CN108654601A - 光致热驱动Pt-CNTs催化净化VOCs - Google Patents

光致热驱动Pt-CNTs催化净化VOCs Download PDF

Info

Publication number
CN108654601A
CN108654601A CN201710195005.8A CN201710195005A CN108654601A CN 108654601 A CN108654601 A CN 108654601A CN 201710195005 A CN201710195005 A CN 201710195005A CN 108654601 A CN108654601 A CN 108654601A
Authority
CN
China
Prior art keywords
carbon nanotube
platinum
catalyst
aqueous solution
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710195005.8A
Other languages
English (en)
Inventor
贾宏鹏
蔡松财
李娟娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Urban Environment of CAS
Original Assignee
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Urban Environment of CAS filed Critical Institute of Urban Environment of CAS
Priority to CN201710195005.8A priority Critical patent/CN108654601A/zh
Publication of CN108654601A publication Critical patent/CN108654601A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s

Abstract

本发明公开了一种具有光致热催化净化VOCs(如甲苯)的碳纳米管负载铂的催化剂及其应用。该催化剂的制备方法包括:(1)将贵金属前驱体的水溶液与碳材料混合;(2)超声分散5~30 min;(3)50~80℃温度下搅拌加热5~8小时;(4)80~120℃烘箱中干燥6~8小时;(5)在10~100 mL/min的氢气氛围下,以2~10℃/min的速率升至200~400℃,保持2~4小时。所述贵金属铂和碳纳米管的质量比为0~3%。本发明的有益效果在于:(1)本发明制备的催化剂,在紫外、可见及红外光谱区域都有很强的吸收,能够将全波段光谱吸收并转化为热能,高效催化净化VOCs;(2)制备工艺简单,反应条件温和。

