CN108646775A - 一种三超平台敏捷机动与快速稳定控制方法 - Google Patents

一种三超平台敏捷机动与快速稳定控制方法 Download PDF

Info

Publication number
CN108646775A
CN108646775A CN201810587476.8A CN201810587476A CN108646775A CN 108646775 A CN108646775 A CN 108646775A CN 201810587476 A CN201810587476 A CN 201810587476A CN 108646775 A CN108646775 A CN 108646775A
Authority
CN
China
Prior art keywords
load
platform
attitude
star
super
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810587476.8A
Other languages
English (en)
Other versions
CN108646775B (zh
Inventor
关新
汤亮
王有懿
张科备
郝仁剑
田科丰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Control Engineering
Original Assignee
Beijing Institute of Control Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Control Engineering filed Critical Beijing Institute of Control Engineering
Priority to CN201810587476.8A priority Critical patent/CN108646775B/zh
Publication of CN108646775A publication Critical patent/CN108646775A/zh
Application granted granted Critical
Publication of CN108646775B publication Critical patent/CN108646775B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种三超平台敏捷机动与快速稳定控制方法,适用于极高分辨率对地观测、空天动目标敏捷跟踪等具有载荷敏捷机动与快速稳定需求的领域。所设计的“三超”平台包括星体一级姿态控制以及主动指向超静平台二级控制。在大角度快速机动过程中,星体一级进行主动姿态控制,实现6(°/s)敏捷机动,主动指向超静平台进行被动隔振控制。当星体一级姿态机动到位且载荷姿态误差在主动指向超静平台控制范围内时,采用多项式规划方法对机动到位后的载荷偏差姿态Δθp进行平滑过渡,并进行主动指向超静平台二级控制实现载荷快速稳定。仿真结果表明,载荷快速稳定时间优于2.5s,而星体平台稳定时间为6s。

Description

一种三超平台敏捷机动与快速稳定控制方法
技术领域
本发明属于航天器姿态控制领域,涉及一种实现三超平台敏捷机动与快速稳定控制方法。
背景技术
随着天基天文观测、极高分辨率对地观测等航天器任务提出了光学载荷超高精度指向超高稳定度控制超敏捷控制等“三超”控制需求。尤其是极高分辨率对地观测航天任务提出了实现敏捷卫星快速机动并快速稳定的能力,从而提高光学载荷成像速度和成像质量。传统的航天器器受限于敏感器测量带宽、执行机构响应带宽等因素,难以满足光学载荷“三超”控制需求。针对此问题,基于主动指向超静平台的“三超”平台应运而生。“三超”平台星体和载荷通过柔性主动指向超静平台连接,通过主动指向超静平台二级控制,实现载荷高性能控制与快速机动快速稳定控制。
针对新型的“三超”平台两级复合系统,需要设计两级复合控制方法,实现航天器光学载荷高精度指向高稳定控制。而在航天器敏捷机动过程中,要求航天器具有超高的敏捷机动能力,并且在航天器星体平台敏捷机动后能够快速稳定载荷,提升使用效能。这要求两级复合控制技术同时解决航天器“快”与“稳”的矛盾问题。现有航天器敏捷机动与快速稳定控制方法存在以下不足:
1、难以实现载荷高精度指向与高稳定控制
目前的航天器姿态控制系统仿真模型只有星体一级模型,不包含主动指向超静平台和光学载荷二级动力学模型。受限于敏感器测量带宽、执行机构响应带宽等因素无法进一步提高载荷的指向精度。同时载荷和星体采用刚性连接,星体中存在的挠性振动和高频微振动直接传递到载荷,无法实现星体微振动的隔离抑制,造成光学载荷姿态稳定度下降。进一步提高光学载荷成像质量遇到技术瓶颈。
2、难以实现载荷敏捷机动与快速稳定控制
传统的航天器姿态控制带宽一般在0.1Hz左右,同时测量敏感器带宽与执行机构带宽较窄,在载荷敏捷机动到位后无法实现快速稳定控制。目前基于PID控制器的航天器在大角度敏捷机动到位后往往需要十多秒的稳定时间。若考虑挠性振动等影响,其敏捷机动到位后的稳定时间更长。针对此问题,本发明设计了一种基于“三超”平台的两级姿态快速机动和快速稳定控制方法,实现载荷姿态到位即稳。
发明内容
本发明解决的技术问题是:克服现有技术的不足,提供了一种三超平台敏捷机动与快速稳定控制方法,能够实现载荷大角度敏捷机动与快速稳定控制。并在载荷机动到位后实现载荷高精度指向与高稳定控制。为未来航天器光学载荷超高精度指向、超高稳定度控制、超敏捷控制、高品质成像提供技术基础。
本发明的技术解决方案是:一种三超平台敏捷机动与快速稳定控制方法,所述三超平台包括星体、载荷、敏感器、执行机构;所述的执行机构包括:控制力矩陀螺群、主动指向超静平台作动器;所述敏感器包括:安装在星体的陀螺、安装在载荷的星敏感器、安装在载荷的测微敏感器、安装在载荷的主动指向超静平台作动器涡流;星体用于支撑主动指向超静平台和载荷;主动指向超静平台安装于载荷和星体之间,由六个作动器构成;包括如下步骤:
(1)建立三超平台动力学模型;
(2)建立三超平台姿态控制器,包括星体一级姿态PID控制器、主动指向超静平台二级姿态PID控制器
(3)对星体姿态敏捷机动控制;
(4)对载荷姿态敏捷机动控制;
(5)三超平台敏捷机动与快速稳定控制结束,进行后续的稳态控制。
所述的三超平台动力学模型建立的方法为:
建立主动指向超静平台位移约束模型为:
Lp=JpXp+JbXb
式中,Jp为载荷质心雅克比矩阵,Xp=[rp,θp],rp为载荷平动位移,θp为载荷姿态;Jb为星体质心雅克比矩阵,Xb=[rb,θb],rb为星体平动位移,θb为星体姿态;
建立主动指向超静平台力约束模型为:
式中,Fp为载荷受到的主被动广义力,fpp为载荷受到的主被动合力,τpp为载荷受到的主被动合力矩;fL为主动指向超静平台输出的主被动合力,计算如下:
式中:fLa为主动指向超静平台输出的主动力,由主动指向超静平台二级姿态PID控制器计算得到;fLp为主动指向超静平台输出的被动力;Kp0=diag(kp1,…,kp6),kp1,…,kp6为主动指向超静平台六个作动器的刚度系数;Cp0=diag(cp1,…,cp6),cp1,…,cp6为主动指向超静平台六个作动器的阻尼系数;
在分别考虑星体广义位移Xp,载荷广义位移Xb以及挠性附件的振动位移ηb、ηp时,定义整个三超平台系统状态量x为
建立三超平台动力学模型为:
其中,Iηp=I(mM)×(mM),Iηb=I(nN)×(nN)为单位阵;M为载荷的挠性附件个数,m为载荷每个挠性附件的模态阶数;N为星体的挠性附件个数,n为星体每个挠性附件的模态阶数;
式中,udp为载荷扰动力/力矩,udb为星体扰动力/力矩,uc为星体控制力/力矩,Fa为主动指向超静平台输出的主动力;Mp=diag(mp,mp,mp,Ipx,Ipy,Ipz),mp为载荷质量,Ip=diag(Ipx,Ipy,Ipz)分别为载荷x轴、y轴、z轴的惯量在载荷质心本体系下的表达;Mb=diag(mb,mb,mb,Ibx,Iby,Ibz),mb为星体质量,Ib=diag(Ibx,Iby,Ibz)分别为星体x轴、y轴、z轴的惯量在星体质心本体系下的表达;Ptr为载荷挠性附件耦合阵;Btr为星体挠性附件耦合阵;
所述的三超平台姿态控制器,包括星体一级姿态PID控制器、主动指向超静平台二级姿态PID控制器,具体为:
星体一级姿态PID控制器为:
式中,Isat为整星惯量在整星质心坐标系表达。ksatp、ksati、ksatd为括星体一级姿态PID控制器参数。Δθbeer、Δωbeer分别为星体姿态控制误差和角速度控制误差;主动指向超静平台二级姿态PID控制器为:
其中,Ip为载荷相对于整星质心的惯量在整星质心坐标系表达;kpp、kpi、kpd为主动指向超静平台二级姿态PID控制器参数;Δθpeer、Δωpeer分别为载荷姿态控制误差和角速度控制误差。
所述步骤(3)对星体姿态敏捷机动控制的具体方法为:
(3.1)获取三超平台姿态敏捷机动最大角加速度amax、最大角速度ωmax,敏捷机动角θ,采用正弦路径规划方法对敏捷机动角θ进行规划,计算姿态机动的匀加或减速段时长ta,匀速段时长tc以及总机动时间tm
(3.2)设置初始时刻t=0时三超平台开始姿态敏捷机动;
(3.3)采用t+Δt代替t,采用正弦路径规划方法计算三超平台的目标姿态θbr、目标角速度ωbr、目标角加速度abr;其中Δt为星体姿态控制周期;
(3.4)采用星体一级姿态PID控制器计算星体姿态控制量,实现三超平台Δt时间内的敏捷机动控制;
(3.5)判断机动时间t>tm,若t≤tm,则返回步骤(3.3);若t>tm,则进行步骤(4)。
所述步骤(4)对载荷姿态敏捷机动控制的具体方法为:
(4.1)计算载荷当前姿态与目标姿态的偏差角Δθp,设置快速稳定时间tfmax,载荷平滑过渡最大角加速度amax、平滑过渡最大角速度ωmax,采用五次多项式对机动角Δθp进行规划,计算五次多项式路径规划系数a0,a1,….,a5以及载荷平滑过渡总时间tf
(4.2)采用t+Δt1代替t,利用步骤(4.1)得到的五次多项式路径规划系数a0,a1,….,a5,进行载荷偏差角Δθp的路径规划,计算载荷的目标姿态θpr、目标角速度ωpr、目标角加速度apr;其中Δt1为载荷姿态控制周期,且Δt1<<Δt;
(4.3)采用主动指向超静平台二级姿态PID控制器计算载荷姿态控制量,实现载荷快速稳定控制;
(4.4)判断机动时间t>tm+tf,若t≤tm+tf,则返回步骤(4.2);若t>tm+tf,则进行步骤(5)。
所述步骤(3.1)采用正弦路径规划方法对敏捷机动角θ进行规划,计算姿态机动的匀加或减速段时长ta,匀速段时长tc以及总机动时间tm的方法为:
设三超平台敏捷机动最大角加速度amax、最大角速度ωmax,敏捷机动角θ;采用正弦路径规划方法对敏捷机动角θ进行规划:
匀加或减速段时长ta
ta=ωmax/2πamax
匀速段时长tc
tc=θ/2πamaxta-ta
总机动时间tm
所述步骤(3.3)采用正弦路径规划方法计算三超平台的目标姿态θbr、目标角速度ωbr、目标角加速度abr的具体方法如下:
目标角加速度:
目标角速度:
目标姿态:
所述步骤(4.1)计算五次多项式路径规划系数a0,a1,….,a5以及载荷平滑过渡总时间tf的具体方法为:
确定快速稳定时间tfmax,设计载荷平滑过渡最大角加速度amax、敏捷机动最大角速度ωmax;采用五次多项式对机动角进行参数化:
Δθp(t)=a5t5+a4t4+a3t3+a2t2+a1t+a0
约束条件为:
轨迹计算步骤:
计算参数:
由最大角速度和最大角加速度求取机动时间:
求取各系数:
所述步骤(4.2)计算载荷的目标姿态θpr、目标角速度ωpr、目标角加速度apr的具体方法为:
载荷的目标姿态θpr计算为
载荷的角速度ωpr计算为
ωpr=a5(5t4-10tft3+tf 2t2)
载荷的角加速度apr计算为
本发明与现有技术相比的优点在于:
1、能够实现载荷高精度指向高稳定控制
目前的航天器姿态控制系统只有星体一级姿态控制,受限于敏感器测量带宽、执行机构响应带宽等因素无法进一步提高载荷的指向精度与稳定度。本法明设计的“三超”平台通过主动指向超静平台的被动环节实现星体平台中高频扰动(>10Hz)的20dB的衰减,提高载荷稳定度。通过主动指向超静平台二级控制,进一步抑制星体平台微振动,实现载荷超高精度指向和超高稳定度控制。
2、能够实现三超平台敏捷机动与快速稳定控制
目前的航天器姿态控制系统只有星体姿态控制器带宽无法实现航天器敏捷机动后的快速稳定控制。本法明设计的“三超”平台星体-主动指向超静平台-载荷两级控制系统能够实现整星6(°/s)的敏捷机动。同时,在姿态机动到位后,通过引入多项式路径规划实现载荷姿态偏差补偿控制,实现敏捷机动后的快速稳定时间由传统方法的6s提高到2.5s。
附图说明
图1为本发明方法的流程图;
图2为采用正弦规划的目标姿态;
图3为机动到位多项式规划的载荷姿态与星体姿态控制对比图。
具体实施方式
本发明采用图1所示流程完成三超平台敏捷机动与快速稳定控制,具体方法如下:
(1)三超平台包括星体、载荷、敏感器、执行机构;所述的执行机构包括:控制力矩陀螺群、主动指向超静平台作动器;所述的敏感器包括:安装在星体的陀螺、安装在载荷的星敏感器、安装在载荷的测微敏感器、安装在载荷的主动指向超静平台作动器涡流;星体用于支撑主动指向超静平台和载荷;主动指向超静平台安装于载荷和星体之间,由六个作动器构成。
(2)建立主动指向超静平台位移约束模型为:
Lp=JpXp+JbXb
式中,Jp为载荷质心雅克比矩阵,Xp=[rp,θp],rp为载荷平动位移,θp为载荷姿态;Jb为星体质心雅克比矩阵,Xb=[rb,θb],rb为星体平动位移,θb为星体姿态;
主动指向超静平台力约束模型为:
式中,Fp为载荷受到的主被动广义力,fpp为载荷受到的主被动合力,τpp为载荷受到的主被动合力矩。fL为主动指向超静平台输出的主被动合力,计算如下:
式中:fLa为主动指向超静平台输出的主动力,由载荷控制器计算得到。fLp为主动指向超静平台输出的被动力;Kp0=diag(kp1,…,kp6),kp1,…,kp6为主动指向超静平台六个作动器的刚度系数。Cp0=diag(cp1,…,cp6),cp1,…,cp6为主动指向超静平台六个作动器的阻尼系数。
其中作动器刚度系数kp1=kp2=…=kp6=25000(N/m),作动器阻尼系数cp1=cp2=…=cp6=100(N/(m/s))。
主动指向超静平台对星体的雅克比矩阵为
主动指向超静平台对载荷的雅克比矩阵为:
(3)在分别考虑星体广义位移Xp,载荷广义位移Xb以及挠性附件的振动位移ηb、ηp时,定义整个“三超”平台系统状态量x为
建立三超平台星体-主动指向超静平台-载荷动力学模型为:
模型中的参数详见说明书的模型参数。其中,mp=1000kg,[Ipx,Ipy,Ipz]=[140,140,130]kgm2,mb=4000kg,[Ibx,Iby,Ibz]=[10000,10000,8000]kgm2
Fpr1=[8.4e-001,5.7e-004,-2.2e-001;
1.2e-004,-3.6e+000,-6.4e-005;
3.7e-006,1.6e+000,3.7e-005]
Fpw1=[4.2e-001,7.2e-001,-2.2e-001;
3.1e+000,1.8e+000,-7.3e-005;
-1.4e+000,-8.2e-001,-1.1e-005]
Fbr1=[-4.1e-001,-7.2e-001,-2.2e-001;
-3.1e+000,1.8e+000,-5.6e-005;
1.4e+000,-8.2e-001,8.5e-005]
Fbw1=[1.2e-005,-1.7e-001,-2.2e-004;
-9.6e-002,-5.1e-005,1.3e+000;
-5.5e-001,2.9e-005,-1.8e+000]
(4)设计星体一级姿态PID控制器为:
式中,ksatp=[4076.7,4076.7,2424.8]、ksati=[0.01,0.01,0.01]、ksatd=[9083.6,9083.6,5402.8]为星体控制器参数。
设计主动指向超静平台二级姿态PID控制器为:
其中,kpp=[41300,41300,36280]、kpi=[134000,134000,182300]、kpd=[5938,5938,3222]为载荷控制器参数。主动指向超静平台主动控制力计算为:
(5)设计“三超”平台敏捷机动最大角加速度amax=3(°/s2)、敏捷机动最大角速度ωmax=6(°/s),敏捷机动角θ=25°。采用正弦路径规划方法对敏捷机动角θ进行规划:
匀加(减)速段时长ta
ta=ωmax/2πamax=3.142s
匀速段时长tc
tc=θ/2πamaxta-ta=1.025s
总机动时间tm
tm=tc+2ta=7.308s
(6)设置初始时刻t=0时三超平台开始姿态敏捷机动。
(7)采用t+Δt(Δt为星体姿态控制周期)代替t,采用正弦路径规划方法计算三超平台的目标姿态θbr、目标角速度ωbr、目标角加速度abr,具体如下
目标角加速度:
目标角速度:
目标姿态:
(8)采用步骤(4)中的星体一级姿态PID控制器计算星体姿态控制量,实现三超平台敏捷机动控制。
(9)判断机动时间t>tm。若t≤tm,则进行步骤(7);若t>tm,则进行步骤(10);(10)计算载荷当前姿态与目标姿态的偏差角Δθp(例如取Δθp=0.2°),设置快速稳定时间tfmax=2.5s,载荷平滑过渡最大角加速度amax=0.15(°/s2)、平滑过渡最大角速度ωmax=0.2(°/s2),采用五次多项式对机动角Δθp进行规划,计算五次多项式路径规划系数a0,a1,….,a5以及载荷平滑过渡总时间tf。采用五次多项式对机动偏差角Δθp进行参数化:
Δθp(t)=a5t5+a4t4+a3t3+a2t2+a1t+a0
约束条件为:
轨迹计算步骤:
计算参数:
由最大角速度和最大角加速度求取机动时间:
求取各系数:
(11)采用t+Δt1(Δt1为载荷姿态控制周期,Δt1<<Δt)代替t,利用步骤(10)得到的五次多项式路径规划系数a0,a1,….,a5,进行载荷偏差角Δθp的路径规划,计算出载荷的目标姿态θpr、目标角速度ωpr、目标角加速度apr
目标姿态θpr为:
目标角速度ωpr为:
ωpr=a5(5t4-10tft3+tf 2t2)+θ0
目标角加速度apr为:
(12)采用主动指向超静平台二级姿态PID控制器计算载荷姿态控制量,实现载荷快速稳定控制。
(13)判断机动时间t>tm+tf。若t≤tm+tf,则进行步骤(10);若t>tm+tf,则进行步骤(14);
(14)三超平台敏捷机动与快速稳定控制结束,进行三超平台两级姿态稳定控制,实现载荷快速稳定与高精度指向控制。
进行“三超”平台姿态快速机动与快速稳定仿真。仿真中采用正弦路径规划进行姿态曲线规划并进行姿态跟踪控制。如图2所示,仿真中进行滚动轴θ=25°,角速度为6(°/s),角加速度为3(°/s2),机动25°规划时间为7.3s。图3给出了整个“三超”平台姿态快速机动与快速稳定仿真结果。仿真结果表明:采用正弦规划,载荷机动25°,载荷角速度稳定于1×10-4(°/s)(3σ)时间约为9.75s,其中稳定时间约为2.5s。在此工况下,星体机动25度,星体角速度稳定于5×10-4(°/s)(3σ)时间约为14s,其中稳定时间约为6s。分析仿真结果得出,在机动到位后采用多项式路径规划修正载荷姿态偏差Δθp,能够实现载荷快速稳定控制。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (9)

1.一种三超平台敏捷机动与快速稳定控制方法,所述三超平台包括星体、载荷、敏感器、执行机构;所述的执行机构包括:控制力矩陀螺群、主动指向超静平台作动器;所述敏感器包括:安装在星体的陀螺、安装在载荷的星敏感器、安装在载荷的测微敏感器、安装在载荷的主动指向超静平台作动器涡流;星体用于支撑主动指向超静平台和载荷;主动指向超静平台安装于载荷和星体之间,由六个作动器构成;其特征在于包括如下步骤:
(1)建立三超平台动力学模型;
(2)建立三超平台姿态控制器,包括星体一级姿态PID控制器、主动指向超静平台二级姿态PID控制器
(3)对星体姿态敏捷机动控制;
(4)对载荷姿态敏捷机动控制;
(5)三超平台敏捷机动与快速稳定控制结束,进行后续的稳态控制。
2.根据权利要求1所述的一种三超平台敏捷机动与快速稳定控制方法,其特征在于:所述的三超平台动力学模型建立的方法为:
建立主动指向超静平台位移约束模型为:
Lp=JpXp+JbXb
式中,Jp为载荷质心雅克比矩阵,Xp=[rp,θp],rp为载荷平动位移,θp为载荷姿态;Jb为星体质心雅克比矩阵,Xb=[rb,θb],rb为星体平动位移,θb为星体姿态;
建立主动指向超静平台力约束模型为:
式中,Fp为载荷受到的主被动广义力,fpp为载荷受到的主被动合力,τpp为载荷受到的主被动合力矩;fL为主动指向超静平台输出的主被动合力,计算如下:
式中:fLa为主动指向超静平台输出的主动力,由主动指向超静平台二级姿态PID控制器计算得到;fLp为主动指向超静平台输出的被动力;Kp0=diag(kp1,…,kp6),kp1,…,kp6为主动指向超静平台六个作动器的刚度系数;Cp0=diag(cp1,…,cp6),cp1,…,cp6为主动指向超静平台六个作动器的阻尼系数;
在分别考虑星体广义位移Xp,载荷广义位移Xb以及挠性附件的振动位移ηb、ηp时,定义整个三超平台系统状态量x为
建立三超平台动力学模型为:
其中,Iηp=I(mM)×(mM),Iηb=I(nN)×(nN)为单位阵;M为载荷的挠性附件个数,m为载荷每个挠性附件的模态阶数;N为星体的挠性附件个数,n为星体每个挠性附件的模态阶数;
式中,udp为载荷扰动力/力矩,udb为星体扰动力/力矩,uc为星体控制力/力矩,Fa为主动指向超静平台输出的主动力;Mp=diag(mp,mp,mp,Ipx,Ipy,Ipz),mp为载荷质量,Ip=diag(Ipx,Ipy,Ipz)分别为载荷x轴、y轴、z轴的惯量在载荷质心本体系下的表达;Mb=diag(mb,mb,mb,Ibx,Iby,Ibz),mb为星体质量,Ib=diag(Ibx,Iby,Ibz)分别为星体x轴、y轴、z轴的惯量在星体质心本体系下的表达;Ptr为载荷挠性附件耦合阵;Btr为星体挠性附件耦合阵。
3.根据权利要求1所述的一种三超平台敏捷机动与快速稳定控制方法,其特征在于:所述的三超平台姿态控制器,包括星体一级姿态PID控制器、主动指向超静平台二级姿态PID控制器,具体为:
星体一级姿态PID控制器为:
式中,Isat为整星惯量在整星质心坐标系表达。ksatp、ksati、ksatd为括星体一级姿态PID控制器参数。Δθbeer、Δωbeer分别为星体姿态控制误差和角速度控制误差;主动指向超静平台二级姿态PID控制器为:
其中,Ip为载荷相对于整星质心的惯量在整星质心坐标系表达;kpp、kpi、kpd为主动指向超静平台二级姿态PID控制器参数;Δθpeer、Δωpeer分别为载荷姿态控制误差和角速度控制误差。
4.根据权利要求1所述的一种三超平台敏捷机动与快速稳定控制方法,其特征在于:所述步骤(3)对星体姿态敏捷机动控制的具体方法为:
(3.1)获取三超平台姿态敏捷机动最大角加速度amax、最大角速度ωmax,敏捷机动角θ,采用正弦路径规划方法对敏捷机动角θ进行规划,计算姿态机动的匀加或减速段时长ta,匀速段时长tc以及总机动时间tm
(3.2)设置初始时刻t=0时三超平台开始姿态敏捷机动;
(3.3)采用t+Δt代替t,采用正弦路径规划方法计算三超平台的目标姿态θbr、目标角速度ωbr、目标角加速度abr;其中Δt为星体姿态控制周期;
(3.4)采用星体一级姿态PID控制器计算星体姿态控制量,实现三超平台Δt时间内的敏捷机动控制;
(3.5)判断机动时间t>tm,若t≤tm,则返回步骤(3.3);若t>tm,则进行步骤(4)。
5.根据权利要求1所述的一种三超平台敏捷机动与快速稳定控制方法,其特征在于:所述步骤(4)对载荷姿态敏捷机动控制的具体方法为:
(4.1)计算载荷当前姿态与目标姿态的偏差角Δθp,设置快速稳定时间tfmax,载荷平滑过渡最大角加速度amax、平滑过渡最大角速度ωmax,采用五次多项式对机动角Δθp进行规划,计算五次多项式路径规划系数a0,a1,….,a5以及载荷平滑过渡总时间tf
(4.2)采用t+Δt1代替t,利用步骤(4.1)得到的五次多项式路径规划系数a0,a1,….,a5,进行载荷偏差角Δθp的路径规划,计算载荷的目标姿态θpr、目标角速度ωpr、目标角加速度apr;其中Δt1为载荷姿态控制周期,且Δt1<<Δt;
(4.3)采用主动指向超静平台二级姿态PID控制器计算载荷姿态控制量,实现载荷快速稳定控制;
(4.4)判断机动时间t>tm+tf,若t≤tm+tf,则返回步骤(4.2);若t>tm+tf,则进行步骤(5)。
6.根据权利要求4所述的一种三超平台敏捷机动与快速稳定控制方法,其特征在于:所述步骤(3.1)采用正弦路径规划方法对敏捷机动角θ进行规划,计算姿态机动的匀加或减速段时长ta,匀速段时长tc以及总机动时间tm的方法为:
设三超平台敏捷机动最大角加速度amax、最大角速度ωmax,敏捷机动角θ;采用正弦路径规划方法对敏捷机动角θ进行规划:
匀加或减速段时长ta
ta=ωmax/2πamax
匀速段时长tc
tc=θ/2πamaxta-ta
总机动时间tm
tm=tc+2ta
7.根据权利要求4所述的一种三超平台敏捷机动与快速稳定控制方法,其特征在于:所述步骤(3.3)采用正弦路径规划方法计算三超平台的目标姿态θbr、目标角速度ωbr、目标角加速度abr的具体方法如下:
目标角加速度:
目标角速度:
目标姿态:
8.根据权利要求5所述的一种三超平台敏捷机动与快速稳定控制方法,其特征在于:所述步骤(4.1)计算五次多项式路径规划系数a0,a1,….,a5以及载荷平滑过渡总时间tf的具体方法为:
确定快速稳定时间tfmax,设计载荷平滑过渡最大角加速度amax、敏捷机动最大角速度ωmax;采用五次多项式对机动角进行参数化:
Δθp(t)=a5t5+a4t4+a3t3+a2t2+a1t+a0
约束条件为:
轨迹计算步骤:
计算参数:
由最大角速度和最大角加速度求取机动时间:
求取各系数:
9.根据权利要求1所述的一种三超平台敏捷机动与快速稳定控制方法,其特征在于:所述步骤(4.2)计算载荷的目标姿态θpr、目标角速度ωpr、目标角加速度apr的具体方法为:
载荷的目标姿态θpr计算为
载荷的角速度ωpr计算为
ωpr=a5(5t4-10tft3+tf 2t2)
载荷的角加速度apr计算为
CN201810587476.8A 2018-06-08 2018-06-08 一种三超平台敏捷机动与快速稳定控制方法 Active CN108646775B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810587476.8A CN108646775B (zh) 2018-06-08 2018-06-08 一种三超平台敏捷机动与快速稳定控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810587476.8A CN108646775B (zh) 2018-06-08 2018-06-08 一种三超平台敏捷机动与快速稳定控制方法

Publications (2)

Publication Number Publication Date
CN108646775A true CN108646775A (zh) 2018-10-12
CN108646775B CN108646775B (zh) 2021-03-26

Family

ID=63752041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810587476.8A Active CN108646775B (zh) 2018-06-08 2018-06-08 一种三超平台敏捷机动与快速稳定控制方法

Country Status (1)

Country Link
CN (1) CN108646775B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162073A (zh) * 2019-05-29 2019-08-23 北京控制工程研究所 一种适应边界约束的分段正弦姿态机动轨迹规划方法
CN111547275A (zh) * 2020-04-28 2020-08-18 北京控制工程研究所 一种航天器三超控制鲁棒自适应多级协同方法
CN111580532A (zh) * 2020-04-28 2020-08-25 北京控制工程研究所 一种航天器多级系统的聚合分离三超控制方法
CN111605737A (zh) * 2020-05-11 2020-09-01 北京控制工程研究所 一种航天器三超控制多级协同规划与敏捷机动方法
CN111625010A (zh) * 2020-04-28 2020-09-04 北京控制工程研究所 一种基于组合滤波的航天器三超近零误差跟踪控制方法
CN111638721A (zh) * 2020-04-28 2020-09-08 北京控制工程研究所 一种航天器三超控制全链路扰动传递验证系统及验证方法
CN111781943A (zh) * 2020-07-20 2020-10-16 北京控制工程研究所 一种航天器分布式载荷位姿三超控制方法
CN111781939A (zh) * 2020-05-11 2020-10-16 北京控制工程研究所 基于航天器三超相互制约与耦合的姿态控制方法及系统
CN114527653A (zh) * 2022-01-25 2022-05-24 上海卫星工程研究所 一种基于双超平台的两舱连续机动路径规划优化方法
CN114527653B (zh) * 2022-01-25 2024-09-24 上海卫星工程研究所 一种基于双超平台的两舱连续机动路径规划优化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235597A (zh) * 2013-04-09 2013-08-07 北京理工大学 一种航天器的快速姿态机动快速稳定联合控制方法
EP2845808A1 (de) * 2013-08-12 2015-03-11 Jena-Optronik GmbH Lage- und Orbit-Steuersystem und Verfahren zu dessen Betrieb
CN105022402A (zh) * 2015-08-20 2015-11-04 哈尔滨工业大学 一种双刚体航天器快速机动的最短时间确定方法
CN108762285A (zh) * 2018-05-25 2018-11-06 北京控制工程研究所 一种航天器多级复合控制的目标姿态协同规划方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235597A (zh) * 2013-04-09 2013-08-07 北京理工大学 一种航天器的快速姿态机动快速稳定联合控制方法
EP2845808A1 (de) * 2013-08-12 2015-03-11 Jena-Optronik GmbH Lage- und Orbit-Steuersystem und Verfahren zu dessen Betrieb
CN105022402A (zh) * 2015-08-20 2015-11-04 哈尔滨工业大学 一种双刚体航天器快速机动的最短时间确定方法
CN108762285A (zh) * 2018-05-25 2018-11-06 北京控制工程研究所 一种航天器多级复合控制的目标姿态协同规划方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YAO ZHANG 等: ""Design and analysis of a moment control unit for agile satellite with high attitude stability requirement"", 《ACTAASTRONAUTICA》 *
张科备 等: ""基于观测器的平台无陀螺姿态复合控制"", 《中国空间科学技术》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110162073A (zh) * 2019-05-29 2019-08-23 北京控制工程研究所 一种适应边界约束的分段正弦姿态机动轨迹规划方法
CN110162073B (zh) * 2019-05-29 2021-12-07 北京控制工程研究所 一种适应边界约束的分段正弦姿态机动轨迹规划方法
CN111547275B (zh) * 2020-04-28 2021-12-07 北京控制工程研究所 一种航天器三超控制鲁棒自适应多级协同方法
CN111625010B (zh) * 2020-04-28 2023-04-14 北京控制工程研究所 一种基于组合滤波的航天器三超近零误差跟踪控制方法
CN111625010A (zh) * 2020-04-28 2020-09-04 北京控制工程研究所 一种基于组合滤波的航天器三超近零误差跟踪控制方法
CN111638721A (zh) * 2020-04-28 2020-09-08 北京控制工程研究所 一种航天器三超控制全链路扰动传递验证系统及验证方法
CN111638721B (zh) * 2020-04-28 2023-08-11 北京控制工程研究所 一种航天器三超控制全链路扰动传递验证系统及验证方法
CN111580532B (zh) * 2020-04-28 2023-04-14 北京控制工程研究所 一种航天器多级系统的聚合分离三超控制方法
CN111580532A (zh) * 2020-04-28 2020-08-25 北京控制工程研究所 一种航天器多级系统的聚合分离三超控制方法
CN111547275A (zh) * 2020-04-28 2020-08-18 北京控制工程研究所 一种航天器三超控制鲁棒自适应多级协同方法
CN111781939A (zh) * 2020-05-11 2020-10-16 北京控制工程研究所 基于航天器三超相互制约与耦合的姿态控制方法及系统
CN111605737A (zh) * 2020-05-11 2020-09-01 北京控制工程研究所 一种航天器三超控制多级协同规划与敏捷机动方法
CN111781939B (zh) * 2020-05-11 2023-06-30 北京控制工程研究所 基于航天器三超相互制约与耦合的姿态控制方法及系统
CN111781943A (zh) * 2020-07-20 2020-10-16 北京控制工程研究所 一种航天器分布式载荷位姿三超控制方法
CN111781943B (zh) * 2020-07-20 2024-04-12 北京控制工程研究所 一种航天器分布式载荷位姿三超控制方法
CN114527653A (zh) * 2022-01-25 2022-05-24 上海卫星工程研究所 一种基于双超平台的两舱连续机动路径规划优化方法
CN114527653B (zh) * 2022-01-25 2024-09-24 上海卫星工程研究所 一种基于双超平台的两舱连续机动路径规划优化方法

Also Published As

Publication number Publication date
CN108646775B (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
CN108646775B (zh) 一种三超平台敏捷机动与快速稳定控制方法
CN108762285B (zh) 一种航天器多级复合控制的目标姿态协同规划方法及系统
CN108803649B (zh) 一种垂直起降重复使用运载器自抗扰滑模控制方法
CN111605737B (zh) 一种航天器三超控制多级协同规划与敏捷机动方法
Zhang et al. Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment
CN106985139B (zh) 基于扩展状态观测与补偿的空间机器人自抗扰协调控制方法
CN109002047B (zh) 一种航天器粗精分层快慢结合主被一体多级复合控制方法
JP4679439B2 (ja) 人工衛星の姿勢制御装置
CN110733672B (zh) 一种控制力矩陀螺动态响应时延特性闭环补偿方法
JP3859454B2 (ja) 人工衛星のマヌーバ制御装置
CN112623278B (zh) 一种星体/载荷二级复合高精度姿态控制方法
CN113419431B (zh) 一种基于事件触发的平流层飞艇轨迹跟踪控制方法及系统
US20050242241A1 (en) Method and system for steering a momentum control system
CN111619829A (zh) 一种基于主动指向超静平台的多级协同控制方法
Sun et al. Disturbance observer-based saturated fixed-time pose tracking for feature points of two rigid bodies
Zhang et al. Manipulator-actuated adaptive integrated translational and rotational stabilization for spacecraft in proximity operations with control constraint
Tang et al. Dynamic modeling and multi-stage integrated control method of ultra-quiet spacecraft
KR20140094313A (ko) 마찰력 보상기 및 이를 이용한 마찰력 보상방법
Pontani et al. Neighboring optimal guidance and constrained attitude control applied to three-dimensional lunar ascent and orbit injection
Liang et al. Design and implementation of a high precision Stewart platform for a space camera
CN107933967A (zh) 一种卫星转动惯量的在轨辨识方法
McInroy et al. A robotic approach to fault-tolerant, precision pointing
CN108803307B (zh) 一种主动指向超静平台自主故障诊断与容错控制方法及系统
CN110750110A (zh) 用于空间激光通信的指向控制装置和控制方法
CN114756039A (zh) 基于零力控制的多体耦合姿态控制方法与系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant