CN108632008A - 参考信号传输技术 - Google Patents
参考信号传输技术 Download PDFInfo
- Publication number
- CN108632008A CN108632008A CN201710459768.9A CN201710459768A CN108632008A CN 108632008 A CN108632008 A CN 108632008A CN 201710459768 A CN201710459768 A CN 201710459768A CN 108632008 A CN108632008 A CN 108632008A
- Authority
- CN
- China
- Prior art keywords
- reference signal
- frequency domain
- bandwidth
- terminal
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/713—Spread spectrum techniques using frequency hopping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
- H04L25/0224—Channel estimation using sounding signals
- H04L25/0226—Channel estimation using sounding signals sounding signals per se
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
- H04L5/0012—Hopping in multicarrier systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
- H04L5/0051—Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2602—Signal structure
- H04L27/261—Details of reference signals
- H04L27/2613—Structure of the reference signals
- H04L27/26136—Pilot sequence conveying additional information
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
- H04L5/0094—Indication of how sub-channels of the path are allocated
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例提供一种参考信号传输技术。基站将传输带宽划分为多个频域单元。并向终端发送参考信号发送配置信息,终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分。终端根据上述参考信号发送配置信息,在所述一个或多个频域单元上向基站发送参考信号。
Description
技术领域
本发明实施例涉及通信技术,尤其涉及一种参考信号的传输技术。
背景技术
在LTE/LTE-A系统中,终端110的上行测量是通过发送探测参考信号(SoundingReference Signal,SRS)实现的。请参见图1,基站110通过测量接收到来自终端120的SRS,获取上行的信道状态信息。若终端120和基站110端具有上下行信道互易性,则基站110可以进一步获得下行信道信息。在LTE/LTE-A系统中,由于终端120距离基站110的距离不同,远距离的终端120可能受限于终端110功率,如果在整个传输带宽上发SRS可能功率不足而导致接收信号强度低,测试准确性差。为了保证基站110接收的SRS功率足够,终端120发送的SRS可以只在传输带宽中的一部分带宽上发送SRS。为了测量传输带宽的SRS,需要通过跳频的方式,在不同的部分带宽上传输SRS,从而完成系统宽带的测量。在LTE/LTE-A系统中的跳频是基于小区级配置的带宽进行的,即终端110的跳频方法都是根据小区统一配置的SRS测量总带宽确定的,从而保证跳频正交。虽然也支持终端120测量基站110的总带宽的一部分,但是其跳频方法也是根据总带宽确定的,且时延也与跳完总带宽的时延相关。
而在新一代移动通信系统(NR,new radio)中,或其他通信系统中,一个基站110服务的终端120需要测量的带宽可能会不同,因此原有的根据小区统一配置的SRS测量总带宽来进行跳频的方式,可能不适用。
发明内容
本发明实施例提供适用于多种传输带宽的参考信号发送技术,以提高无线传输性能。
本发明实施例第一方面提供一种参考信号发送方法。终端接收来自基站的参考信号发送配置信息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号。其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;终端根据上述参考信号发送配置信息,在所述一个或多个频域单元上向基站发送参考信号。
本发明实施例第二方面提供一种参考信号发送装置。该装置包括处理单元和收发单元。收发单元接收来自基站的参考信号发送配置消息。所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号。其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分。处理单元根据上述参考信号发送配置信息,指示收发单元在所述一个或多个频域单元上向基站发送参考信号。
本发明实施例第三方面提供一种参考信号配置信息发送方法。基站生成参考信号发送配置信息。所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号。其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分。基站向终端发送该参考信号发送配置信息。
本发明实施例第四方面提供一种参考信号配置信息的发送装置。该发送装置包含处理单元和收发单元。所述处理单元生成参考信号发送配置信息。所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号。其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分。所述收发单元向终端发送该参考信号发送配置信息。
作为一种可能的实施方式:所述参考信号发送配置信息包括指示用于传输所述参考信号的时频资源,所述参考信号发送配置信息包括第一参数,用于指示所述终端在多个频域单元上传输参考信号的的顺序。
作为一种可能的实施方式:终端在所述多个频域单元上发送参考信号的顺序是预先设定的。
作为一种可能的实施方式:第二方面的处理单元指示收发单元在所述多个频域单元上发送参考信号的顺序是预先设定的。
作为一种可能的实施方式:所述参考信号发送配置信息包括第二参数,用于指示终端发送参考信号的时间单元,和发送参考信号的频域单元的对应关系。
作为一种可能的实施方式:所述参考信号发送配置信息包含分组参数,用于指示终端对所述多个频域单元进行分组,不同组的频域单元可以同时发送参考信号。
作为一种可能的实施方式:所述分组参数包含分频域单元组数量;所述终端,或所述第二方面的处理单元,根据其所支持的频域单元的数量和频域单元组的数量,确定所述频域单元组中包含的频域单元。
作为一种可能的实施方式:所述参考信号配置信息包括以下一个或多个信息:频域单元内的参考信号传输周期,频域单元内参考信号带宽,频域单元中参考信号的最大带宽,频域单元内发送参考信号的起始子载波位置,频域单元内参考信号频域位置与时域资源对应关系。
作为一种可能的实施方式:所述参考信号配置信息包括参考信号的参考周期指示参数,终端或所述第二方面的处理单元,根据其所支持的频域单元的数量,所述频域单元的带宽或频域单元内用于参考信号传输的带宽,和每一跳的跳频带宽,确定一个频域单元的参考信号传输周期。
作为一种可能的实施方式:所述参考信号发送配置信息包括参考信号参考带宽指示,终端或或所述第二方面的处理单元,根据所述参考信号的参考带宽指示,频域单元的子载波间隔,和频域单元内参考信号的频域密度,获取频域单元的参考信号带宽。
作为一种可能的实施方式:所述参考信号带宽不大于频域单元的带宽或频域单元内参考信号的最大带宽。
作为一种可能的实施方式:所述参考信号发送配置信息包括参考信号参考起始子载波指示,用于指示发送所述参考信号的起始子载波。
作为一种可能的实施方式:所述多个频域单元内的参考信号起始子载波标识相同。
作为一种可能的实施方式:所述参考信号发送配置信息包括参考信号频域位置与时域资源参考对应关系的指示,终端或所述第二方面的处理单元,根据参考信号频域位置与时域资源参考对应关系确定所述频域单元内的参考信号频域位置与时域资源对应关系;或终端或所述第二方面的处理单元,根据参考信号频域位置与时域资源参考对应关系和频域单元内参考信号带宽确定所述频域单元内的参考信号频域位置与时域资源对应关系。
作为一种可能的实施方式:频域单元内的参考信号的频域位置,根据终端支持的多个频域单元上发送参考信号的时间确定。
作为一种可能的实施方式:所述参考发送信号配置消息包括:第一带宽,用于指示频域单元用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成。所述终端根据预先设定的规则或来自基站的配置信息,确定在一个参考信号周期内,选择一部分第二带宽进行参考信号发送。
作为一种可能的实施方式:所述用于进行参考信号发送的多个第二带宽,位于不同的符号上。
作为一种可能的实施方式:所述预先预定的规则为:当前传输的参考信号用于波束扫描,或当前传输的参考信号的子载波间隔大于基站配置的终端在该频域单元上PUSCH传输的子载波间隔或参考子载波间隔,则终端确定在一个参考信号周期内,在所述组成所述第一带宽的多个第二带宽中的部分第二带宽上发送参考信号。
作为一种可能的实施方式:所述来自基站的配置信息为以下几种配置信息中的至少一种::(1)指示信息中包含部分第二带宽的标识,指示终端在所述部分第二带宽上发送参考信号;(2)指示信息中包含索引信息,用于获取部分第二带宽的标识,指示终端在所述部分第二带宽上发送参考信号;(3)指示信息中包含频域间隔,指示终端在间隔为所述频域间隔的多个第二带宽上传输参考信号,所述满足频域间隔的第二带宽中包含一个预定或基站指示的起始频域位置;(4)指示信息中包含第二带宽的次序间隔,指示终端根据次序间隔确定发送参考信号的部分第二带宽。
本发明实施例第五方面提供一种通信装置,包括处理器和收发器。处理器执行上述第二方面处理单元的功能,而收发器执行上述第二方面收发单元的功能。
本发明实施例第六方面提供一种通信装置包括处理器和收发器。处理器执行上述第四方面处理单元的功能,而收发器则执行上述第四方面接收单元的功能。
本发明实施例的第七方面提供一种程序。该程序在被处理器执行时用于执行第一方面或第一方面任一种可选方式的方法。
本发明实施例的第八方面提供一种程序。该程序在被处理器执行时用于执行第三方面或第三方面任一种可选方式的方法。
本发明实施例的第九方面提供一种程序产品,例如计算机可读存储介质,包括第七方面或第八方面的程序。
在以上各方面中,通过分别针对频域单元发送参考信号发送配置消息的方式,使同一个基站所服务的终端,在支持的带宽不同的情况下,仍然可以通过跳频的方式反馈参考信号。
本发明实施例第十方面提供一种参考信号的发送方法。终端接收多个参考信号资源的指示,所述指示包括多个参考信号资源信息和所述多个参考信号资源属于第一分组。终端接收第一指示信息,所述第一指示信息指示第一分组内多个参考信号资源上传输的参考信号间的关系。终端根据根据所述第一指示信息和多个参考信号资源的指示,发送参考信号。
本发明实施例第十一方面提供一种参考信号的发送装置。该发送装置包括处理器和收发器。所述收发器接收多个参考信号资源的指示,所述指示包括多个参考信号资源信息和所述多个参考信号资源属于第一分组。所述收发器接收第一指示信息,所述第一指示信息指示第一分组内多个参考信号资源上传输的参考信号间的关系。所述处理器根据根据所述第一指示信息和多个参考信号资源的指示,指示收发器发送参考信号。