Description

光致热驱动Pt-CNTs催化净化VOCs
技术领域
本发明属于一种催化剂材料及其制备方法和应用,具体涉及一种光催化降解气相挥发性有机物的碳纳米管负载贵金属铂的催化剂及其制备方法和应用。
背景技术
挥发性有机污染物(Volatile Organic Compounds, VOCs)(如甲苯等)不仅对环境造成严重的污染,还危害人体的健康。因此,挥发性有机污染物的控制和消除已经成为环保领域的研究热点。常见VOCs 消除的主要技术方法包括:吸附、冷凝、催化氧化、等离子体氧化、光催化氧化法和生物降解等。其中,光催化法利用光源照射催化剂,产生具有强氧化性的光生空穴、羟基自由基和超氧自由基,把VOCs降解为无害的CO2和H2O。直接利用太阳光驱动催化剂矿化净化VOCs,成为一种理想的环境污染治理技术。TiO2光催化剂因其便宜、无毒、稳定性等,被广泛应用。它的半导体带隙为3.2 eV,但其仅具有紫外光催化响应,无法利用可见光和红外光。
在太阳入射到地球的能量中,紫外光区域只占了5%(<400 nm),而剩下的区域是50%的可见光(400~780 nm)和45%的红外光(>780 nm)。近几十年来,人们一直致力于拓宽催化剂光谱的响应范围,包括: (1)改性TiO2等带隙较宽的紫外光催化剂如离子掺杂、金属沉积、半导体材料复合、表面光敏化等。Choi等(Journal of Physical Chemistry C. 2010,114, (2), 783-792.)制备贵金属Pt/TiO2;Yang等(J. Mater. Chem. 2010, 20, (25),5301-5309.)合成氮掺杂TiO2;Xiao等(ACS Appl. Mater. Interfaces. 2012, 4, (12),7054-7062.)制备ZnO/TiO2异质结。(2)探索新型窄带隙半导体光催化剂材料,如g-C3N4(Nat. Mater. 2009, 8, (1), 76-80),BiVO4(Nat. Commun. 2013, 4, 7.)。这些研究工作将光催化响应范围拓展到可见光区域,但占据太阳光能量44%的近红外光部分的研究较少。Li等(ACS Catal. 2015, 5, (6), 3278-3286.)通过制备TiO2/CeO2复合材料,在全光谱照射下,光热协同,对气相苯的降解表现出很好的催化活性。中国发明专利(CN201310285858.2)中发明了一种全光谱太阳光驱动隐锰钾矿纳米棒催化剂,在紫外、可见及红外光谱有很强的吸收,具有高效的紫外、可见、红外光及全光谱光致热催化降解VOCs的催化活性和良好的稳定性。
发明内容
本发明的目的在于提供一种具有有效利用全光谱,吸收光能并转化为热能,高效催化净化VOCs(如甲苯等)的催化剂。
本发明的高效的VOCs催化降解材料的制备方法为:
(1)称取定量的铂金属前驱物的水溶液,加入定量的碳纳米管,混合均匀,得到碳纳米管和铂金属前驱物水溶液的混合液;
(2)将碳纳米管和铂金属前驱物水溶液的混合液放置于超声器中,得到分散较好的碳纳米管和铂金属前驱物水溶液的混合液;
(3)将超声好的碳纳米管和铂金属前驱物水溶液的混合液放置于加热式搅拌器上,加热搅拌蒸干;
(4)取出干燥箱中的负载铂的碳纳米管,装至石英管内,在氢气气氛下还原,得到负载纳米铂的碳纳米管。
本发明的创新内容是,在全波段光源照射下,负载铂的碳纳米管对全光谱有很强的吸收,吸收的光能转化为热能,高效热催化氧化VOCs(如甲苯等)为CO2和H2O,且具有良好的催化稳定性。
本发明的有益效果是:
(1)该制备方法原料易得、工艺简单、易于工业化;
(2)无需外来加热装置就可以实现光热条件。负载纳米铂的碳纳米管能够充分吸收全光谱,将吸收的光能转化为热能,无需使用外来加热装置就可以实现高效催化净化VOCs。在该铂-碳纳米管催化剂的光反应中,不是半导体催化剂的光反应,而是新的光热作用,这种光热作用极大地提高了催化净化挥发性有机污染物的催化活性,即:碳纳米管吸收光能,转化为热能,氧气分子在纳米铂催化剂表面发生解离吸附形成具有高氧活性的吸附态氧原子,这些吸附态氧原子可以催化氧化有机污染物分子,从而实现催化氧化功能;
(3)催化剂在经过多次循环后,仍保持高效的催化活性和稳定性;
例如,以200 ppm的气相甲苯为降解底物评价催化剂活性,本发明合成的催化剂能够在短时间内降解甲苯,其降解率高达97%,矿化率高达84%,稳定性好,能够有效利用全光谱,制备简单,具有工业应用价值。
附图说明
下面结合附图及实施例对本发明作进一步描述:
图1是本发明实施例1,2,3,4所制备催化剂和纯CNTs的紫外可见漫反射谱对比图;
图2是本发明实施例1,2,3,4所制备催化剂和纯CNTs在光强为320 mW/cm2的全光谱氙灯光源照射下,催化剂降解甲苯的降解率变化对比图;
图3是本发明实施例1,2,3,4所制备催化剂和纯CNTs在光强为320 mW/cm2的全光谱氙灯光源照射下,催化剂降解甲苯的矿化率变化对比图;
图4是本发明实施例3所制备催化剂在氙灯全光谱照射下的温度变化图;
图5是本发明实施例3所制备催化剂在不同滤光片的氙灯和红外灯照射下,催化剂降解甲苯的降解率变化对比图;
图6是本发明实施例3所制备催化剂在不同滤光片的氙灯和红外灯照射下,催化剂降解甲苯的矿化率变化对比图;
图7是本发明实施例3所制备催化剂外部供热时的甲苯的降解率和矿化率变化图,其供热温度与全光谱照射时催化剂表面的温度相同;
图8是本发明实施例3所制备催化剂在氙灯全光谱照射下,催化剂降解甲苯的降解率与催化剂循环使用次数的关系图。
具体实施方式
实施例1
量取0.1317 mL H2PtCl6水溶液(3.8 g/L),用20 mL超纯水稀释,称取0.5 g CNTs,混合,超声10分钟,80 ℃条件下搅拌蒸干6小时,放置在100℃烘箱中,干燥8小时后,在50 mL/min的氢气气氛下,以5 ℃/min,升至250℃保持2小时,所得碳纳米管负载Pt以总质量计,其中Pt占0.1%,即0.1wt% Pt-CNTs。
实施例2
量取0.6612 mL H2PtCl6水溶液(3.8 g/L),用20 mL超纯水稀释,称取0.5 g CNTs,混合,超声10分钟,80 ℃条件下搅拌蒸干6小时,放置在100 ℃烘箱中,干燥8小时后,在50mL/min的氢气气氛下,以5 ℃/min,升至250 ℃,保持2小时,所得碳纳米管负载Pt以总质量计,其中Pt占0.5%,即0.5wt% Pt-CNTs。
实施例3
量取1.3291 mL H2PtCl6水溶液(3.8 g/L),用20 mL超纯水稀释,称取0.5 g CNTs,混合,超声10分钟,80 ℃条件下搅拌蒸干6小时,放置在100 ℃烘箱中,干燥8小时后,在50mL/min的氢气气氛下,以5 ℃/min,升至250 ℃,保持2小时,所得碳纳米管负载Pt以总质量计,其中Pt占1%,即1wt% Pt-CNTs。
实施例4
量取4.0690 mL H2PtCl6水溶液(3.8 g/L),用20 mL超纯水稀释,称取0.5 g CNTs,混合,超声10分钟,80 ℃条件下搅拌蒸干6小时,放置在100 ℃烘箱中,干燥8小时后,在50mL/min的氢气气氛下,以5 ℃/min,升至250 ℃,保持2小时,所得碳纳米管负载Pt以总质量计,其中Pt占3%,即3wt% Pt-CNTs。
实施例5
由佛山德力梅塞尔气体有限公司提高的纯化空气分为两条支路,分别流经甲苯发生器(冰水浴20 ℃)与空白路,汇合于内体积为9 L的不锈钢混合罐内。用质量流量计控制气体流速,用Online GC检测,通过调节,即可得所需的甲苯浓度。
实施例6
通过测试样品对气相甲苯的降解率和矿化率来评价其活性,所用的反应器是一个定制的容积为40 mL的石英反应器。实验前,称取50 mg样品与3 mL无水乙醇混合,超声分散均匀,采用砂芯过滤的方法使其均匀涂布于玻璃纤维膜上(φ50 mm),40 ℃烘干。将干燥的玻璃纤维膜放置反应器内,气相甲苯通过反应器进行反应,反应时所用光源为北京泊菲莱科技有限公司生产的PLS-SXE300型氙灯和PHILIPS公司生产的IR375CH IR2型红外灯,反应过程中甲苯的浓度变化和最终产物CO2的生成由Online GC进行在线检。甲苯降解率(%)=100*([甲苯]入口-[甲苯]出口)/[甲苯]入口;甲苯矿化率(%)=100*([甲苯]入口-[甲苯]出口)/(7*[甲苯]入口)。

Claims (8)

1.碳材料负载贵金属铂的催化剂的制备方法,其特征在于其步骤如下:
(1)称取定量的铂金属前驱物的水溶液,加入定量的碳纳米管,混合均匀,得到碳纳米管和铂金属前驱物水溶液的混合液;
(2)将碳纳米管和铂金属前驱物水溶液的混合液放置于超声器中,得到分散较好的碳纳米管和铂金属前驱物水溶液的混合液;
(3)将超声好的碳纳米管和铂金属前驱物水溶液的混合液放置于加热式搅拌器上,加热搅拌蒸干;
(4)将装有负载铂粒子的碳纳米管的烧杯放置于烘箱中,干燥;
(5)取出干燥箱中的负载铂的碳纳米管,装至石英管内,在氢气气氛下还原,得到负载纳米铂的碳纳米管。
2.根据权利要求1所属的方法,其特征在于:所述步骤(1)中贵金属铂和碳纳米管的质量比为0~3%。
3.根据权利要求1所属的方法,其特征在于:所述步骤(2)中的超声时间为5~30分钟。
4.根据权利要求1所属的方法,其特征在于:所述步骤(3)中的搅拌蒸干温度为50~80℃,搅拌时间为5~8小时。
5.根据权利要求1所属的方法,其特征在于:所述步骤(4)中烘箱干燥温度为80~120℃,干燥时间为6~8小时。
6.根据权利要求1所属的方法,其特征在于:所述步骤(5)中氢气流量为10~100 mL/min。
7.根据权利要求1所属的方法,其特征在于:所述步骤(5)中氢气还原程序升温速率为2~10 ℃/min,升至200~400 ℃,保持2~4小时。
8.根据权利要求1所述方法制备的催化剂的应用,其特征在于:
(1)在全波段光谱照射下,催化剂吸收光能并转化为热能;
(2)对VOCs(如甲苯)具有高效的降解率和矿化率。
CN201710195005.8A 2017-03-29 2017-03-29 光致热驱动Pt-CNTs催化净化VOCs Pending CN108654601A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710195005.8A CN108654601A (zh) 2017-03-29 2017-03-29 光致热驱动Pt-CNTs催化净化VOCs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710195005.8A CN108654601A (zh) 2017-03-29 2017-03-29 光致热驱动Pt-CNTs催化净化VOCs

Publications (1)

Publication Number Publication Date
CN108654601A true CN108654601A (zh) 2018-10-16

Family

ID=63785771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710195005.8A Pending CN108654601A (zh) 2017-03-29 2017-03-29 光致热驱动Pt-CNTs催化净化VOCs

Country Status (1)

Country Link
CN (1) CN108654601A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786789A (zh) * 2017-05-04 2018-11-13 中国科学院城市环境研究所 不同碳材料负载铂光致热催化净化VOCs
CN112156773A (zh) * 2020-10-29 2021-01-01 苏州圣典企业管理咨询有限公司 一种高效voc光解催化剂
CN114566663A (zh) * 2022-01-18 2022-05-31 陈九廷 一种燃料电池阴极用多层碳纳米管催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524613A (zh) * 2003-02-27 2004-09-01 海云才 以碳材料为载体的高活性湿式氧化催化剂及其制备方法
CN101856618A (zh) * 2010-05-18 2010-10-13 武汉理工大学 具有光热协同作用的铂/半导体氧化物催化剂的制备方法
JP2011233861A (ja) * 2010-04-09 2011-11-17 Sumitomo Electric Ind Ltd 半導体デバイスの製造方法、エピ成長用積層支持基板およびデバイス用積層支持基板
CN104613659A (zh) * 2015-01-28 2015-05-13 上海交通大学 一种光热转换和热管效应相结合的太阳能光热设备
CN105056941A (zh) * 2015-07-23 2015-11-18 浙江大学 铂/碳纳米管催化剂的制备及在糠醛催化加氢中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524613A (zh) * 2003-02-27 2004-09-01 海云才 以碳材料为载体的高活性湿式氧化催化剂及其制备方法
JP2011233861A (ja) * 2010-04-09 2011-11-17 Sumitomo Electric Ind Ltd 半導体デバイスの製造方法、エピ成長用積層支持基板およびデバイス用積層支持基板
CN101856618A (zh) * 2010-05-18 2010-10-13 武汉理工大学 具有光热协同作用的铂/半导体氧化物催化剂的制备方法
CN104613659A (zh) * 2015-01-28 2015-05-13 上海交通大学 一种光热转换和热管效应相结合的太阳能光热设备
CN105056941A (zh) * 2015-07-23 2015-11-18 浙江大学 铂/碳纳米管催化剂的制备及在糠醛催化加氢中的应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
V. SARA THOI等: ""Platinum-decorated carbon nanotubes for hydrogen oxidation and proton reduction in solid acid electrochemical cells"", 《CHEM. SCI.》 *
张明龙等著: "《区域产业发展前沿研究》", 30 October 2015, 北京:企业管理出版社 *
张济忠,胡平,杨思泽等编著: "《现代薄膜技术》", 31 January 2009, 北京:冶金工业出版社 *
甘志星: ""一些碳基纳米材料的发光、光热特性研究"", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *
蒋保江著: "《石墨烯基复合材料的制备与性能研究》", 31 May 2014, 哈尔滨:黑龙江大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108786789A (zh) * 2017-05-04 2018-11-13 中国科学院城市环境研究所 不同碳材料负载铂光致热催化净化VOCs
CN112156773A (zh) * 2020-10-29 2021-01-01 苏州圣典企业管理咨询有限公司 一种高效voc光解催化剂
CN114566663A (zh) * 2022-01-18 2022-05-31 陈九廷 一种燃料电池阴极用多层碳纳米管催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Alshaikh et al. Visible-light-driven S-scheme mesoporous Ag3VO4/C3N4 heterojunction with promoted photocatalytic performances
Kwon et al. Photocatalytic applications of micro-and nano-TiO2 in environmental engineering
Kiriakidou et al. The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes
Pengyi et al. A comparative study on decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV
McCullagh et al. Photocatalytic reactors for environmental remediation: a review
Li et al. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study
Peng et al. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity
Das et al. Novel immobilized ternary photocatalytic polymer film based airlift reactor for efficient degradation of complex phthalocyanine dye wastewater
Senthilvelan et al. TiO2, ZnO and nanobimetallic silica catalyzed photodegradation of methyl green
Wei et al. Removal of gaseous toluene by the combination of photocatalytic oxidation under complex light irradiation of UV and visible light and biological process
Mena et al. On ozone-photocatalysis synergism in black-light induced reactions: Oxidizing species production in photocatalytic ozonation versus heterogeneous photocatalysis
Czech et al. MWCNT–TiO2–SiO2 nanocomposites possessing the photocatalytic activity in UVA and UVC
Zhou et al. Experimental study on photocatalytic activity of Cu 2 O/Cu nanocomposites under visible light
Huang et al. Ozone-assisted photocatalytic oxidation of gaseous acetaldehyde on TiO2/H-ZSM-5 catalysts
Kumari et al. Novel mixed metal oxide (ZnO. La2O3. CeO2) synthesized via hydrothermal and solution combustion process–a comparative study and their photocatalytic properties
Sarafraz et al. Facile synthesis of mesoporous black N–TiO2 photocatalyst for efficient charge separation and the visible-driven photocatalytic mechanism of ibuprofen degradation
Vadivel et al. Facile synthesis of broom stick like FeOCl/g-C3N5 nanocomposite as novel Z-scheme photocatalysts for rapid degradation of pollutants
CN108654601A (zh) 光致热驱动Pt-CNTs催化净化VOCs
Liu et al. The intrinsic effects of oxygen vacancy and doped non-noble metal in TiO2 (B) on photocatalytic oxidation VOCs by visible light driving
Feng et al. Enhanced photo-degradation of gaseous toluene over MnOx/TiO2/activated carbon under a novel microwave discharge electrodeless lamps system
Zheng et al. Degradation of methyl mercaptan by a microwave-induced photoreaction process
Luo et al. Facet-heterojunction-based photothermocatalyst CdS-Au-{0 1 0} BiVO4 {1 1 0}-MnOx with excellent synergetic effect for toluene degradation
Jafari et al. Ozone-assisted photocatalytic degradation of gaseous toluene from waste air stream using silica-functionalized graphene oxide/ZnO coated on fiberglass: performance, intermediates, and mechanistic pathways
Kar et al. Defect state modulation of TiO2 nanostructures for photocatalytic abatement of emerging pharmaceutical pollutant in wastewater effluent
Zhao et al. Preparation of TiO 2/sponge composite for photocatalytic degradation of 2, 4, 6-trichlorophenol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181016

RJ01 Rejection of invention patent application after publication