点,在t0时刻,同时开通第一开关管Q1和第四开关管Q4。谐振电流ir从输入电源Vin的正极出发,经过第一开关管Q1、谐振电感Ls、谐振电容Cs、变压器原边绕组和第四开关管Q4回到输入电源Vin的负极。整流回路则由变压器副边、第一整流二极管D1、输出电压Vo和第四整流二极管D4组成。谐振电感Ls和谐振电容Cs从t0时刻开始正向谐振,所以ir从零开始上升,因此,Q1和Q4是零电流开通。本模态的时间长度正好为半个谐振周期0.5Tr。
如图3所示,模态二:t1≤t<t2。
在t1时刻,关断Q1的同时开通第二开关管Q2,因此,Q2的第一次开通起点滞后Q1的开通起点半个串联谐振周期(0.5Tr)。另外,Q4保持前一模态的开通状态不变。因为在t1时刻ir为零,所以Q1和Q2分别是ZCS关断和ZCS开通。Ls和Cs通过Q4的反并联二极管和Q2进行反向谐振,即ir流经Q2、Q4的反并联二极管、变压器原边绕组、Ls和Cs。整流回路则由变压器副边、第三整流二极管D3、输出电压Vo和第二整流二极管D2组成。
如图4所示,模态三:t2≤t<t3。
在t2时刻,关断Q4,输入侧和整流侧的电流通路保持与模态二中的完全一致。显然,t2时刻取t1和t3之间的任意一个时间点即可,不但能实现Q4的零电压零电流关断,而且不会影响变换器的正常工作。模态二和模态三组成半个谐振周期0.5Tr。
如图5所示,模态四:t3≤t≤t4
在t3时刻,关断Q2。本阶段所有开关管处于关断状态,整个变换器停止工作。t4时刻是正半开关周期的结束点也是负半开关周期的起点,在t4时刻,同时开通Q2和第三开关管Q3。此时的Q2是一个开关周期内的第二次开通,而Q3的开通起点滞后Q1半个开关周期0.5Ts。
由图1(a)可知,变压器原边电压为正和为负的时间长度相同且只与谐振元件Ls和Cs有关,而与开关频率也即功率无关。因此,根据伏秒积特性可知,变压器励磁电流和磁密的最大值同样只与Ls和Cs有关,不受开关频率和功率变化的影响。
综上所述,根据伏秒积特性可知,在相同输出电压下,变压器励磁电流和磁密的最大值同样只与Ls和Cs有关,不受开关频率和功率变化的影响。同时,Q1~Q4都能实现零电流开通和关断。
事实上,在正半开关周期的模态二和模态三中,Ls和Cs除了可以通过Q4的反并联二极管和Q2进行反向谐振外,还可以选择通过Q1的反并联二极管和Q3进行反向谐振。因此,模态二和模态三的电流通路也可以分别是如图6和图7所示。由此,可得到如图8所示的另外一种能够实现完全相同功能的控制波形。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作任何其他形式的限制,而依据本发明的技术实质所作的任何修改或等同变化,仍属于本发明所要求保护的范围。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (4)

1.串联谐振全桥变换器的变压器磁密控制方法,其特征在于,该方法基于的全桥变换器包括位于左上桥臂的第一开关管Q1和位于左下桥臂的第二开关管Q2、位于右上桥臂的第三开关管Q3、位于右下桥臂的第四开关管Q4,该方法包括:
在一个开关周期内,控制串联谐振全桥变换器内第一开关管Q1和第三开关管Q3之间移相半个开关周期0.5Ts,两者的占空比相同且为半个串联谐振周期0.5Tr;并且,控制第二开关管Q2超前第四开关管Q4半个开关周期0.5Ts,且两者分别在一个开关周期内开关两次;控制第二开关管Q2的第一次开通起点滞后第一开关管Q1的开通起点半个串联谐振周期0.5Tr,且第一次只导通半个串联谐振周期0.5Tr;控制第二开关管Q2的第二次开通起点滞后第一开关管Q1的开通起点半个开关周期0.5Ts,且第二次导通时间应大于半个串联谐振周期0.5Tr但小于一个串联谐振周期Tr;以及,所述开关周期内通过改变开关频率来实现变换器传输功率大小的控制。
2.根据权利要求1所述串联谐振全桥变换器的变压器磁密控制方法,其特征在于:所述串联谐振全桥变换器工作于电流断续模式,且在电流断续阶段变压器原边电压始终为零。
3.根据权利要求1所述串联谐振全桥变换器的变压器磁密控制方法,其特征在于:所述串联谐振全桥变换器传输功率的大小与开关频率成正比。
4.根据权利要求1所述串联谐振全桥变换器的变压器磁密控制方法,其特征在于:所述第一至第四开关管均为零电流开通和关断。
CN201810366920.3A 2018-04-23 2018-04-23 串联谐振全桥变换器的变压器磁密控制方法 Active CN108667305B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810366920.3A CN108667305B (zh) 2018-04-23 2018-04-23 串联谐振全桥变换器的变压器磁密控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810366920.3A CN108667305B (zh) 2018-04-23 2018-04-23 串联谐振全桥变换器的变压器磁密控制方法

Publications (2)

Publication Number Publication Date
CN108667305A CN108667305A (zh) 2018-10-16
CN108667305B true CN108667305B (zh) 2019-09-17

Family

ID=63780603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810366920.3A Active CN108667305B (zh) 2018-04-23 2018-04-23 串联谐振全桥变换器的变压器磁密控制方法

Country Status (1)

Country Link
CN (1) CN108667305B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022087910A1 (en) * 2020-10-28 2022-05-05 Siemens Aktiengesellschaft Dc/dc converter system and control method for full-bridge dc/dc converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263960B2 (en) * 2013-09-16 2016-02-16 Delta Electronics, Inc. Power converters for wide input or output voltage range and control methods thereof
CN106849652B (zh) * 2017-02-17 2019-03-19 国电南瑞科技股份有限公司 一种0°~360°数字移相控制方法及系统
CN107465347B (zh) * 2017-06-26 2019-08-09 北京交通大学 适用于llc谐振型变换器的能量双向控制策略

Also Published As

Publication number Publication date
CN108667305A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
WO2021077757A1 (zh) 一种变拓扑llc谐振变换器的宽增益控制方法
CN109861543A (zh) 一种宽负载宽增益的交错并联型lclc谐振变换器
CN111010043B (zh) 一种全桥llc谐振变换器定频控制方法
CN110071640A (zh) 一种三倍流整流llc三相全桥直流变换器
CN105119497A (zh) 一种宽输入范围的双桥llc谐振变换器
CN108075668A (zh) 串联谐振全桥变换器的变频移相非对称占空比调制方法
CN104065283B (zh) 无桥式pfc交流直流电源变换器
Chen et al. A dual-carrier modulation technique for half-bridge resonant converter with wide soft-switching range
CN101232753B (zh) 一种电磁炉准谐振软开关高频变换器
CN103049028B (zh) 一种用于高压磁开关复位的恒流源
CN201199674Y (zh) 谐振变换器高压电源装置
Lambert et al. A boost PWM soft-single-switched converter with low voltage and current stresses
CN104578806A (zh) 级联双向软开关dc/dc电路拓扑
Chung et al. A novel LLC resonant converter for wide input voltage and load range
Wei et al. Topology morphing control strategies for full-bridge LLC converter
CN113676057B (zh) 一种基于二次电流模拟的llc同步整流电路
Shiva et al. Tap changing transformer based dual active bridge bi-directional DC-DC converter
CN109742957A (zh) 一种双环全谐振型软开关变换器
CN108667305B (zh) 串联谐振全桥变换器的变压器磁密控制方法
CN106787756B (zh) 一种cl-ft-cl谐振直流变换器
CN110224605B (zh) 一种全桥变换电路
Yi et al. A novel soft-switching bidirectional DC-DC converter based on LLC resonance
Guan et al. Analysis and design of a class E type high frequency DC–DC converter based on resonant driving circuit
Chen et al. A high efficiency and wide voltage gain sLC_LCC DC–DC converter with SiC Devices
CN116191893A (zh) 一种llc谐振变换器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190410

Address after: 210000 No. 8 Yongjin Road, Jiangbei New District, Nanjing City, Jiangsu Province

Applicant after: Nanjing Guodian Environmental Protection Technology Co., Ltd.

Address before: 214000 No. 2, Four Pailou, Xuanwu District, Nanjing City, Jiangsu Province

Applicant before: Southeast University

GR01 Patent grant
GR01 Patent grant