本发明实施例第十二方面提供一种参考信号配置消息发送方法。基站生成多个参考信号资源的指示,所述指示包括多个参考信号资源信息和所述多个参考信号资源属于第一分组。基站生成第一指示信息,所述第一指示信息指示第一分组内多个参考信号资源上传输的参考信号间的关系。基站向终端发送所述第一指示信息和多个参考信号资源的指示。
本发明实施例第十三方面提供一种参考信号配置消息发送装置。所述装置包括处理器和收发器。处理器生成多个参考信号资源的指示,所述指示包括多个参考信号资源信息和所述多个参考信号资源属于第一分组。所述处理器生成第一指示信息,所述第一指示信息指示第一分组内多个参考信号资源上传输的参考信号间的关系。所述处理器指令收发器向终端发送所述第一指示信息和多个参考信号资源的指示。
作为一种可能的实施方式:所述多个参考信号资源上传输的参考信号间的关系包括多个参考信号资源上传输的参考信号间的天线端口间的准共址(QCL)关系。所述QCL关系是指根据一个天线端口的参数,可以确定另外一个天线端口的参数。
作为一种可能的实施方式,所述QCL关系以下至少之一:参考信号采用相同发送波束,参考信号采用不同的发送波束,参考信号采用相同的接收波束,参考信号采用不同的接收波束。
作为一种可能的实施方式:所述第一指示信息包括所述多个参考信号资源的时频资源之间的时域差值。
本发明实施例第十四方面提供一种通信装置,包括处理器和收发器。处理器执行上述第十一方面处理单元的功能,而收发器执行上述第十一方面收发单元的功能。
本发明实施例第十五方面提供一种通信装置包括处理器和收发器。处理器执行上述第十三方面处理单元的功能,而收发器则执行上述第十三方面接收单元的功能。
本发明实施例的第十六方面提供一种程序。该程序在被处理器执行时用于执行第十方面或第十方面任一种可选方式的方法。
本发明实施例的第十七方面提供一种程序。该程序在被处理器执行时用于执行第十二方面或第十二方面任一种可选方式的方法。
本发明实施例的第十八方面提供一种程序产品,例如计算机可读存储介质,包括第十六方面或第十七方面的程序。
本发明第十九方面提供一种参考信号发送方法。终端接收符号配置信息,用于指示一个时隙内符号的数量和该时隙内用于传输参考信号的符号。终端按照上述符号配置消息,发送参考信号。
本发明第二十方面提供一种参考信号发送装置。该发送装置包括处理器和收发器。所述收发器接收来自基站的符号配置信息,用于指示一个时隙内符号的数量和该时隙内用于传输参考信号的符号。处理器只是收发器按照上述符号配置消息,发送参考信号。
本发明第二十一方面提供一种符号配置消息发送方法。基站生成符号配置信息,用于指示一个时隙内符号的数量和该时隙内用于传输参考信号的符号。基站向终端发送上述符号配置消息。
本发明第二十二方面提供一种符号配置消息发送装置。该发送装置包括处理器和收发器。所述处理器生成符号配置信息,用于指示一个时隙内符号的数量和该时隙内用于传输参考信号的符号。处理器指示收发器向终端发送上述符号配置消息。
作为一种可能的实施方式:该时隙内用于传输参考信号的符号数量为k,且k=n或k<=m,其中k,m为自然数,m<n,n为所述时隙中上行传输符号的数量。
本发明实施例第二十三方面提供一种通信装置,包括处理器和收发器。处理器执行上述第二十方面处理单元的功能,而收发器执行上述第二十方面收发单元的功能。
本发明实施例第二十四方面提供一种通信装置包括处理器和收发器。处理器执行上述第二十二方面处理单元的功能,而收发器则执行上述第二十二方面接收单元的功能。
本发明实施例的第二十五方面提供一种程序。该程序在被处理器执行时用于执行第十九方面或第一九方面任一种可选方式的方法。
本发明实施例的第二十六方面提供一种程序。该程序在被处理器执行时用于执行第二十一方面或第二十一方面任一种可选方式的方法。
本发明实施例的第二十七方面提供一种程序产品,例如计算机可读存储介质,包括第二十五方面或第二十六方面的程序。
附图说明
图1为本申请实施例提供的一种通信场景的示意图;
图2为频域单元划分的示意图;
图3为参考信号发送的流程示意图;
图4为RPF的示意图;
图5为跳频带宽计算的示意图;
图6为跳频初始值计算的示意图;
图7为不同频域单元之间跳频顺序的示意图;
图8为参考信号发送的流程示意图;
图9为实施例参考信号资源组示意图
图10为本申请实施例提供的一种基站的结构示意图;
图11是本申请实施例提供的一种终端的结构示意图;
图12为本申请实施例提供的一种基站的结构示意图;
图13是本申请实施例提供的一种终端的结构示意图;
图14是一个频域单元内部分第二带宽的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端120,又称之为用户设备(User Equipment,UE)或移动设备(mobileequipment,ME),是一种向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。常见的终端120例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、基站110是网络中将终端120接入到无线网络的设备。基站110,包括但不限于:传输接收点(Transmission Reception Point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(BaseStation Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),或Wifi接入点(Access Point,AP)等。
本发明实施例中涉及的时隙(slot)可以是TTI和/或时间单元和/或子帧和/或迷你时隙。
随着移动互联网的发展,sub-6G频谱资源已经愈发紧张。为了满足日益增长的通信速率与容量需求,频谱资源丰富的高频无线资源成为无线通信系统研究的重点方向。高频通信的一大特点是传输带宽大,因此可能会出现比sub-6G的传输带宽大很多的传输带宽。例如sub-6G支持的最大传输带宽为20MHz,而NR的传输带宽可能到100MHz,甚至400MHz等。因此小区的传输带宽很可能会大于终端120的最大带宽能力,此时终端110只能使用其中的部分带宽,即终端110的测量和传输都需要在该部分带宽上进行。因此,无线通信系统需要支持SRS在部分带宽(partial band)上通过跳频(Frequency-hopping)的方式发送。部分带宽也可称为频域单元,多个频域单元组成基站110的传输带宽,或组成传输带宽的一部分,也可以为带宽部分(bandwidth part)。一个所述带宽部分为基站配置给终端的一端连续的频域资源,具有唯一的子载波间隔和循环前缀,带宽部分也可以是用户特定的信令配置的,如用户特定的RRC信令和/或MAC CE信令和/或DCI。不同的终端110可能支持不同的传输带宽,所以同一基站小区内的终端120支持的带宽不同,其所需测量的带宽不同。
在具有上下行信道互易性的场景中,终端120基于下行测量获得信干躁比(SINR,signal to interference and noise ratio)或信道质量指示(CQI,channel qualityindicator)较好的信道。但是若将该信道的信道状态信息(CSI,channel stateinformation)量化上报给基站110会影响信道精度,并占用较大的上行控制开销。因此,终端120可以通过发送SRS的方式,让基站110通过测量SRS获得上行CSI,再根据信道互易性确定下行信道的CSI。由于终端120已经知道那个频段信道质量好,因此不需要发送整个带宽的SRS,可以只发送特定频段的SRS以减少开销和时延。终端120获取的SRS测量带宽可以是根据自己的下行信道测量(例如利用信道状态信息参考信号(CSI-RS,channel stateinformation-reference signal)),也可以是根据基站110的SRS测量带宽指示确定的(SRS测量带宽可以是基站110根据终端110上报的CQI确定的)。
现有LTE/LTE-A的SRS是支持跳频的,SRS跳频根据小区级配置的带宽确定测量总带宽的,然后通过用户级信令配置每一跳的测量带宽。具体的如下表1-4所示。为上行传输带宽的RB数,根据上行传输带宽的不同,分别给出以下4个表。这部分内容也可以参见3GPP标准TS36.211。
表1:mSRS,b and Nb,b=0,1,2,3
表2:mSRS,b,Nb,b=0,1,2,3
表3:mSRS,b and Nb,b=0,1,2,3
表4:mSRS,b and Nb,b=0,1,2,3
对于不同的传输带宽,对应不同的表格。在表格中,CSRS为小区级配置的SRS带宽,BSRS为用户级配置的SRS带宽(均为高层信令配置)。终端110根据收到的CSRS和BSRS,可以确定SRS跳频的总带宽mSRS,0,以及每一跳的带宽其中Nb为本级跳频带宽相对上一级跳频带宽的切分粒度。从表中可以看出SRS最多支持4级共3次切分,例如对于的情况,CSRS=1,BSRS=3,则终端110的跳频总带宽96个RB,第0级为96RB。第一级将96个RB切分为两份,每个带宽为48个RB。第二级将每个48个RB切分为2份,每个带宽为24RB,共2*2=4个带宽。第三级将每个24RB切分为6份,每个带宽为4个RB,共2*2*6=24个带宽,即SRS每一跳带宽为4个RB,总共需要24跳完成全带宽测量。
具体的跳频方法为,基站110配置跳频的初始位置,例如有n个跳频的位置,则初始位置为这n个中的一个。例如在上述例子中,基站110配置24个4RB中的某一个为跳频的初始位置,该配置为高层信令配置。随后的跳频过程中,终端110根据协议规定的跳频规则,计算当前一跳的SRS的频域位置,该频域位置为n个跳频位置中的一个。这里的每一跳的跳频位置是通过对4级的每一级的位置共同决定的,即包括对4级的位置nb,b=0,1,2,3。SRS是否跳频通过参数bhop∈{0,1,2,3}配置的,该值是通过UE级的RRC参数srs-HoppingBandwidth来配置的。具体的跳频方法如下:
如果没有使能SRS跳频(bhop≥BSRS),则频率位置索引nb的值固定为(除非进行RRC连接重配置),其中nRRC是通过freqDomainPosition(周期性SRS)和freqDomainPosition-ap(非周期性SRS)配置的。
如果使能了SRS跳频(bhop<BSRS),则频率位置索引nb的值为
其中nRRC为基站110配置的信令,用于配置初始的跳频位置,不同的nRRC值会导致第一跳的频域位置不同。Fb(nSRS)按下面的公式定义:
其中(无论Nb取何值),且有
nSRS计算的是UE特定的SRS传输数目,TSRS和Toffset为基站110配置的小区级SRS符号的周期以及SRS子帧偏移。Toffset_max为特定SRS子帧偏移配置下的最大Toffset值。需要注意的是,窄带SRS并不意味着一定会跳频。如果窄带SRS不跳频,则UE就只会固定上报某一段RB的SRS信息。
通过获得的nb可以计算出SRS每一跳的信道的频域起始位置,计算方法参见下面的公式。SRS传输在频域的起始位置表示了从上行传输带宽的低频处开始的可用于SRS传输的偏移,也即频带上可用于SRS传输的第一个子载波的位置,或者说宽带SRS的起始子载波所在的位置
其中nf系统帧号,nhf一个系统帧由2个半帧组成。如果UpPTS位于第1个半帧上,则nhf等于0;如果UpPTS位于第2个半帧上,则nhf等于1。NSP一个系统帧内DL到UL的交换点(switch point)的个数。对于5ms的“Downlink-to-Uplink switch-point periodicity”而言,其值为2;对于10ms的“Downlink-to-Uplink switch-point periodicity”而言,其值为1(见36.211的Table 4.2-2)。Nap用于SRS传输的天线端口数。天线端口索引,见36.211的Table 5.2.1-1
这里我们把公式分为和两部分来分析。对于正常的子帧而言,其中是为了把上行系统的低频处,SRS不关心的用于PUCCH传输的区域排除掉。的值为0或1,用于确定使用哪个梳齿。图中是正常子帧,CSRS=0的一个例子,可以看出,如果的值为0,则如果的值为1,则
可以看做是把宽带SRS等分成N份后,所取的那一份。其中nb为频域位置索引,除非RRC连接重配置,否则其值是保持不变的;nRRC是通过freqDomainPosition(用于周期性SRS)和freqDomainPosition-ap(用于非周期性SRS)配置的,决定了nb的值,见图7-10。更确切地说,nRRC决定了SRS传输在频域上的起始位置。
以CSRS=0的一个例子(为了简单,省略了BSRS=3的场景)。由于N0值固定为1,所以可以计算出n0值固定为0。同时,等于一个SRS带宽。
从前面的介绍可以看出,不同UE可以在相同子帧、相同RB集合上发送SRS,但彼此之间使用不同的予以区分。
实施例一
本发明实施例中,基站110将其所支持的传输带宽划分成多个频域单元,并将频域单元分配给其所服务的终端120。请参见图2,作为一个例子,基站110的传输带宽划分为3个频域单元201,202,203。其中,终端UE1支持频域单元201和202。终端UE2支持频域单元202和203。终端UE3支持频域单元203。频域单元可以是基站110通过小区级信令配置的,如广播消息,系统消息。也可以是通过用户级信令配置的,比如RRC信令或MAC CE信令。不同终端可能支持相同的频域单元。不同频域单元之间没有重叠的频域。
基站110将其传输带宽划分为多个频域单元,并以频域单元为单位分配给其所服务的终端120。不同终端120可能支持相同的频域单元。在该频域单元内,使用上面所介绍的跳频的方式发送参考信号。这样,虽然不同终端120支持的带宽不同,即所支持的频域单元不同,如UE2支持频域单元202和203,而UE3仅支持频域203。但是对于相同的频域单元202,由于终端UE2和UE3在相同带宽(如频域单元202)上使用上面所介绍的跳频方式发送参考信号,但是用频域单元的带宽来替代小区级配置的带宽,这样可保证跳频过程中,不同起始位置的终端110不会在同一时间跳到相同的位置。
本发明实施例中所述的参考信号SRS,也可以是解调参考信号(De ModulationReference Signal,DMRS),或是信道状态信息参考信号CSI-RS。
作为一种可选的实施方式,由于基站110可以配置频域单元的带宽,因此可以不需要在每个频域单元内配置小区级的参考信号跳频带宽。小区级的参考信号跳频带宽是指终端120完成一个周期的参考信号发送所跳频的总带宽。本实施例中可以采用频域单元的带宽作为小区级参考信号跳频带宽,进行跳频并发送参考信号。每个频域单元内也可以配置多个参考信号跳频带宽,参考信号通过跳频方式,在每个跳频带宽内传输。但是为说明方便,本发明实施例以不需要在每个频域单元内配置小区级的参考信号跳频带宽为例进行说明,对于一个频域单元内配置有多个参考信号跳频带宽的情况,可以通过将每个配置的参考信号跳频带宽作为一个频域单元,从而使用本发明实施例介绍的方式来传输参考信号。
请参见图3,步骤301基站110向终端120发送参考信号发送配置信息。所述参考信号发送配置信息指示终端120在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站110支持的传输带宽的一部分。步骤302中,终端120根据上述参考信号发送配置信息,在所述一个或多个频域单元上向基站110发送参考信号。
所述参考信号发送配置信息包括指示用于传输所述参考信号的时频资源。在终端120支持多个频域单元的情况下,该参考信号发送配置信息还可以包括第一参数,第一参数指示所述终端120在多个频域单元上传输参考信号的的顺序。如图2中,基站110指示终端UE3现在频域单元202中传输参考信号,之后再在频域单元203中传输参考信号。当然,作为另外一个实施方式,终端120在多个频域单元上传输参考信号的顺序也可以采用预先设定的某种规则,如按照频率增加或减少的顺序,确定不同频域单元传输参考信号的顺序。所述参考信号发送配置信息包括第二参数,用于指示终端120发送参考信号的时间单元,和发送参考信号的频域单元的对应关系。这个对应关系决定了在一个参考信号发送周期内,初始发送参考信号的频域单元。之后按照第一参数指示的顺序,和第二参数中时间单元与频域单元的对应关系,按照顺序在频域单元间通过跳频传输参考信号。
作为一个实施方式,在终端120支持多个频域单元的情况下,基站110还可以指示终端120需要通过跳频传输参考信号的频域单元。这样,终端120可以不在所有频域单元通过跳频的方式来传输参考信号,而仅在部分频域单元上传输参考信号。
若终端110可以在多个频域单元上同时传输参考信号,则基站110可以将频域单元进行分组,每个分组可以按照上述实施例中所揭示的方式发送参考信号。分组的方式可以直接配置,或配置组数,根据需要测量的带宽,终端120支持的频域单元的数量,和/或传输参考信号的跳频总段数等因素,对终端120支持的频域单元进行分组。同一组的频域单元,在频域上可以是连续的,也可以是不连续的。具体的,基站110可以向终端120下发分组参数。所述分组参数包含分频域单元组数量,所述终端120根据其所支持的频域单元的数量和频域单元组的数量,确定所述频域单元组中包含的频域单元。
可选的,为了避免碰撞,基站110还可以在不同的频域单元之间配置空白频域单元。空白频域单元是指这个当跳频到这个频域单元上时,不进行参考信号的传输。
所述参考信号配置信息包括以下一个或多个信息:参考信号传输周期,参考信号带宽,频域单元中参考信号的最大带宽,频域单元内发送参考信号的起始子载波位置,参考信号频域位置与时域资源对应关系。参考信号传输周期是指终端120在所有需要测量的频域单元上,完成参考信号传输的时间。所述需要测量的频域单元可能是终端120支持的所有频域单元中的一部分。终端120根据参考信号传输周期,以及频域单元的数量,和频域单元的带宽或频域单元内用于参考信号传输的带宽,和每一跳的跳频带宽,可以确定在某一个频域单元上传输参考信号的时间。具体的,如果需要测量的频域单元有2个,第一个频域单元带宽为96RB,每一跳的跳频带宽为4RB,则需要进行24次跳频。第二个频域单元带宽为128RB,每一跳的跳频带宽为16RB,则需要进行8次跳频。这样第一频域单元所需要的时间,是第二频域单元的2倍。如果参考信号传输周期为T,则第一频域单元上传输参考信号的时间为2/3T,而第二频域单元上传输参考信号的时间为1/3T。终端120根据频域单元的传输时间,和用于传输参考信号的符号,确定频域单元内参考信号所占用的符号。不同的频域单元之间,发送参考信号的时间间隔绝对值相同,或有倍数关系。
作为一种实施方式,还可以在频域单元之间设置的跳频时间间隔。即完成一个频域单元的跳频之后,隔一段时间之后再进行下一个频域单元的跳频。作为一个例子,跳频时间间隔可以根据终端120上报的信息进行配置。跳频时间间隔可以根据射频调整时间(RFretuning time)配置。
作为一种实施方式,基站可以配置给一个终端一个或多个所述频域单元并为其中一个或多个频域单元配置参考信号配置信息。所述参考信号配置信息包括以下一个或多个信息:参考信号的传输周期,频域单元内用于参考信号传输的带宽,发送所述参考信号的符号上参考信号的带宽,参考信号频域位置与时域资源对应关系。所述频域单元内用于参考信号传输的带宽为频域单元内需要通过所述参考信号测量的带宽,记作第一带宽。用于参考信号传输的带宽和实际发送的参考信号的总带宽不同,为包含参考信号实际传输的总带宽的一段连续的带宽。可以是频率单元,或频率单元中部分频域资源。所述发送所述参考信号的符号上参考信号的带宽为参考信号每跳的带宽,记作第二带宽。所述第一带宽由一个或多个第二带宽组成。本实施方式中,终端120根据预定义的规则或基站发送的跳频规则指示信息,确定在一个参考信号周期内,在所述组成所述第一带宽的一个或多个第二带宽中的部分第二带宽上发送所述参考信号。所述跳频规则指示信息,也可以称为指示信息,用于指示终端在部分第二带宽上传输参考信号。指示信息可以和上述参考信号配置信息中的其他信息一起传输,如和参考信号的传输周期,频域单元内用于参考信号传输的带宽,发送所述参考信号的符号上参考信号的带宽,或参考信号频域位置与时域资源对应关系一起传输;可选的,也可以作为一个独立的信息单独传输。可选的,所述参考信号在每一个第二带宽上位于不同的符号。该方案中终端120第一带宽中的部分第二带宽间以跳频的方式发送参考信号,完成部分第一带宽的测量。请参见图14,图中方框表示参考信号的8个跳频位置1,2,3,4,5,6,7,8。其中,作为一种例子,在跳频位置2,4,6,8上发送参考信号,而在跳频位置1,3,5,7上不发送参考信号。该方案可以降低一个参考信号周期内的参考信号发送次数,降低参考信号资源的开销,同时降低参考信号的周期。对于随频率变化而变化缓慢的测量结果,例如波束选择,参考信号接收功率,或信道随频率变化缓慢的场景下,该实施方式的测量结果与在所有组成第一带宽的第二带宽上传输参考信号的测量结果近似,性能损失可以接受。
可选的,所述终端120根据预定义的规则或基站发送的跳频规则指示信确定在一个参考信号周期内,在所述组成所述第一带宽的一个或多个第二带宽中的部分第二带宽上发送所述参考信号。所述预定义的信息为,当前传输的参考信号用于波束扫描,或当前传输的参考信号的子载波间隔大于基站配置的终端在该频域单元上PUSCH传输的子载波间隔或参考子载波间隔,则终端120确定在一个参考信号周期内,在所述组成所述第一带宽的一个或多个第二带宽中的部分第二带宽上发送所述参考信号,例如仅在具有等间隔的第二带宽上发送所述参考信号。具体的,如果第一带宽为32RB,每个第二带宽为4RB,则第一带宽由8个第二带宽组成(见图14中跳频位置1,2,3,4,5,6,7,8)。当终端120确定所述参考信号用于波束扫描,则选择第{1,3,5,7}个第二带宽上发送参考信号,或选择第{2,4,6,8}个第二带宽上发送参考信号。基站可以配置起始的第二带宽。
可选的,所述终端120根据预定义的规则或基站发送的跳频规则指示信息,确定在一个参考信号周期内,在所述组成所述第一带宽的一个或多个第二带宽中的部分第二带宽上发送所述参考信号。所述基站发送的跳频规则指示信息用于指示以下至少之一:组成第一带宽的第二带宽中的部分第二带宽的标识;索引信息,用于获取部分第二带宽的标识;频域间隔,用于指示在满足频域间隔的部分第二带宽上传输参考信号;组成第一带宽的第二带宽的次序间隔。
当所述基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽中的部分第二带宽的标识时,终端在所述部分第二带宽的标识对应的第二带宽上传输参考信号。具体的,如果第一带宽为32RB,每个第二带宽为4RB,则第一带宽由8个第二带宽组成(见图14中跳频位置1,2,3,4,5,6,7,8),当基站发送的跳频规则指示信息用于指示组成第一带宽的第二带宽中的部分第二带宽的标识{1,4,8},则终端在第{1,4,8}个第二带宽上发送参考信号。
当所述基站发送的跳频规则指示信号包含索引信息时,终端根据所述索引信息获取对应的部分第二带宽的标识,并在这些部分第二带宽上发送所述参考信号。具体的,仍然参见图14,如果第一带宽为32RB,每个第二带宽为4RB,则第一带宽由8个第二带宽组成(见图14中跳频位置1,2,3,4,5,6,7,8),组成第一带宽的第二带宽中的部分第二带宽的可以分为第一配置{1,3,5,7}和第二配置{2,4,6,8},该配置可以由高层信令配置。当所述基站发送的跳频规则指示信号的索引指示为第一配置时,则终端在第{1,3,5,7}个第二带宽上发送参考信号。同理,如果索引信息指示第二配置时,则终端在第{2,4,6,8}个第二带宽上发送参考信号。
当所述基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽中的起始传输的第二带宽的标识,和/或组成第一带宽的第二带宽中的第二带宽频域间隔时,终端根据标识所指示的第二带宽,以及组成第一带宽的第二带宽中的第二带宽频域间隔,确定等频域间隔的组成第一带宽的第二带宽中的部分第二带宽,并在所述部分第二带宽上发送参考信号,所述组成第一带宽的第二带宽中的起始传输的第二带宽的标识,和组成第一带宽的第二带宽中的第二带宽频域间隔之一可以为预定义的。具体的,如果第一带宽为32RB,每个第二带宽为4RB,则第一带宽由8个第二带宽组成(见图14中跳频位置1,2,3,4,5,6,7,8),当基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽中的起始传输的第二带宽的标识为1,组成第一带宽的第二带宽中的第二带宽频域间隔为2时,则终端在第{1,3,5,7}个第二带宽上发送参考信号。又利于当基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽中的起始传输的第二带宽的标识为2,组成第一带宽的第二带宽中的第二带宽频域间隔为2时,则终端在第{2,4,6,8}个第二带宽上发送参考信号。
又例如,参考信号频域位置与时域资源对应关系为F=(f(n)*t1)mod K,其中f为参考信号频域位置与时域资源位置的函数,F为组成第一带宽的第二带宽的位置标识,n为参考信号时域位置确定的标识,例如时域次序,K为组成第一带宽的第二带宽的总数,t1为所述组成第一带宽的第二带宽中的第二带宽频域间隔。则配置t=1时,终端在每一个组成第一带宽的第二带宽中发送参考信号,配置t=2时,终端在组成第一带宽的第二带宽中每间隔一个第二带宽的第二带宽上发送参考信号。
可选的,当所述基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽的次序间隔时,终端根据所述时域间隔和所述参考信号频域位置与时域资源对应关系确定第二带宽的频域位置。例如参考信号频域位置与时域资源对应关系为F=(f(n*t2))mod K,其中f为参考信号频域位置与时域资源位置的函数,F为组成第一带宽的第二带宽的位置标识,n为参考信号时域位置确定的标识,例如时域次序,K为组成第一带宽的第二带宽的总数,t2为所述组成第一带宽的第二带宽的次序间隔。则配置t2=1时,终端在每一个组成第一带宽的第二带宽中发送参考信号,配置t2=2时,终端在组成第一带宽的第二带宽中,根据参考信号频域位置与时域资源对应关系确定的第二带宽发送次序中,在间隔一个第二带宽的第二带宽上发送参考信号。
作为一种实施方式,基站110还可以配置终端120在一个频域单元上传输参考信号的周期数。周期数代表终端120在一个频域单元上,完成在整个频域单元上发送参考信号的次数。如终端120支持两个频域单元,可以对其中一个频域单元配置周期数为3,而另外一个频域单元周期数为1。这样,终端120在一个频域单元上,重复3次在该频域单元上传输参考信号,而在另外一个频域单元上,仅做1次参考信号传输。
频域单元中参考信号的最大带宽,即频域单元中,需要通过传输参考信号进行测量的最大带宽。如假设图2中频域单元202的带宽是100RB,而需要通过参考信号进行测量的最大带宽为96RB,则在频域单元内,只需要在参考信号的最大带宽,即96RB的带宽中传输参考信号即可。
频域单元内发送参考信号的子载波位置。不同的终端120可以在相同子帧、相同RB集合上发送参考信号。不同终端120采用该RB中不同的子载波即可。体现频域上传输参考信号的子载波密度可以用时间重复因子(time-domain RePetition Factor,RPF),RPF的值为自然数。如RPF的值为4,即表示每四个子载波中有一个子载波用于传输参考信号。也就是说,在同一时间内,可以有4个不同的终端120,分别占据四个子载波中的一个来传输参考信号。本实施例中的参考信号子载波位置,就是指示终端120可以在哪个子载波上进行参考信号传输。
请参见图4,图中401为一个频域带宽,该频域带宽RPF为2,即每2个子载波中,有一个用于给一个终端120传输参考信号。而空白格部分标示可以给另外一个终端120传输参考信号的子载波。同理,图中402所标示的带宽,RPF值为4,即每4个子载波中,有一个用于一个终端120传输参考信号。而基站110发给终端120的发送参考信号的子载波位置,即是指示该频带中的一个子载波位置,从而终端120可以在该子载波位置上进行参考信号传输。
基站110可以分别为终端120的每个频域单元,或部分频域单元,配置参考信号的跳频带宽(每一跳的带宽),跳频的起始位置,跳频周期,小区级符号位置,和RPF。也可以将参考信号配置信息用于配置一个频域单元的参考信号传输,并作为其他频域单元获取参考信号配置信息的参考,即通过该参考信号配置信息,获取其他频域单元的参考信号配置信息。这里的频域单元可以作为参考频域单元。参考频域单元可以是一个真实的频域单元你,也可以是一个虚拟的频域单元,指用来供其他终端120支持的频域单元用来获取参考信号发送配置信息。
所述参考信号发送配置信息包括参考信号参考带宽,即参考信号每次跳频的带宽。终端120根据所述参考信号参考带宽,频域单元的SCS,和频域单元内的RPF值,获取频域单元的参考信号带宽。具体的,一个频域单元与参考频域单元之间,大子载波间隔就需要较小的RPF值。RPF与子载波间隔成反比。由此可以通过公式RPF=r_RPF*r_SCS/SCS,来或去频域单元的RPF值。其中,r_RPF为参考频域单元的RPF值,r_SCS为参考频域单元的子载波间隔。在根据参考频域单元,获取一个频域单元的RPF值之后,可以根据r_RB/r_RPF*RPF来获取频域单元的参考信号带宽。其中公式中的r_RB为参考频域单元的参考信号信号参考带宽,r_RPF为参考频域单元的RPF值,RPF为频域单元的RPF值。
当然,所述频域单元的参考信号的带宽,应该不大于频域单元的带宽或频域单元内参考信号的最大带宽。
作为一个例子,请参见图5。图5中,如果以频域单元501作为参考频域单元,则参考RPF为2,参考SCS(SubCarrier Spacing,SCS)为120kHz,参考跳频带宽为8RB。下面根据上面的公式计算频域单元502的参考信号发送配置信息。首先,频域单元502的SCS为60kHz,则可以得出频域单元502的RPF为4。之后,根据公式r_RB/r_RPF*RPF则可以得出,频域单元502的跳频带宽为16RB。同样的道理可以计算频域单元503的参考信号发送配置信息。
所述参考信号发送配置信息包括参考信号频域位置与时域资源参考对应关系的指示。终端120根据参考信号频域位置与时域资源参考对应关系确定所述频域单元内的参考信号频域位置与时域资源对应关系;或终端120根据参考信号频域位置与时域资源参考对应关系和频域单元内参考信号带宽确定所述频域单元内的参考信号频域位置与时域资源对应关系。作为一个例子,跳频起始位置为一个频域单元开始跳频的频域位置。跳频起始位置可以根据参考频域单元的参考初始值,和频域单元的跳频带宽与参考频域单元的参考跳频带宽的比值,计算得出该频域单元的跳频起始位置。请参见图6,如频域单元601的跳频带宽为16RB,参考频域单元603的跳频带宽为4RB,则频域单元601的跳频带宽与参考频域单元603的跳频带宽比值为4。如果初始值为5,则5/4并向下取整可以得出频域单元的起始位置,即图中频域编号为1的频域位置。同样的方式可以计算频域单元602的跳频起始位置。
在终端120支持多个频域单元的场景中,参考信号的传输会通过跳频的方式,在不同的频域单元上进行传输。参考信号仅在跳频所在的当前频域单元上传输参考信号。当跳频位置从其他频域单元跳到当前频域单元之后,这时当前频域单元的参考信号的频域位置,应该根据终端120支持的多个频域单元上发送参考信号的时间确定,而不仅仅考虑本频域单元上的参考信号传输时间。请参见图7,终端120在频域单元702上具有4个跳频位置a,b,c,d。在频域单元701上有2个跳频位置(未编号)。终端120在频域单元702上的第一个跳频周期中,跳频位置的顺序是a,b,c,d。在完成这一个跳频周期之后,跳频到频域单元701,之后又跳频到频域单元702,进行第二个周期的参考信号传输。第二个周期的跳频考虑到频域单元701经过两次跳频,因此第二个周期的跳频顺序为c,d,a,b。
作为一种实施方式,基站110也可以不配置频域单元间的跳频,即每个频域单元独立跳频,基站110通过配置总的跳频周期,并配置不同的时域偏移值实现各频域单元间的正交。该实施方式要求不同频域单元有相同的周期,对于每个频域单元需要的跳数不同的情况,可能会造成资源浪费。
实施例二
除了周期性和非周期性发送参考信号,终端120还可以采用多发传输(multi-shot)的方式来传输参考信号。这种发送参考信号的方式比周期性的方式更灵活(因为触发发送为动态信令通知,例如下行控制信息(DCI,downlink control information)或媒体介入控制单元(MAC CE.media access control control element))。发送总次数更少(因为结束也为动态信令通知或预先配置的长度),相比仅发送一次的非周期具有更多的发送次数。因此多发传输参考信号可以用于一定带宽的跳频测量从而获取一定带宽的测量结果。多发传输参考信号还可以在相同带宽的重复但用不同发送波束发送或用不同的接收波束接收,从而让基站110可以测量不同的发送波束或接收波束对应的信道质量。
请参见图8,步骤801中,基站110向终端120发送多个参考信号资源的指示,和第一指示信息。所述多个参考信号资源的指示包括多个参考信号资源的信息和所述多个参考信号资源的分组信息。如指示所述多个参考信号资源属于第1组。所述第一指示信息指示第1组内多个参考信号资源上传输的参考信号的天线端口间的准共址(Quasi co-located,QCL)关系。所述QCL关系是指根据一个天线端口的参数,可以限定另外一个天线端口的参数。
在步骤802中,终端120根据所述第一指示信息和多个参考信号资源的指示,发送参考信号。
一个参考信号资源为一个时隙内的部分资源。参考信号资源的信息包括以下一个或多个:参考信号映射的时频资源指示,参考信号的周期,参考信号的端口,参考信号的序列指示。所述参考信号映射的时频资源指示包括以下至少之一:参考信号的带宽,参考信号的频域密度RPF,和参考信号的频域起始位置。所述参考信号的序列指示包括参考信号的序列的根。
所述多个参考信号资源信息还包括参考信号映射的时频资源之间的时间偏移量。所述时间偏移量为多个参考信号时域资源间的时域差值。
作为例子,QCL关系可以是指的是天线端口对应的参考信号中具有相同的参数。QCL关系还可以指的是终端120可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数。QCL关系还可以指两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送波束,接收波束,资源标识中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源标识,或参考信号资源标识,用于指示资源上的波束。
具体的,作为一个例子,所述QCL关系为以下至少之一:参考信号采用相同的发送波束,参考信号采用不同的发送波束,参考信号采用相同的接收波束,参考信号采用不同的接收波束。发送波束对应QCL参数中的AOD/AOD扩展/平均AOD/发送端相关性。接收波束对应QCL参数中的AOA/AOA扩展/平均AOA/接收端相关性。
基站110向终端120发送配置信息,用于指示一个时隙(Slot)内符号(symble)的数量和该时隙内用于传输参考信号的符号。如该时隙内用于传输参考信号的符号数量为k,且k=n或k<=m,其中k,m为自然数,m<n,n为所述时隙中上行传输符号的数量。该消息可以承载于RRC信令或MAC CE信令中。例如符号数量k的取值范围为{1,2,3,4,n}。可选的k不等于n时可以表示为2的整数次幂,例如k的取值范围为{1,2,4,n}或{1,2,4,8,n}。
该配置信息中指示的时隙符号数量可以是一个或多个,对于不同时隙类型指示不同的符号数。其中,用于传输参考信号的符号数量,对于不同的时隙类型指示不同的符号集合。时隙类型根据时隙中上行和/或下行符号数确定,例如全上行时隙,2个下行符号+11个上行符号的时隙,11个下行符号+2个上行符号的时隙等。
如图9所示,上述属于第1组的多个参考信号资源可以是一个频域单元上传输参考信号的资源。如频域单元901,频域位置数量为1,重复次数为4。频域单元902的频域位置数量为4,重复次数为1。上述第一指示信息包括多个参考信号资源的跳频顺序,重复次数,和序列配置。基站110可以通过DCI触发对该这多个资源(资源组)的配置。当然,第一指示信息中也可以不配置重复次数,采用默认值为1。
采用实施例2的实施方式,可以支持在不同关系的参考信号资源组合上发送参考信号。
实施例三
基站110向终端120发送的测量资源,第一配置信息,和第二配置信息。第一配置信息确定第一资源集合。第二配置信息确定对应的接收资源,其中,第二配置信息确定第一资源集合中的一个或多个。第一配置信息还指示第一资源集合中的至少一个资源同至少一个测量资源之间的关系。该关系是关于某个空间参数准共址的。第一配置信息和UE上报的结果有关系。第一配置信息指示的标识基于UE上报的内容。
以下行为例,波束管理中,基站110通过配置下行的CSI-RS测量资源,采用不同的波束向UE发送测量信号。UE通过测量对应的资源,上报对应的测量结果给基站110。基站110根据上报的内容,决定对应的信道(控制信道或数据信道)和信号所采用的波束。基站110会采用第二配置信息来指示UE,UE根据第二配置信息的指示确定采用的接收波束。其中,指示的信令可以通过QCL假设的信息进行,QCL假设是指的基站110发送当前信道采用的波束和之前进行CSI-RS测量的某个资源的发送波束关于空间参数的假设是QCL的,也就是说,基站110采用和之前的某个CSI-RS的发送波束相同的波束来发送当前的信道或信号。基于这样的信息,UE就可以采用之前的接收波束来接收当前的信道或信号。
由于配置的CSI-RS测量资源可能有很多,从资源的数量角度来区分,会导致指示的开销过大。比如下行扫描配置了32个资源,就需要5bit来进行指示。为了降低指示的开销,可以建立一个用于指示的小的资源集合。比如定义资源集合中共有4个元素,则就采用2bit来进行指示,这样,指示的开销就下降。该集合的建立和更新可以通过第一配置信息来实现。
该资源集合的内容基于每次测量后UE的上报进行更新,UE每次上报的数量和内容可以不一致,基站110根据上报的内容和数量对资源集合进行更新。同时,gNB需要通过第一配置信息及时将更新后的信息发给UE,以保证gNB和UE对指示信息的理解一致。其中,第一配置信息指示的信息和上报结果有一定的关系,比如,上报的内容为4个,则指示只需要2bit来区分4个中的哪一个,这样也可以节省开销。如果gNB发现上报的结果中都没有需要的波束,则可以保持不更新。
资源集合中的每一个指示标识,分别和之前的某次测量的资源有关联的关系。例如,假设资源集合中含有4个元素标号为{00,01,10,11},其中第一个元素00关联到之前的某次测量的波束a。在当前的测量和上报之后,基站110发现某个波束b的质量比之前的波束a的质量更好。此时,基站110可以对集合中的元素00所关联的波束进行更新。基站110通过发送第一配置信息更新信息,使得UE能够更新自己的资源集合所关联的波束信息,即元素00关联的波束更新为b。这样,当下次指示00的时候,UE就理解00是关联到波束b。
该集合可以是基于信道配置的,即不同的信道维持不同的集合。比如PDCCH\PDSCH\PUCCH\PUSCH每种信道都维持一个集合,控制信道相对的波束可以宽一些,数据信道的波束可以相对窄一些。也可以是多种信道共用一个集合,该集合中有宽的波束,也有窄的波束。也可以是上行维持一个集合,下行维持一个集合。如果有波束的互易性,也可以上下行维持一个集合。集合中的每个元素标号关联到的波束可以有不同的关系。比如,元素00和元素01对应的两个波束可以是相关性比较小的,这样,有助于实现波束的鲁棒传输,当一个波束被遮挡导致通信中断的时候,有另一个波束来进行通信的恢复。
该方法可以同样应用于上行,在上行传输中,上行的通过配置SRS测量资源,UE向基站110发送测量信号,基站110通知UE采用的发送波束,比如PUCCH/PUSCH的发送波束和之前发送的SRS关于空间参数是QCL的。此时,基站110和UE也可以维持一个资源集合,该资源集合中的每个元素都和某个测量资源的波束是QCL的。每次指示只需要指示集合中的某个元素。
作为一种实施方式,终端110端接收基站110发送的第一配置信息,用于确定传输第一信号的第一资源或第一资源的集合。终端110接受基站110发送的第二配置信息,所述第二配置信息用于指示传输第二信号的第二资源或第二资源的集合。基站110发送第三配置信息,用于指示所述第二信号与第一信号具有关联的参考信号特征,所述关联的参考信号特征为第一参考信号和第二参考信号端口具有QCL关系,或具有相同的空间特征,或对应的上下行空间特征。终端110根据第一参考信号以及关联的参考信号特征发送或接收第二参考信号。所述空间特征包括以下至少之一:到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送波束,接收波束。所述具有QCL关系指的是天线端口对应的参考信号中具有相同的参数,或者,QCL关系指的是用户可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数,或者,QCL关系指的是两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送波束,接收波束,资源标识中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源标识,或SRS资源标识,用于指示资源上的波束。
第一资源还包括第一参考信号的以下至少之一端口、时域资源、频域资源、码域资源;第二资源还包括第二参考信号的以下至少之一端口、时域资源、频域资源、码域资源。
第一参考信号可以为第一上行参考信号和/或第一下行参考信号。所述的第一上行参考信号包括以下至少之一:探测参考信号,物理层随机接入信道,前导序列,上行解调参考信号。所述第一下行参考信号包括以下至少之一:主同步信号,辅同步信号,解调参考信号,信道状态信息参考信号,移动参考信号,波束参考信号。
可选的,第一参考信号候选集可以包含第一上行参考信号中的一类或多于一类参考信号,或第一下行参考信号中的一类或多于一类参考信号,或第一上行参考信号中的一类或多于一类参考信号和第一下行参考信号中的一类或多于一类参考信号。例如第一参考信号候选集可以包含SRS资源,或包含SRS资源和PRACH资源。又例如第一参考信号候选集包含CSI-RS资源,或包含CSI-RS资源和同步信号资源。又例如第一参考信号候选集包含SRS资源和CSI-RS资源。第二参考信号可以为第二上行参考信号和/或第二下行参考信号。所述的第二上行参考信号包括以下至少之一:探测参考信号,物理层随机接入信道,前导序列,上行解调参考信号。所述第二下行参考信号包括以下至少之一:主同步信号,辅同步信号,解调参考信号,信道状态信息参考信号,移动参考信号,波束参考信号。
具体的,可以包括以下实施方式:场景一:若第一参考信号为第一上行参考信号,第二参考信号为第二上行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具有相同的AOD,或相同的空间特性包括相同的AOD,则认为第一参考信号和第二参考信号的用户端发送波束相同。例如第一参考信号和第二参考信号为SRS,则用户根据第三配置信息确定两者具有相同的用户端发送波束。
场景二:若第一参考信号为第一上行参考信号,第二参考信号为第二上行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具有相同的AOA,或相同的空间特性包括相同的AOA,则认为第一参考信号和第二参考信号的基站端接收波束相同。例如第一参考信号和第二参考信号为SRS,则用户根据第三配置信息确定两者具有相同的接收波束。
场景三:若第一参考信号为第一上行参考信号,第二参考信号为第二下行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具用户根据第一参考信号的AOD确定第二参考信号的AOA,或上下行对应的空间特性包括第一参考信号的AOD对应第二参考信号的AOA,则认为第一参考信号的用户端发送波束和第二参考信号的用户端接收波束对应。例如第一参考信号为SRS,第二参考信号为CSI-RS,则用户根据第三配置信息确定SRS发送波束和CSI-RS的接收波束对应。
场景四:若第一参考信号为第一上行参考信号,第二参考信号为第二下行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具用户根据第一参考信号的AOA确定第二参考信号的AOD,或上下行对应的空间特性包括第一参考信号的AOA对应第二参考信号的AOD,则认为第一参考信号的基站端接收波束和第二参考信号的基站端发送波束对应。例如第一参考信号为SRS,第二参考信号为CSI-RS,则用户根据第三配置信息确定SRS接收波束和CSI-RS的发送波束对应。
场景五:若第一参考信号为第一下行参考信号,第二参考信号为第二上行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具用户根据第一参考信号的AOD确定第二参考信号的AOA,或上下行对应的空间特性包括第一参考信号的AOD对应第二参考信号的AOA,则认为第一参考信号的基站端发送波束和第二参考信号的基站端接收波束对应。例如第一参考信号为CSI-RS,第二参考信号为SRS,则用户根据第三配置信息确定CSI-RS发送波束和SRS的接收波束对应。
场景六:若第一参考信号为第一下行参考信号,第二参考信号为第二上行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具用户根据第一参考信号的AOA确定第二参考信号的AOD,或上下行对应的空间特性包括第一参考信号的AOA对应第二参考信号的AOD,则认为第一参考信号的用户端接收波束和第二参考信号的用户端发送波束对应。例如第一参考信号为CSI-RS,第二参考信号为SRS,则用户根据第三配置信息确定CSI-RS接收波束和SRS的发送波束对应。
场景七:若第一参考信号为第一下行参考信号,第二参考信号为第二下行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具有相同的AOD,或相同的空间特性包括相同的AOD,则认为第一参考信号和第二参考信号的基站端发送波束相同。例如第一参考信号和第二参考信号为CSI-RS,则用户根据第三配置信息确定两者具有相同的基站端发送波束。
场景八:若第一参考信号为第一下行参考信号,第二参考信号为第二下行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具有相同的AOA,或相同的空间特性包括相同的AOA,则认为第一参考信号和第二参考信号的用户端接收波束相同。例如第一参考信号和第二参考信号为CSI-RS,则用户根据第三配置信息确定两者具有相同的接收波束。
作为一种实施方式,第一参考信号发送可以在第三配置信息之前,可以第三配置信息在第一参考信号发送之前。若第三配置信息位于参考第一参考信号前发送,则用于指示发送第一参考信号和发送第二参考信号的资源对应关系。具体的,第三配置信息用于指示第一资源与第二资源的对应关系,或第一资源集合与第二资源的对应关系,或第一资源与第二资源集合的对应关系,或第一资源集合和第二资源集合对应关系。此时第三配置信息包含第一资源标识和第二资源标识,或第一资源候选集合中的标识和第二资源标识,或第一资源标识和第二资源候选集合中的标识,或第一资源候选集合中的标识和第二资源候选集合中的标识。
作为一种实施方式,所述第一资源的候选集合包含一个或多个第一资源,为基站配置和/或用户上报的。所述第二资源的候选集合包含一个或多个第二资源,为基站配置和/或用户上报的。
作为一种实施方式,若第一参考信号为第一下行参考信号,且第一参考信号资源集合内的第一参考信号资源上的第一参考信号端口间具有QCL关系,或具有相同的空间特征,且第二参考信号为第二上行参考信号,且第二参考信号资源集合内的第二参考信号资源上的第二参考信号端口间具有QCL关系,或具有相同的空间特征,其中QCL关系中的参数包括AOD,或空间特征包括AOD,则所述多个第二参考信号资源上的第二参考信号端口与一个第一参考信号资源上的第一参考信号端口具有对应的QCL关系或上下行对应的空间特性,如所有第二参考信号资源上的第二参考信号端口的AOD与一个第一参考信号资源上的第一参考信号端口的AOA对应,用户根据下行接收第一参考信号进行测量选择所述的一个第一参考信号资源。例如第一参考信号为CSI-RS,第二参考信号为SRS,则用户根据CSI-RS的测量情况,选择一个CSI-RS的接收波束,并使用选择的CSI-RS的接收波束对应的发送波束进行所有SRS资源上的SRS发送。
作为一种实施方式,若第一参考信号为第一上行参考信号,且第一参考信号资源集合内的第一参考信号资源上的第一参考信号端口间具有QCL关系,或具有相同的空间特征,且第二参考信号为第二下行参考信号,且第二参考信号资源集合内的第二参考信号资源上的第二参考信号端口间具有QCL关系,或具有相同的空间特征,其中QCL关系中的参数包括AOD,或空间特征包括AOD,则所述多个第二参考信号资源上的第二参考信号端口与一个第一参考信号资源上的第一参考信号端口具有对应的QCL关系或上下行对应的空间特性,如所有第二参考信号资源上的第二参考信号端口的AOD与一个第一参考信号资源上的第一参考信号端口的AOA对应,基站根据上行接收第一参考信号进行测量选择所述的一个第一参考信号资源。例如第一参考信号为SRS,第二参考信号为CSI-RS,则基站根据SRS的测量情况,选择一个SRS的接收波束,并使用选择的SRS的接收波束对应的发送波束进行所有CSI-RS资源上的CSI-RS发送。
上述实施例中的AOA可以包含平均AOA和/或AOA扩展和/或接收端空间相关性。上述实施例中的AOD可以包含平均AOD和/或AOD扩展和/或发送端空间相关性。
请参见图10,执行上述实施例一和实施二中的方法的基站110包括第一处理单元102和第一收发单元101。第一处理单元102用于执行上述步骤301和801中基站110的参考信号配置消息或符号配置消息等消息的生成。第一收发单元101用于将第一处理单元102生成的参考信号配置消息,或符号配置消息发送到终端120。请进一步参见图11,终端120包括第二收发单元111和第二处理单元112。第二收发单元111用于接收来自基站110的参考信号配置消息,或符号配置消息。第二处理单元112用于执行如步骤302和步骤802中。根据第二收发单元111接收到的参考信号配置消息,发送参考信号。
应理解以上通信装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,第一处理单元102或第二处理单元112可以为单独设立的处理元件,也可以集成在基站110或终端120上的某一个芯片中实现。如基带芯片。此外,也可以以程序的形式存储于基站110或终端120的存储器中,由基站110或终端120的某一个处理元件调用并执行处理单元的功能。其它单元的实现与之类似。终端120可以通过天线接收基站110发送的信息,该信息通过射频装置处理发送给基带装置,以上第一、第二收发单元可以通过射频装置与基带装置之间的接口接收/发送基站110或终端120传送的信息。此外基站110或终端120的单元可以全部或部分集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上第一处理单元或第二处理单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific IntegratedCircuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是基带处理器,或通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现
请查阅图12,基站110包括第一收发器121和第一处理器122。第一处理器122可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,基带处理器,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,第一处理器122还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,第一处理器122可以用于执行,例如,第一处理单元102所执行的步骤。第一处理器122可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器中存储的指令来执行上述步骤和/或操作的处理器。
第一收发器121包括发射器和接收器,其中,发射器用于通过多根天线之中的至少一根天线发送信号。接收器用于通过多根天线之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,第一收发器121具体可以用于通过多根天线执行,例如,第一收发单元的功能。
图13是终端120的结构图。终端120包括第二处理器132和第二收发器131。第二处理器132可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,第二处理器132还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,第二处理器132可以用于执行,例如,第二处理单元所执行的步骤,功能。第二处理器132可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器中存储的指令来执行上述步骤和/或操作的处理器。
第二收发器131包括发射器和接收器,其中,发射器用于通过多根天线之中的至少一根天线发送信号。接收器用于通过多根天线之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,第二收发器131具体可以用于通过多根天线执行,例如,第二收发单元111所执行的功能,步骤。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (23)
1.一种参考信号发送方法,其特征在于:
终端接收来自基站的参考信号发送配置信息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;
终端根据上述参考信号发送配置信息,在所述一个或多个频域单元上向基站发送参考信号。
2.一种参考信号发送装置,其特征在于:包括处理单元和收发单元;
所述收发单元接收来自基站的参考信号发送配置消息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;
所述处理单元根据上述参考信号发送配置信息,指示收发单元在所述一个或多个频域单元上向基站发送参考信号。
3.一种参考信号发送配置信息发送方法,其特征在于:
基站生成参考信号发送配置信息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;
基站向终端发送该参考信号发送配置信息。
4.一种参考信号配置信息的发送装置,其特征在于:包括
处理单元,生成参考信号发送配置信息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;
所述收发单元向终端发送该参考信号发送配置信息。
5.如权利要求1或3所述的方法,或权利要求2或4所述的装置,其特征在于:所述参考信号发送配置信息包括指示用于传输所述参考信号的时频资源,所述参考信号发送配置信息包括第一参数,用于指示所述终端在多个频域单元上传输参考信号的的顺序。
6.如权利要求1所述的方法,其特征在于:终端在所述多个频域单元上发送参考信号的顺序是预先设定的。
7.如权利要求2所述的装置,其特征在于处理单元指示收发单元在所述多个频域单元上发送参考信号的顺序是预先设定的。
8.如权利要求1-7中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包括第二参数,用于指示终端发送参考信号的时间单元,和发送参考信号的频域单元的对应关系。
9.如权利要求1-8中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包含分组参数,用于指示终端对所述多个频域单元进行分组,不同组的频域单元可以同时发送参考信号。
10.如权利要求1-9中所述的方法或装置,其特征在于:所述参考信号配置信息包括以下一个或多个信息:频域单元内的参考信号传输周期,频域单元内参考信号带宽,频域单元中参考信号的最大带宽,频域单元内发送参考信号的起始子载波位置,频域单元内参考信号频域位置与时域资源对应关系。
11.如权利要求1-10中任一所述的方法或装置,其特征在于:所述参考信号配置信息包括参考信号的参考周期指示参数,终端或处理单元根据其所支持的频域单元的数量,所述频域单元的带宽或频域单元内用于参考信号传输的带宽,和每一跳的跳频带宽,确定一个频域单元的参考信号传输周期。
12.如权利要求1-11中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包括参考信号参考带宽指示,终端或处理单元根据所述参考信号的参考带宽指示,频域单元的子载波间隔,和频域单元内参考信号的频域密度,获取频域单元的参考信号带宽。
13.如权利要求1-12中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包括参考信号参考起始子载波指示,用于指示发送所述参考信号的起始子载波。
14.如权利要求1-13中任一所述的方法或装置,其特征在于:所述多个频域单元内的参考信号起始子载波标识相同。
15.如权利要求1-14中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包括参考信号频域位置与时域资源参考对应关系的指示,终端或处理单元根据参考信号频域位置与时域资源参考对应关系确定所述频域单元内的参考信号频域位置与时域资源对应关系;或终端或处理单元根据参考信号频域位置与时域资源参考对应关系和频域单元内参考信号带宽确定所述频域单元内的参考信号频域位置与时域资源对应关系。
16.如权利要求1-15中任一所述的方法或装置,其特征在于:频域单元内的参考信号的频域位置,根据终端支持的多个频域单元上发送参考信号的时间确定。
17.一种参考信号发送方法,其特征在于:
终端接收来自基站的参考信号发送配置信息,所述参考信号发送配置信息指示终端在至少一个频域单元上传输参考信号,其中,所述频域单元是基站支持的传输带宽的一部分,所述参考信号发送配置信息包括第一带宽,用于指示频域单元内用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成;
终端根据预先设定的规则或来自基站的指示信息,确定在一个参考信号周期内,选择一部分第二带宽进行参考信号发送。
18.一种参考信号发送装置,其特征在于:包括处理单元和收发单元;收发单元接收来自基站的参考信号发送配置信息,所述参考信号发送配置信息指示终端在至少一个频域单元上传输参考信号,其中,所述频域单元是基站支持的传输带宽的一部分,所述参考信号发送配置信息包括第一带宽,用于指示频域单元内用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成;处理单元根据预先设定的规则或来自基站的指示信息,确定在一个参考信号周期内,选择一部分第二带宽进行参考信号发送。
19.一种参考信号发送配置信息发送方法,其特征在于:
基站生成参考信号发送配置信息,用于指示终端在至少一个频域单元上传输参考信号,其中,所述频域单元是基站支持的传输带宽的一部分,所述参考信号发送配置信息包括第一带宽,用于指示频域单元内用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成,和指示信息,用于指示终端在部分第二带宽上传输参考信号;
基站向终端发送所述参考信号发送配置信息。
20.一种参考信号发送配置信息发送装置,其特征在于:包括处理单元和收发单元;
所述处理单元生成参考信号发送配置信息,用于指示终端在至少一个频域单元上传输参考信号,其中,所述频域单元是基站支持的传输带宽的一部分,所述参考信号发送配置信息包括第一带宽,用于指示频域单元内用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成,和指示信息,用于指示终端在部分第二带宽上传输参考信号;
所述收发单元向终端发送所述参考信号发送配置信息。
21.如权利要求17-20中任一项所述的装置或方法,其特征在于:所述用于进行参考信号发送的多个第二带宽,位于不同的符号上。
22.如权利要求17或18中任一项所述的装置或方法,其特征在于:所述预先预定的规则为:当前传输的参考信号用于波束扫描,或当前传输的参考信号的子载波间隔大于基站配置的终端在该频域单元上PUSCH传输的子载波间隔或参考子载波间隔,则终端确定在一个参考信号周期内,在所述组成所述第一带宽的多个第二带宽中的部分第二带宽上发送参考信号。
23.如权利要求17-20中任一项所述的方法或装置,其特征在于:所述指示信息为以下几种信息中的至少一种:(1)指示信息中包含部分第二带宽的标识,指示终端在所述部分第二带宽上发送参考信号;(2)指示信息中包含索引信息,用于获取部分第二带宽的标识,指示终端在所述部分第二带宽上发送参考信号;(3)指示信息中包含频域间隔,指示终端在间隔为所述频域间隔的多个第二带宽上传输参考信号,所述满足频域间隔的第二带宽中包含一个预定或基站指示的起始频域位置;(4)指示信息中包含第二带宽的次序间隔,指示终端根据次序间隔确定发送参考信号的部分第二带宽。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2018/080398 WO2018171793A1 (zh) | 2017-03-24 | 2018-03-24 | 参考信号传输技术 |
EP18771023.1A EP3565349B1 (en) | 2017-03-24 | 2018-03-24 | Reference signal transmission technology |
BR112019017970A BR112019017970A2 (pt) | 2017-03-24 | 2018-03-24 | tecnologia de transmissão de sinal de referência |
US16/576,114 US11239969B2 (en) | 2017-03-24 | 2019-09-19 | Reference signal transmission technology |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2017101849230 | 2017-03-24 | ||
CN201710184923 | 2017-03-24 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108632008A true CN108632008A (zh) | 2018-10-09 |
CN108632008B CN108632008B (zh) | 2023-06-02 |
Family
ID=63705653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710459768.9A Active CN108632008B (zh) | 2017-03-24 | 2017-06-16 | 一种参考信号发送方法及装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11239969B2 (zh) |
EP (1) | EP3565349B1 (zh) |
CN (1) | CN108632008B (zh) |
BR (1) | BR112019017970A2 (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109548132A (zh) * | 2018-12-12 | 2019-03-29 | 维沃移动通信有限公司 | 一种参考信号传输方法及设备 |
CN111865370A (zh) * | 2019-04-30 | 2020-10-30 | 华为技术有限公司 | 一种确定信号到达角的方法、装置和系统 |
WO2021008682A1 (en) * | 2019-07-15 | 2021-01-21 | Telefonaktiebolaget Lm Ericsson (Publ) | A radio network node and methods therein for transmitting a transmission configuration indication (tci) update to a wireless device |
WO2021036942A1 (zh) * | 2019-08-30 | 2021-03-04 | 华为技术有限公司 | 一种srs的传输方法及装置 |
CN113162874A (zh) * | 2020-01-22 | 2021-07-23 | 维沃移动通信有限公司 | 一种参考信号发送方法、设备及系统 |
CN113438062A (zh) * | 2018-10-22 | 2021-09-24 | 成都华为技术有限公司 | 一种确定参考信号的测量值的方法及装置 |
CN113677007A (zh) * | 2020-05-15 | 2021-11-19 | 大唐移动通信设备有限公司 | 一种上行信道状态信息的获取方法及装置 |
WO2022257032A1 (en) * | 2021-06-09 | 2022-12-15 | Huawei Technologies Co.,Ltd. | Method and apparatus for transmitting reference signal using single-carrier offset-qam |
WO2023020317A1 (zh) * | 2021-08-20 | 2023-02-23 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
WO2023070608A1 (zh) * | 2021-10-29 | 2023-05-04 | 华为技术有限公司 | 一种信号处理方法、装置及系统 |
CN116155464A (zh) * | 2022-12-02 | 2023-05-23 | 佰路威科技(上海)有限公司 | 探测参考信号发送方法及相关设备 |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108633033B (zh) * | 2017-03-24 | 2023-05-12 | 中兴通讯股份有限公司 | 一种传输资源确定方法、装置及用户设备 |
EP4184853B1 (en) | 2017-08-06 | 2024-07-10 | LG Electronics, Inc. | Method and device for receiving signal in wireless communication system |
CN108111279B (zh) * | 2017-08-21 | 2022-06-03 | 中兴通讯股份有限公司 | 参考信号传输、参数发送方法及装置、终端、基站 |
WO2019097703A1 (ja) * | 2017-11-17 | 2019-05-23 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
CN110035450B (zh) * | 2018-01-12 | 2020-06-23 | 维沃移动通信有限公司 | 测量上报的方法、终端设备和网络设备 |
US10700753B2 (en) * | 2018-02-07 | 2020-06-30 | Qualcomm Incorporated | Reporting variation of beam quality for beam management |
US10939457B2 (en) * | 2018-02-14 | 2021-03-02 | Qualcomm Incorporated | Beam determination for wireless communication |
US11026226B2 (en) * | 2018-07-06 | 2021-06-01 | Qualcomm Incorporated | Feedback design for multi-transmission reception point transmission |
CN110808820B (zh) * | 2018-07-20 | 2021-09-17 | 大唐移动通信设备有限公司 | 一种定位参考信号传输方法及装置 |
US11184077B2 (en) * | 2018-08-03 | 2021-11-23 | Qualcomm Incorporated | Facilitating uplink beam selection for a user equipment |
EP3874644B1 (en) * | 2018-11-02 | 2023-03-15 | Telefonaktiebolaget Lm Ericsson (Publ) | Feedback signaling for sidelink |
CN110535597B (zh) * | 2018-11-02 | 2022-06-24 | 中兴通讯股份有限公司 | 准共址参考信号确定方法、装置、网络设备和存储介质 |
CN111818645B (zh) * | 2019-07-24 | 2023-09-22 | 维沃移动通信有限公司 | 一种信息传输方法、网络设备及终端 |
CN112821929B (zh) * | 2019-11-18 | 2023-02-03 | 华为技术有限公司 | Csi测量方法及装置 |
US11764935B2 (en) * | 2020-02-07 | 2023-09-19 | Qualcomm Incorporated | Open loop clutter interference mitigation |
US11924134B2 (en) * | 2021-12-07 | 2024-03-05 | Qualcomm Incorporated | Positioning reference signal with sub-band-based comb offset |
CN115276937B (zh) * | 2022-07-18 | 2023-11-28 | 哲库科技(北京)有限公司 | 探测参考信号的发送方法、装置、终端及存储介质 |
CN118042595B (zh) * | 2024-04-15 | 2024-07-05 | 成都爱瑞无线科技有限公司 | 定位方法、装置及通信设备 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008094022A1 (en) * | 2007-02-02 | 2008-08-07 | Lg Electronics Inc. | Method of transmitting scheduling reference signal |
US20090245148A1 (en) * | 2008-03-28 | 2009-10-01 | Mccoy James W | Techniques for Channel Sounding in a Wireless Communication System |
US20110007778A1 (en) * | 2008-06-23 | 2011-01-13 | Ntt Docomo, Inc. | Base station, user device, and communication control method |
US20110164489A1 (en) * | 2010-01-07 | 2011-07-07 | Samsung Electronics Co., Ltd. | Apparatus and method for enhancing features of uplink reference signals |
US20130039349A1 (en) * | 2011-08-12 | 2013-02-14 | Research In Motion Limited | Methods of Channel State Information Feedback and Transmission in Coordinated Multi-Point Wireless Communications System |
WO2014131169A1 (zh) * | 2013-02-28 | 2014-09-04 | 华为技术有限公司 | 无线资源配置方法及设备 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101494002B1 (ko) | 2007-06-11 | 2015-02-16 | 삼성전자주식회사 | 이동통신 시스템에서 자원 할당 및 그에 따른 수신 장치 및방법 |
JP2011171972A (ja) | 2010-02-18 | 2011-09-01 | Sharp Corp | 移動局装置、基地局装置、無線通信システムおよび無線通信方法 |
CN101841918B (zh) | 2010-04-21 | 2012-12-12 | 华为技术有限公司 | 测量参考信号的带宽资源分配方法及装置 |
CN102281642B (zh) | 2010-06-10 | 2015-12-16 | 中兴通讯股份有限公司 | 一种lte系统中srs资源分配方法和装置 |
JP6769497B2 (ja) * | 2016-03-30 | 2020-10-14 | 日本電気株式会社 | 基地局およびueによって実行される方法 |
CN113965302A (zh) * | 2016-04-08 | 2022-01-21 | 华为技术有限公司 | 参考信号的传输方法、设备和系统 |
-
2017
- 2017-06-16 CN CN201710459768.9A patent/CN108632008B/zh active Active
-
2018
- 2018-03-24 EP EP18771023.1A patent/EP3565349B1/en active Active
- 2018-03-24 BR BR112019017970A patent/BR112019017970A2/pt not_active IP Right Cessation
-
2019
- 2019-09-19 US US16/576,114 patent/US11239969B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008094022A1 (en) * | 2007-02-02 | 2008-08-07 | Lg Electronics Inc. | Method of transmitting scheduling reference signal |
US20090245148A1 (en) * | 2008-03-28 | 2009-10-01 | Mccoy James W | Techniques for Channel Sounding in a Wireless Communication System |
US20110007778A1 (en) * | 2008-06-23 | 2011-01-13 | Ntt Docomo, Inc. | Base station, user device, and communication control method |
US20110164489A1 (en) * | 2010-01-07 | 2011-07-07 | Samsung Electronics Co., Ltd. | Apparatus and method for enhancing features of uplink reference signals |
US20130039349A1 (en) * | 2011-08-12 | 2013-02-14 | Research In Motion Limited | Methods of Channel State Information Feedback and Transmission in Coordinated Multi-Point Wireless Communications System |
WO2014131169A1 (zh) * | 2013-02-28 | 2014-09-04 | 华为技术有限公司 | 无线资源配置方法及设备 |
US20150373721A1 (en) * | 2013-02-28 | 2015-12-24 | Huawei Technologies Co., Ltd. | Radio resource configuration method and device |
Non-Patent Citations (2)
Title |
---|
LG ELECTRONICS: "R1-074191 "Frequency hopping operation for UL sounding RS"", 《3GPP TSG_RAN\WG1_RL1》 * |
QUALCOMM INC.: "R1-153880 "Beamformed CSI-RS for support of FD-MIMO"", 《3GPP TSG_RAN\WG1_RL1》 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11838783B2 (en) | 2018-10-22 | 2023-12-05 | Huawei Technologies Co., Ltd. | Method and apparatus for determining measured value of reference signal |
CN113438062B (zh) * | 2018-10-22 | 2023-06-02 | 成都华为技术有限公司 | 一种确定参考信号的测量值的方法及装置 |
CN113438062A (zh) * | 2018-10-22 | 2021-09-24 | 成都华为技术有限公司 | 一种确定参考信号的测量值的方法及装置 |
CN109548132B (zh) * | 2018-12-12 | 2021-09-17 | 维沃移动通信有限公司 | 一种参考信号传输方法及设备 |
CN109548132A (zh) * | 2018-12-12 | 2019-03-29 | 维沃移动通信有限公司 | 一种参考信号传输方法及设备 |
CN111865370A (zh) * | 2019-04-30 | 2020-10-30 | 华为技术有限公司 | 一种确定信号到达角的方法、装置和系统 |
WO2021008682A1 (en) * | 2019-07-15 | 2021-01-21 | Telefonaktiebolaget Lm Ericsson (Publ) | A radio network node and methods therein for transmitting a transmission configuration indication (tci) update to a wireless device |
EP4021114A4 (en) * | 2019-08-30 | 2022-10-26 | Huawei Technologies Co., Ltd. | SRS TRANSMISSION METHOD AND APPARATUS |
CN112448800A (zh) * | 2019-08-30 | 2021-03-05 | 华为技术有限公司 | 一种srs的传输方法及装置 |
WO2021036942A1 (zh) * | 2019-08-30 | 2021-03-04 | 华为技术有限公司 | 一种srs的传输方法及装置 |
WO2021147918A1 (zh) * | 2020-01-22 | 2021-07-29 | 维沃移动通信有限公司 | 参考信号发送方法、设备及系统 |
CN113162874A (zh) * | 2020-01-22 | 2021-07-23 | 维沃移动通信有限公司 | 一种参考信号发送方法、设备及系统 |
CN113162874B (zh) * | 2020-01-22 | 2023-06-27 | 维沃移动通信有限公司 | 一种参考信号发送方法、设备及系统 |
CN113677007A (zh) * | 2020-05-15 | 2021-11-19 | 大唐移动通信设备有限公司 | 一种上行信道状态信息的获取方法及装置 |
CN113677007B (zh) * | 2020-05-15 | 2024-04-23 | 大唐移动通信设备有限公司 | 一种上行信道状态信息的获取方法及装置 |
WO2022257032A1 (en) * | 2021-06-09 | 2022-12-15 | Huawei Technologies Co.,Ltd. | Method and apparatus for transmitting reference signal using single-carrier offset-qam |
WO2023020317A1 (zh) * | 2021-08-20 | 2023-02-23 | 上海朗帛通信技术有限公司 | 一种被用于无线通信的节点中的方法和装置 |
WO2023070608A1 (zh) * | 2021-10-29 | 2023-05-04 | 华为技术有限公司 | 一种信号处理方法、装置及系统 |
CN116155464A (zh) * | 2022-12-02 | 2023-05-23 | 佰路威科技(上海)有限公司 | 探测参考信号发送方法及相关设备 |
CN116155464B (zh) * | 2022-12-02 | 2023-11-14 | 佰路威科技(上海)有限公司 | 探测参考信号发送方法及相关设备 |
Also Published As
Publication number | Publication date |
---|---|
US20200014515A1 (en) | 2020-01-09 |
EP3565349A4 (en) | 2020-01-15 |
BR112019017970A2 (pt) | 2020-05-19 |
EP3565349A1 (en) | 2019-11-06 |
CN108632008B (zh) | 2023-06-02 |
US11239969B2 (en) | 2022-02-01 |
EP3565349B1 (en) | 2021-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108632008A (zh) | 参考信号传输技术 | |
CN108024365B (zh) | 一种信息传输方法及设备 | |
US10212646B2 (en) | Method for cell discovery | |
CN110832916B (zh) | 用于分配资源的系统和方法 | |
CN104995855B (zh) | 长期演进无线网络中的时分双工系统的信道状态信息参考信号模式 | |
US9781638B2 (en) | Method of enhanced interference measurements for channel state information (CSI) feedback | |
CN109474411B (zh) | 一种基站、用户设备及通信信号的发送、接收方法 | |
EP3566512B1 (en) | Methods and apparatuses for reference signal transmission and receiving | |
US9253791B2 (en) | Method and apparatus of reference signal dropping | |
CN108512642A (zh) | 确定参考信号序列的方法、终端设备、网络设备 | |
CN110381588B (zh) | 通信的方法和通信装置 | |
US10700844B2 (en) | Communications apparatus and uplink reference signal communication method | |
CN111431687A (zh) | 一种资源指示方法及装置 | |
CN110169172A (zh) | 发送参考信号的方法和装置及接收参考信号的方法和装置 | |
CN114175718A (zh) | 一种传输信道状态信息的方法及装置 | |
CN109391994A (zh) | 通信方法和通信设备 | |
CN115529667A (zh) | 一种波束管理的方法和装置 | |
EP3817269A1 (en) | Resource management method and device | |
CN110999448A (zh) | 用于鲁棒随机接入配置的系统和方法 | |
AU2021420388B2 (en) | Communication method and apparatus | |
CN109150770A (zh) | 一种参考信号的发送、接收方法及装置 | |
WO2023030291A1 (zh) | 用于传输参考信号的方法和装置 | |
KR20230169101A (ko) | 사운딩 레퍼런스 신호 송신을 위한 시스템 및 방법 | |
WO2018171793A1 (zh) | 参考信号传输技术 | |
CN108683486B (zh) | 一种上行参考信号的通信装置及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |