CN108665168B - 一种精益生产用主井提升系统综合效率评估与监测方法 - Google Patents

一种精益生产用主井提升系统综合效率评估与监测方法 Download PDF

Info

Publication number
CN108665168B
CN108665168B CN201810454427.7A CN201810454427A CN108665168B CN 108665168 B CN108665168 B CN 108665168B CN 201810454427 A CN201810454427 A CN 201810454427A CN 108665168 B CN108665168 B CN 108665168B
Authority
CN
China
Prior art keywords
main shaft
lifting
time
actual
lifting system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810454427.7A
Other languages
English (en)
Other versions
CN108665168A (zh
Inventor
贾顺
袁清和
任大伟
李美燕
聂鹏辉
刘倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Science and Technology
Original Assignee
Shandong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Science and Technology filed Critical Shandong University of Science and Technology
Priority to CN201810454427.7A priority Critical patent/CN108665168B/zh
Priority to PCT/CN2018/087622 priority patent/WO2019218373A1/zh
Publication of CN108665168A publication Critical patent/CN108665168A/zh
Application granted granted Critical
Publication of CN108665168B publication Critical patent/CN108665168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06395Quality analysis or management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Mining

Abstract

本发明公开了一种精益生产用主井提升系统综合效率评估与监测方法。该方法首先通过获得主井提升系统评估周期内的的计划提升时间和实际提升时间,计算得到主井提升系统开机率。接着通过获得主井提升系统评估周期内的理论提升量和实际提升量,计算得到主井提升系统负荷率。进一步通过获得主井提升系统提升原煤含矸率,计算得到主井提升系统质量合格率。基于上述得到的主井提升系统开机率、负荷率和质量合格率,计算评估主井提升系统综合效率。基于上述评估模型对主井提升系统综合效率进行监测和超限报警。本发明方法对主井提升系统的综合效率评估科学,且能够将主井提升系统综合效率控制在要求的范围内,是一种实用有效的方法。

Description

一种精益生产用主井提升系统综合效率评估与监测方法
技术领域
本发明涉及煤矿企业生产系统效率评估与提升领域,尤其是一种精益生产用主井提升系统综合效率评估与监测方法。
背景技术
主井提升系统是煤矿企业主煤流运输系统中的关键设备,其提升效率对煤矿主煤流系统的综合产出效率起着十分重要的影响作用。研究主井提升系统的综合效率评估与监测方法对于煤炭企业生产系统整体效率提升具有重要作用。
主井提升系统的综合效率和实际提升能力受主井提升系统的故障时间、检修时间、井底煤仓空仓时间、井口煤仓满仓时间、主井开机时间内的单勾提升量和单勾提升周期以及主井提升系统所提升的原煤中矸石含量的影响。因此,主井提升系统的综合效率评估要考虑上述所有要素的影响,是一项非常复杂的工作。当前仍然缺乏一种有效的能够针对煤炭企业主井提升系统运行特点的综合效率评估与监测方法。本发明方法通过综合分析主井提升系统故障时间、检修时间、井底煤仓空仓时间、井口煤仓满仓时间等对主井提升系统开机率的影响;分析主井单勾提升量对主井提升系统负荷率的影响以及主井提升系统所提升的原煤中矸石含量对主井提升系统质量合格率的影响,进一步综合考虑主井提升系统开机率、主井提升系统负荷率和主井提升系统质量合格率对主井提升系统综合效率的影响,构建主井提升系统综合效率评估与监测方法。本发明方法能够全面准确地评估主井提升系统的综合效率并能对主井提升系统综合效率进行超限报警,是一种科学有效的综合效率评估与监测方法。
发明内容
本发明的目的在于提供一种能够对煤矿企业主井提升系统综合效率进行实时评估和监测的方法,将评估得到的主井提升系统综合效率与预先设定的主井提升系统综合效率报警下限值进行对比,从而实现主井提升系统综合效率的超限报警,使主井提升系统的综合效率控制在要求的范围之内。
一种精益生产用主井提升系统综合效率评估与监测方法,包括如下步骤:
步骤1,通过将主井提升系统整个评估周期时间减去主井提升系统计划检修时间和主井提升系统外部影响时间,得到主井提升系统计划提升时间。其计算模型如下:
Tplan=Ttotal-Tplaned_mt-Tout
其中:Tplan表示主井提升系统计划提升时间,Ttotal表示主井提升系统评估周期时间,Tplaned_mt表示主井提升系统计划检修时间,Tout表示主井提升系统外部影响时间。
步骤2,通过将主井提升系统整个评估周期时间减去减去主井提升系统实际检修时间、主井提升系统外部影响时间、主井井底煤仓空仓时间、主井井口煤仓满仓时间、主井提升系统故障时间和主井提升系统其它影响时间,得到主井提升系统实际提升时间。其计算模型如下:
Tactual=Ttotal-Tactual_mt-Tout-Tempty-Tfull-Tbreakdown-Tother
其中:Tactual表示主井提升系统实际提升时间,Ttotal表示主井提升系统评估周期时间,Tactual_mt表示主井提升系统实际检修时间,Tout表示主井提升系统外部影响时间,Tempty表示主井井底煤仓空仓时间,Tfull表示主井井口煤仓满仓时间,Tbreakdown表示主井提升系统故障时间,Tother表示主井提升系统其它影响时间。
步骤3,将前述得到主井提升系统实际提升时间和主井提升系统计划提升时间相除,得到主井提升系统在评估周期内的开机率。其计算模型如下:
Figure BDA0001659281220000031
其中:ηoperating表示主井提升系统开机率,Tactual表示主井提升系统实际提升时间,Tplan表示主井提升系统计划提升时间。
步骤4,将主井提升系统在评估周期内所提升的每一勾的提升量累加得到主井提升系统实际提升量,其计算公式如下:
Figure BDA0001659281220000032
其中:Lactual表示主井提升系统实际提升量,Lhook,i表示主井提升系统提升第i勾的实际提升量,N表示主井提升总勾数。
步骤5,根据已得到的主井提升系统实际提升时间,结合主井提升系统单勾理论提升周期时间和主井提升系统单勾理论提升量,计算得到评估周期内主井提升系统理论提升量。其计算公式如下:
Figure BDA0001659281220000041
其中:Ltheory表示主井提升系统理论提升量,Tactual表示主井提升系统实际提升时间,Thook表示主井提升系统单勾理论提升周期时间,Lhook表示主井提升系统单勾理论提升量。
步骤6,将前述得到主井提升系统实际提升量和主井提升系统理论提升量相除,得到主井提升系统在评估周期内的负荷率。其计算模型如下:
Figure BDA0001659281220000042
其中:ηload表示主井提升系统负荷率,Lactual表示主井提升系统实际提升量,Ltheory表示主井提升系统理论提升量。
步骤7,获得主井提升系统提升原煤含矸率ξrefuse,原煤含矸率是主井提升系统所提升的单位重量的原煤中,未能拣除的块度大于50毫米的矸石重量所占的比重。
步骤8,基于上述得到的主井提升系统提升原煤含矸率,计算获得主井提升系统质量合格率。其计算模型如下:
ηquality=1-ξrefuse
其中:ηquality表示主井提升系统提升质量合格率,ξrefuse表示主井提升系统提升原煤含矸率。
步骤9,基于已得到的主井提升系统开机率、主井提升系统负荷率和主井提升系统质量合格率,建立主井提升系统综合效率评估模型,其计算模型如下:
ηhoist=ηoperating×ηload×ηquality
其中:ηhoist表示主井提升系统综合效率,ηoperating表示主井提升系统开机率,ηload表示主井提升系统负荷率,ηquality主井提升系统质量合格率。
步骤10,将所得到的评估周期内的主井提升系统综合效率ηhoist与预先设定的主井提升系统综合效率报警下限值
Figure BDA0001659281220000051
进行比较,若满足关系式
Figure BDA0001659281220000052
则表明主井提升系统提升效率正常。若满足关系式
Figure BDA0001659281220000053
则报警提示主井提升系统综合效率异常,同时将该评估周期的主井提升系统综合效率以及对应的主井提升系统开机率、负荷率和质量合格率显示在显示屏上。
步骤11,生产人员根据步骤10的报警提示,对主井提升系统进行有针对性的调整,使得主井提升系统综合效率提高至正常范围。
在步骤4中,主井提升系统每勾的实际提升量根据安装在主井箕斗的重量传感器获得。
在步骤7中,主井提升系统提升原煤含矸率ξrefuse数据从矿相应的煤质监测部门的煤质检验数据中获得。
与现有技术相比,本发明具有如下有益效果:
本发明方法通过综合考虑主井提升系统的故障时间、检修时间、井底煤仓空仓时间、井口煤仓满仓时间等对主井提升系统开机率的影响,主井单勾提升量对主井提升系统负荷率的影响以及主井提升系统所提升原煤中矸石含量对主井提升系统质量合格率的影响,构建了主井提升系统综合效率评估模型,基于上述评估模型对主井提升系统综合效率进行监测与超限报警。本发明方法不仅考虑主井提升系统开机率对综合效率影响,还全面地考虑主井提升系统的负荷利用情况以及所提升原煤的矸石含量对主井提升系统综合效率的影响,本发明方法对主井提升系统综合效率的评估更加科学和全面,是一种十分有效的主井提升系统综合效率评估和监测方法。本发明方法科学实用且可以推广至煤炭企业主煤流系统中的其它的子系统,如皮带运输系统。
附图说明
图1为本发明方法的流程示意图;
图2为本发明方法的设备配置示意图。
具体实施方式
现结合实施例及附图对本发明进行详细解释。
本发明提出一种精益生产用主井提升系统综合效率评估与监测方法。本发明方法的流程示意图如图1所示,首先,根据主井提升系统评估周期时间、计划检修时间、实际检修时间、故障时间等数据计算获得主井提升系统计划提升时间和实际提升时间,根据所得到的主井提升系统实际提升时间和计划提升时间,计算得到主井提升系统开机率。根据主井提升系统在评估周期内每勾的提升量,累加得到主井提升系统实际提升量;根据主井提升系统评估周期内实际提升时间和单勾理论循环周期和单勾理论提升量,计算得到主井提升系统理论提升量;根据所得到的主井提升系统实际提升量和理论提升量,计算得到主井提升系统负荷率。根据主井提升系统提升原煤含矸率,进一步计算得到主井提升系统提升原煤的质量合格率。综合考虑主井提升系统开机率、负荷率、质量合格率,构建主井提升系统综合效率评估模型。基于上述评估模型进行主井提升系统综合效率监测并实现超限报警功能,使主井提升系统的综合效率控制在要求的范围之内。
如图2所示,本发明涉及的设备配置主要包括:重量传感器、ZigBee无线传输模块、数据库服务器、交换机、应用程序服务器和显示屏。重量传感器用于获取主井箕斗每勾实际提升量,重量传感器带有RS-485接口,用于数据通信;重量传感器通过RS-485接口与ZigBee终端节点相连,进一步通过ZigBee路由的衔接与ZigBee主节点进行数据通信;ZigBee主节点通过RS-485/RS-232接口与数据库服务器连接。数据库服务器安装有SQL Server或Oracle服务器,用于存储采集到的主井提升系统每勾实际提升量。数据库服务器通过交换机以TCP/IP协议与应用程序服务器进行通讯,应用程序服务器用于运行系统所需的软件程序,用于导入/录入等主井提升系统计划检修时间、实际检修时间、故障时间等基本信息,并进行主井提升系统综合效率计算和分析。
本发明实施例以某煤矿主井提升系统为例,每个主井提升系统综合效率评估周期为一天(24小时),该主井提升系统单勾理论提升量为25吨,单勾理论提升周期时间为89秒。采用本发明方法进行主井提升系统综合效率评估和监测,并对综合效率超限情况进行报警提示。
1.获取主井提升系统计划提升时间
对主井提升系统综合效率的评估周期为一天(24小时),该煤矿主井提升系统的每天的计划检修时间为2小时。近期,主井提升系统外部因素对主井提升系统影响时间很小,基本可以忽略不计。因此,以6月28日为例,在该评估周期内,主井提升系统评估周期时间Ttotal=24小时,主井提升系统计划检修时间Tplaned_mt=2小时,主井提升系统外部影响时间为Tout=0小时。主井提升系统计划提升时间的计算模型为Tplan=Ttotal-Tplaned_mt-Tout。其中:Tplan表示主井提升系统计划提升时间,单位为小时(h);Ttotal表示主井提升系统评估周期时间,单位为小时(h);Tplaned_mt表示主井提升系统计划检修时间,单位为小时(h);Tout表示主井提升系统外部影响时间,单位为小时(h)。将3月17日的数据Ttotal=24,Tplaned_mt=2和Tout=0代入公式,可以得到该评估周期的主井提升系统计划提升时间Tplan=Ttotal-Tplaned_mt-Tout=24-2-0=22小时。
2.获取主井提升系统实际提升时间
机电工区人员对主井提升系统各类型的影响时间每天进行记录,仍以6月28日为例,主井提升系统评估周期时间Ttotal=24小时,主井提升系统实际检修时间Tactual_mt=2小时,主井提升系统外部影响时间为Tout=0小时,主井井底煤仓空仓时间Tempty=0.93小时,主井井口煤仓满仓时间Tfull=0.17小时,主井提升系统故障时间Tbreakdown=0小时,主井提升系统其它影响时间Tother=0.8小时。主井提升系统实际提升时间计算模型为Tactual=Ttotal-Tactual_mt-Tout-Tempty-Tfull-Tbreakdown-Tother。其中,Tactual表示主井提升系统实际提升时间,单位为小时(h);Ttotal表示主井提升系统评估周期时间,单位为小时(h);Tactual_mt表示主井提升系统实际检修时间,单位为小时(h);Tout表示主井提升系统外部影响时间,单位为小时(h);Tempty表示主井井底煤仓空仓时间,单位为小时(h);Tfull表示主井井口煤仓满仓时间,单位为小时(h);Tbreakdown表示主井提升系统故障时间,单位为小时(h);Tother表示主井提升系统其它影响时间,单位为小时(h)。将上述数据代入公式可得到主井提升系统实际提升时间Tactual=24-2-0-0.93-0.17-0-0.8=20.1小时。
3.获取主井提升系统开机率
根据已获得的主井提升系统计划提升时间和实际提升时间,计算获得主井提升系统开机率,其计算模型为
Figure BDA0001659281220000091
其中,ηoperating表示主井提升系统开机率,Tactual表示主井提升系统实际提升时间,单位为小时(h);Tplan表示主井提升系统计划提升时间,单位为小时(h)。仍以6月28日为例,已获得该评估周期内的主井提升系统实际提升时间Tactual=20.1小时,主井提升系统计划提升时间Tplan=22小时,将上述数据代入公式
Figure BDA0001659281220000092
计算获得主井提升系统开机率ηoperating=91.4%。
4.获取主井提升系统实际提升量
通过安装在主井箕斗的重量传感器得到主井提升系统的每勾的实际提升量。仍以6月28日为例,主井提升系统共提升780勾,根据主井箕斗重量传感器,测量得到的780勾的每勾实际提升量如表1所示。
表1
Figure BDA0001659281220000101
将评估周期内主井提升系统所提升的每一勾的提升量累加得到主井提升系统实际提升量,其计算公式为
Figure BDA0001659281220000102
其中,Lactual表示主井提升系统实际提升量,单位为吨(t);Lhook,i表示主井提升系统提升第i勾的实际提升量,单位为吨(t);N表示主井提升总勾数。由前述分析可知,主井提升总勾数N=780,将780组测量得到的每勾实际提升量代入公式,可获取得到主井提升系统的实际提升量
Figure BDA0001659281220000103
吨。
5.获取主井提升系统理论提升量
仍以6月28日为例,已经获得主井提升系统实际提升时间Tactual=20.1小时,进一步结合主井提升系统单勾理论提升周期时间和主井提升系统单勾理论提升量,可计算得到评估周期内主井提升系统理论提升量。其计算公式为
Figure BDA0001659281220000104
其中,Ltheory表示主井提升系统理论提升量,单位为吨(t);Tactual表示主井提升系统实际提升时间,单位为小时(h);Thook表示主井提升系统单勾理论提升周期时间,单位为秒(s);Lhook表示主井提升系统单勾理论提升量,单位为吨(t);。本实施例所使用的主井提升系统单勾理论提升量为25吨,单勾理论提升周期时间为89秒。因此,Thook=89秒,Lhook=25吨。将上述数据代入公式,可计算得到主井提升系统理论提升量
Figure BDA0001659281220000111
吨。
6.获取主井提升系统负荷率
根据已获得的主井提升系统实际提升量和理论提升量,计算获得主井提升系统负荷率,其计算模型为
Figure BDA0001659281220000112
其中,ηload表示主井提升系统负荷率,Lactual表示主井提升系统实际提升量,单位为吨(t);Ltheory表示主井提升系统理论提升量,单位为吨(t)。仍以6月28日为例,已获得该评估周期内的主井提升系统实际提升量Lactual=19402吨,主井提升系统理论提升量Ltheory=20325.8吨,将上述数据代入公式
Figure BDA0001659281220000113
计算获得主井提升系统负荷率ηload=95.5%。
7.获取主井提升系统提升原煤含矸率
从矿相应的煤质监测部门的煤质检验数据中可获得主井提升系统提升原煤含矸率ξrefuse数据。仍以6月28日为例,煤质监测部门的煤质检验数据中得到主井提升系统提升原煤含矸率ξrefuse=16.3%。
8.获取主井提升系统质量合格率
根据已经获得的主井提升系统提升原煤含矸率,计算得到主井提升系统质量合格率,其计算公式为ηquality=1-ξrefuse。其中,ηquality表示主井提升系统提升质量合格率,ξrefuse表示主井提升系统提升原煤含矸率。仍以6月28日为例,主井提升系统提升原煤含矸率ξrefuse=16.3%,将ξrefuse=16.3%代入公式,计算得到主井提升系统质量合格率ηquality=1-16.3%=83.7%。
9.获取主井提升系统综合效率
根据已得到的主井提升系统开机率、主井提升系统负荷率和主井提升系统质量合格率,可计算得到主井提升系统综合效率,其计算模型为ηhoist=ηoperating×ηload×ηquality,其中,ηhoist表示主井提升系统综合效率,ηoperating表示主井提升系统开机率,ηload表示主井提升系统负荷率,ηquality主井提升系统质量合格率。仍以6月28日为例,已获取得到主井提升系统开机率ηoperating=91.4%,主井提升系统负荷率ηload=95.5%和主井提升系统质量合格率ηquality=83.7%,将上述数据代入公式ηhoist=ηoperating×ηload×ηquality,计算得到主井提升系统综合效率ηhoist=91.4%×95.5%×83.7%=73.1%。
10.进行主井提升系统综合效率监测及超限报警
将所得到的评估周期内的主井提升系统综合效率ηhoist与预先设定的主井提升系统综合效率报警下限值
Figure BDA0001659281220000121
进行比较。本发明中的主井提升系统综合效率报警下限
Figure BDA0001659281220000122
根据主井综合效率历史数据统计分析并结合管理者的经验确定。若实施例中主井提升系统综合效率报警下限
Figure BDA0001659281220000123
仍以6月28日为例,已得到评估周期内的主井提升系统综合效率ηhoist=73.1%,则满足关系式
Figure BDA0001659281220000124
表明主井提升系统提升综合效率正常。承接前例,若将主井提升系统综合效率报警下限
Figure BDA0001659281220000125
设为75%,则满足关系式
Figure BDA0001659281220000126
此时报警提示主井提升系统综合效率异常,低于主井提升系统综合效率下限,同时将该评估周期内的主井提升系统综合效率(ηhoist=73.1%)以及对应的主井提升系统开机率(ηoperating=91.4%)、负荷率(ηload=95.5%)和质量合格率(ηquality=83.7%)显示在显示屏上。
11.根据报警提示,调整主井提升系统使其综合效率提高至正常范围
生产人员根据步骤10的报警提示,对主井提升系统进行有针对性的调整,使得主井提升系统综合效率提高至正常范围。
本发明方法可以用于煤炭企业主井提升系统综合效率的科学评估与监测,使得主井提升系统综合效率控制在要求的范围之内,实现主井提升系统的高效率运行。本发明方法为实现煤炭企业精益生产提供有效方法和技术支持。
最后说明的是,以上实施案例仅用以说明本发明的技术方案而非限制,对本发明的技术方案进行修改或者等同替换,而不脱离本发明方法的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (3)

1.一种精益生产用主井提升系统综合效率评估与监测方法,其特征在于,包括如下步骤:
步骤1,通过将主井提升系统整个评估周期时间减去主井提升系统计划检修时间和主井提升系统外部影响时间,得到主井提升系统计划提升时间,其计算模型如下:
Tplan=Ttotal-Tplaned_mt-Tout
其中:Tplan表示主井提升系统计划提升时间,Ttotal表示主井提升系统评估周期时间,Tplaned_mt表示主井提升系统计划检修时间,Tout表示主井提升系统外部影响时间;
步骤2,通过将主井提升系统整个评估周期时间减去主井提升系统实际检修时间、主井提升系统外部影响时间、主井井底煤仓空仓时间、主井井口煤仓满仓时间、主井提升系统故障时间和主井提升系统其它影响时间,得到主井提升系统实际提升时间,其计算模型如下:
Tactual=Ttotal-Tactual_mt-Tout-Tempty-Tfull-Tbreakdown-Tother
其中:Tactual表示主井提升系统实际提升时间,Ttotal表示主井提升系统评估周期时间,Tactual_mt表示主井提升系统实际检修时间,Tout表示主井提升系统外部影响时间,Tempty表示主井井底煤仓空仓时间,Tfull表示主井井口煤仓满仓时间,Tbreakdown表示主井提升系统故障时间,Tother表示主井提升系统其它影响时间;
步骤3,将前述得到主井提升系统实际提升时间和主井提升系统计划提升时间相除,得到主井提升系统在评估周期内的开机率,其计算模型如下:
Figure FDA0003153533630000021
其中:ηoperating表示主井提升系统开机率,Tactual表示主井提升系统实际提升时间,Tplan表示主井提升系统计划提升时间;
步骤4,将主井提升系统在评估周期内所提升的每一勾的提升量累加得到主井提升系统实际提升量,其计算公式如下:
Figure FDA0003153533630000022
其中:Lactual表示主井提升系统实际提升量,Lhook,i表示主井提升系统提升第i勾的实际提升量,N表示主井提升总勾数;
步骤5,根据已得到的主井提升系统实际提升时间,结合主井提升系统单勾理论提升周期时间和主井提升系统单勾理论提升量,计算得到评估周期内主井提升系统理论提升量,其计算公式如下:
Figure FDA0003153533630000023
其中:Ltheory表示主井提升系统理论提升量,Tactual表示主井提升系统实际提升时间,Thook表示主井提升系统单勾理论提升周期时间,Lhook表示主井提升系统单勾理论提升量;
步骤6,将前述得到主井提升系统实际提升量和主井提升系统理论提升量相除,得到主井提升系统在评估周期内的负荷率,其计算模型如下:
Figure FDA0003153533630000024
其中:ηload表示主井提升系统负荷率,Lactual表示主井提升系统实际提升量,Ltheory表示主井提升系统理论提升量;
步骤7,获得主井提升系统提升原煤含矸率ξrefuse,原煤含矸率是主井提升系统所提升的单位重量的原煤中,未能拣除的块度大于50毫米的矸石重量所占的比重;
步骤8,基于上述得到的主井提升系统提升原煤含矸率,计算获得主井提升系统质量合格率,其计算模型如下:
ηquality=1-ξrefuse
其中:ηquality表示主井提升系统提升质量合格率,ξrefuse表示主井提升系统提升原煤含矸率;
步骤9,基于已得到的主井提升系统开机率、主井提升系统负荷率和主井提升系统质量合格率,建立主井提升系统综合效率评估模型,其计算模型如下:
ηhoist=ηoperating×ηload×ηquality
其中:ηhoist表示主井提升系统综合效率,ηoperating表示主井提升系统开机率,ηload表示主井提升系统负荷率,ηquality主井提升系统质量合格率;
步骤10,将所得到的评估周期内的主井提升系统综合效率ηhoist与预先设定的主井提升系统综合效率报警下限值
Figure FDA0003153533630000031
进行比较,若满足关系式
Figure FDA0003153533630000032
则表明主井提升系统提升效率正常;若满足关系式
Figure FDA0003153533630000033
则报警提示主井提升系统综合效率异常,同时将该评估周期的主井提升系统综合效率以及对应的主井提升系统开机率、负荷率和质量合格率显示在显示屏上;
步骤11,生产人员根据步骤10的报警提示,对主井提升系统进行有针对性的调整,使得主井提升系统综合效率提高至正常范围。
2.如权利要求1所述一种精益生产用主井提升系统综合效率评估与监测方法,其特征在于,在步骤4中,主井提升系统每勾的实际提升量根据安装在主井箕斗的重量传感器获得。
3.如权利要求1所述一种精益生产用主井提升系统综合效率评估与监测方法,其特征在于,在步骤7中,主井提升系统提升原煤含矸率ξrefuse数据从矿相应的煤质监测部门的煤质检验数据中获得。
CN201810454427.7A 2018-05-14 2018-05-14 一种精益生产用主井提升系统综合效率评估与监测方法 Active CN108665168B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810454427.7A CN108665168B (zh) 2018-05-14 2018-05-14 一种精益生产用主井提升系统综合效率评估与监测方法
PCT/CN2018/087622 WO2019218373A1 (zh) 2018-05-14 2018-05-21 一种精益生产用主井提升系统综合效率评估与监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810454427.7A CN108665168B (zh) 2018-05-14 2018-05-14 一种精益生产用主井提升系统综合效率评估与监测方法

Publications (2)

Publication Number Publication Date
CN108665168A CN108665168A (zh) 2018-10-16
CN108665168B true CN108665168B (zh) 2021-09-07

Family

ID=63778340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810454427.7A Active CN108665168B (zh) 2018-05-14 2018-05-14 一种精益生产用主井提升系统综合效率评估与监测方法

Country Status (2)

Country Link
CN (1) CN108665168B (zh)
WO (1) WO2019218373A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109491323B (zh) * 2018-11-05 2020-12-11 山东科技大学 面向节能减排的数控机床负荷-能量效率评估与监测方法
CN110555608A (zh) * 2019-08-23 2019-12-10 山东科技大学 一种主井提升系统综合效率多级预警方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002141255A (ja) * 2000-10-26 2002-05-17 Applied Materials Inc 生産条件決定方法、生産条件決定システム、及び、記録媒体
CN1862582A (zh) * 2006-06-20 2006-11-15 清华大学 基于价值工程的离散型中小汽配企业生产流程诊断方法
CN103606314B (zh) * 2013-11-27 2016-04-27 河南理工大学 一种煤矿主井提升用虚拟实训操作系统
CN104463403A (zh) * 2014-04-22 2015-03-25 上海华力微电子有限公司 一种设备的全局设备效率报表的生成方法
CN104021440B (zh) * 2014-05-30 2017-10-31 山东科技大学 一种用于矿井辅助运输的控制系统及控制方法
CN104571096B (zh) * 2015-01-22 2017-04-12 常州英集动力科技有限公司 一种燃煤电厂给煤机故障在线诊断方法及系统
CN104794658B (zh) * 2015-03-06 2018-02-27 东北大学 利用物理仿真核算设计矿井提升能力和摩擦风阻的方法
US10214399B2 (en) * 2015-09-09 2019-02-26 Jason Thomas Moore Tilt-safe, high-capacity, bottle jack system and method
CN106408192B (zh) * 2016-09-23 2019-07-23 东北大学 一种选矿设备运行状态监控系统及方法
CN107098244B (zh) * 2017-04-11 2019-01-29 武汉理工大学 基于轨道行走装置的深井提升系统及方法
CN107657337A (zh) * 2017-09-12 2018-02-02 长春北方化工灌装设备股份有限公司 基于oee指标的柔性生产线的自组织

Also Published As

Publication number Publication date
CN108665168A (zh) 2018-10-16
WO2019218373A1 (zh) 2019-11-21

Similar Documents

Publication Publication Date Title
CN106408192B (zh) 一种选矿设备运行状态监控系统及方法
CN105162887B (zh) 基于大数据的工业设备维护管理系统
CN108665168B (zh) 一种精益生产用主井提升系统综合效率评估与监测方法
CN104541215B (zh) 对用于生产产品的技术设备的第一装备的监控
CN112198854A (zh) 一种基于陶瓷生产线数据改造系统
CN115526482A (zh) 一种基于数字孪生的车间排产与动态调度平台
CN116308211B (zh) 一种基于大数据的企业智能化管理系统及方法
CN115744839A (zh) 基于物联网的制氮制氧设备远程控制方法
CN110283953A (zh) 冶炼控制方法、装置、电子设备及计算机可读存储介质
CN107272572B (zh) 一种通过mhcims分析起重机效能/能效的方法
CN106292591A (zh) 一种设备大数据平台监测诊断系统
JP2016092930A (ja) 電力節約システム
CN117172621A (zh) 一种基于传感器的砂浆生产数据管理分析系统
CN112255969A (zh) 一种数控机床的数据采集分析展示系统及方法
CN115471092A (zh) 食品生产报工方法、装置、电子设备及存储介质
CN103361454A (zh) 基于数据过滤的高炉悬料判断方法
CN108829049A (zh) 一种液晶玻璃基板制造实时监控投料速度和投料量的方法
CN109165212A (zh) 一种大数据实时监控与稽核的方法
TW201616423A (zh) 電費異常偵測系統及方法
CN101441739A (zh) 基于库存数据的企业经营管理系统
CN111829359A (zh) 冶金工业炉窑集中监控方法及总系统
CN114531439A (zh) 一种基于图像识别的仪表数据云边协同采集处理系统及方法
CN110941247A (zh) 一种压铸机智能云压铸管理系统及其管理方法
CN111813057A (zh) 一种水泥生产厂能源管理系统
CN110555608A (zh) 一种主井提升系统综合效率多级预警方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant