WO2018171793A1 - 参考信号传输技术 - Google Patents

参考信号传输技术 Download PDF

Info

Publication number
WO2018171793A1
WO2018171793A1 PCT/CN2018/080398 CN2018080398W WO2018171793A1 WO 2018171793 A1 WO2018171793 A1 WO 2018171793A1 CN 2018080398 W CN2018080398 W CN 2018080398W WO 2018171793 A1 WO2018171793 A1 WO 2018171793A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
frequency domain
bandwidth
configuration information
terminal
Prior art date
Application number
PCT/CN2018/080398
Other languages
English (en)
French (fr)
Inventor
秦熠
窦圣跃
栗忠峰
李华
张闽
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710459768.9A external-priority patent/CN108632008B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112019017970A priority Critical patent/BR112019017970A2/pt
Priority to EP18771023.1A priority patent/EP3565349B1/en
Publication of WO2018171793A1 publication Critical patent/WO2018171793A1/zh
Priority to US16/576,114 priority patent/US11239969B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a transmission technology of a reference signal.
  • the uplink measurement of the terminal 110 is implemented by transmitting a Sounding Reference Signal (SRS).
  • SRS Sounding Reference Signal
  • the base station 110 acquires uplink channel state information by measuring the SRS received from the terminal 120. If the terminal 120 and the base station 110 have uplink and downlink channel reciprocity, the base station 110 may further obtain downlink channel information.
  • the remote terminal 120 since the distance of the terminal 120 from the base station 110 is different, the remote terminal 120 may be limited by the power of the terminal 110. If the SRS may be insufficiently transmitted over the entire transmission bandwidth, the received signal strength may be low. Poor test accuracy.
  • the SRS transmitted by the terminal 120 may transmit the SRS only on a part of the bandwidth of the transmission bandwidth.
  • the frequency hopping in the LTE/LTE-A system is performed based on the bandwidth of the cell-level configuration, that is, the frequency hopping method of the terminal 110 is determined according to the total bandwidth of the SRS measurement uniformly configured by the cell, thereby ensuring orthogonal frequency hopping.
  • the terminal 120 is also supported to measure a portion of the total bandwidth of the base station 110, its frequency hopping method is also determined based on the total bandwidth, and the delay is also related to the delay in skipping the total bandwidth.
  • the bandwidth that the terminal 120 served by one base station 110 needs to measure may be different, so the original total bandwidth of the SRS measured according to the unified configuration of the cell is The way to perform frequency hopping may not apply.
  • NR new generation mobile communication system
  • the bandwidth that the terminal 120 served by one base station 110 needs to measure may be different, so the original total bandwidth of the SRS measured according to the unified configuration of the cell is The way to perform frequency hopping may not apply.
  • Embodiments of the present invention provide a reference signal transmission technique suitable for multiple transmission bandwidths to improve wireless transmission performance.
  • a first aspect of the embodiments of the present invention provides a reference signal sending method.
  • the terminal receives reference signal transmission configuration information from the base station, the reference signal transmission configuration information instructing the terminal to transmit the reference signal on one or more frequency domain units.
  • the one or more frequency domain units and other frequency domain units form part of a transmission bandwidth supported by the base station; the terminal sends configuration information according to the reference signal, and sends a reference signal to the base station on the one or more frequency domain units. .
  • a second aspect of the embodiments of the present invention provides a reference signal transmitting apparatus.
  • the device includes a processing unit and a transceiver unit.
  • the transceiver unit receives a reference signal transmission configuration message from the base station.
  • the reference signal transmission configuration information instructs the terminal to transmit a reference signal on one or more frequency domain units.
  • the one or more frequency domain units and other frequency domain units form part of a transmission bandwidth supported by the base station.
  • the processing unit sends the configuration information according to the reference signal, and instructs the transceiver unit to send the reference signal to the base station on the one or more frequency domain units.
  • a third aspect of the embodiments of the present invention provides a method for transmitting reference signal configuration information.
  • the base station generates a reference signal to transmit configuration information.
  • the reference signal transmission configuration information instructs the terminal to transmit a reference signal on one or more frequency domain units.
  • the one or more frequency domain units and other frequency domain units form part of a transmission bandwidth supported by the base station.
  • the base station sends the reference signal transmission configuration information to the terminal.
  • a fourth aspect of the embodiments of the present invention provides a device for transmitting reference signal configuration information.
  • the transmitting device includes a processing unit and a transceiver unit.
  • the processing unit generates reference signal transmission configuration information.
  • the reference signal transmission configuration information instructs the terminal to transmit a reference signal on one or more frequency domain units.
  • the one or more frequency domain units and other frequency domain units form part of a transmission bandwidth supported by the base station.
  • the transceiver unit sends the reference signal transmission configuration information to the terminal.
  • the reference signal sending configuration information includes indicating a time-frequency resource used for transmitting the reference signal, and the reference signal sending configuration information includes a first parameter, where the terminal is used to indicate that the terminal is in multiple The order in which the reference signals are transmitted on the frequency domain unit.
  • the order in which the terminal transmits the reference signal on the multiple frequency domain units is preset.
  • the processing unit of the second aspect instructs the transceiver unit to transmit the reference signal on the plurality of frequency domain units in an order that is preset.
  • the reference signal transmission configuration information includes a second parameter, which is used to indicate a time unit of the terminal transmitting the reference signal, and a correspondence relationship between the frequency domain units that transmit the reference signal.
  • the reference signal sending configuration information includes a grouping parameter, configured to instruct the terminal to group the multiple frequency domain units, and different groups of frequency domain units may simultaneously transmit the reference signal.
  • the grouping parameter includes a number of frequency division domain unit groups; the terminal, or the processing unit of the second aspect, according to the number of frequency domain units supported by the frequency domain unit group The number determines the frequency domain unit included in the frequency domain unit group.
  • the reference signal configuration information includes one or more of the following: a reference signal transmission period in the frequency domain unit, a reference signal bandwidth in the frequency domain unit, and a maximum bandwidth of the reference signal in the frequency domain unit,
  • the starting subcarrier position of the reference signal is transmitted in the frequency domain unit, and the frequency domain position of the reference signal in the frequency domain unit is corresponding to the time domain resource.
  • the reference signal configuration information includes a reference period indication parameter of the reference signal, the terminal or the processing unit of the second aspect, the frequency domain unit according to the number of frequency domain units supported by the terminal The bandwidth or the bandwidth used for reference signal transmission in the frequency domain unit, and the hopping bandwidth of each hop determine the reference signal transmission period of one frequency domain unit.
  • the reference signal transmission configuration information includes a reference signal reference bandwidth indication, the terminal or the processing unit of the second aspect, and the subcarrier of the frequency domain unit according to the reference bandwidth indication of the reference signal
  • the interval, and the frequency domain density of the reference signal in the frequency domain unit obtain the reference signal bandwidth of the frequency domain unit.
  • the reference signal bandwidth is not greater than a bandwidth of a frequency domain unit or a maximum bandwidth of a reference signal in a frequency domain unit.
  • the reference signal transmission configuration information includes a reference signal reference start subcarrier indication, and is used to indicate a starting subcarrier that sends the reference signal.
  • the reference signal starting subcarrier identifiers in the multiple frequency domain units are the same.
  • the reference signal transmission configuration information includes an indication of a reference signal frequency domain location and a time domain resource reference correspondence, the terminal or the processing unit of the second aspect, according to the reference signal frequency domain location and time Determining, by the domain resource reference correspondence, a correspondence between a frequency domain location and a time domain resource of the reference signal in the frequency domain unit; or a processing unit of the terminal or the second aspect, according to a reference relationship between a frequency domain location of the reference signal and a time domain resource reference And determining, by using a reference signal bandwidth in the frequency domain unit, a frequency domain location of the reference signal in the frequency domain unit and a time domain resource correspondence relationship.
  • the frequency domain location of the reference signal in the frequency domain unit is determined according to the time at which the reference signal is sent on multiple frequency domain units supported by the terminal.
  • the reference transmit signal configuration message includes: a first bandwidth, indicating a bandwidth used by the frequency domain unit for reference signal transmission, and a second bandwidth, indicating a bandwidth for transmitting the reference signal on the symbol.
  • the first bandwidth is composed of a plurality of second bandwidths.
  • the terminal determines, according to a preset rule or configuration information from the base station, that a part of the second bandwidth is selected for reference signal transmission within one reference signal period.
  • the multiple second bandwidths for performing reference signal transmission are located on different symbols.
  • the predetermined rule is: the currently transmitted reference signal is used for beam scanning, or the subcarrier spacing of the currently transmitted reference signal is greater than the PUSCH transmission of the terminal configured by the base station on the frequency domain unit.
  • the subcarrier spacing or the reference subcarrier spacing, the terminal determines to transmit the reference signal on a portion of the second bandwidth of the plurality of second bandwidths constituting the first bandwidth in one reference signal period.
  • the configuration information from the base station is at least one of the following configuration information: (1) indicating that the information includes a part of the second bandwidth identifier, and indicating that the terminal is in the second part.
  • the reference information is sent on the bandwidth; (2) the indication information includes index information, and is used to obtain the identifier of the second bandwidth, and the terminal is configured to send the reference signal on the second bandwidth of the part; (3) the indication information includes the frequency domain interval.
  • the information includes an order interval of the second bandwidth, indicating that the terminal determines a portion of the second bandwidth of the transmitted reference signal according to the order interval.
  • a fifth aspect of the embodiments of the present invention provides a communication apparatus, including a processor and a transceiver.
  • the processor performs the functions of the processing unit of the second aspect described above, and the transceiver performs the functions of the transceiver unit of the second aspect described above.
  • a sixth aspect of the embodiments of the present invention provides a communication apparatus including a processor and a transceiver.
  • the processor performs the functions of the processing unit of the fourth aspect described above, and the transceiver performs the functions of the receiving unit of the fourth aspect described above.
  • a seventh aspect of an embodiment of the present invention provides a program.
  • the method when executed by a processor, is for performing the method of any of the first aspect or the first aspect.
  • An eighth aspect of an embodiment of the present invention provides a program.
  • the method when executed by a processor, is for performing the method of any of the third aspect or the third aspect.
  • a ninth aspect of the embodiments of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the seventh aspect or the eighth aspect.
  • the terminal served by the same base station can still feed back the reference signal by means of frequency hopping in the case that the supported bandwidth is different by separately transmitting the configuration signal to the frequency domain unit.
  • a tenth aspect of the embodiments of the present invention provides a method for transmitting a reference signal.
  • the terminal receives an indication of a plurality of reference signal resources, the indication including the plurality of reference signal resource information and the plurality of reference signal resources belonging to the first packet.
  • receives the first indication information where the first indication information indicates a relationship between reference signals transmitted on the plurality of reference signal resources in the first packet.
  • the terminal transmits the reference signal according to the indication according to the first indication information and the plurality of reference signal resources.
  • An eleventh embodiment of the present invention provides a device for transmitting a reference signal.
  • the transmitting device includes a processor and a transceiver.
  • the transceiver receives an indication of a plurality of reference signal resources, the indication comprising a plurality of reference signal resource information and the plurality of reference signal resources belonging to a first packet.
  • the transceiver receives first indication information, the first indication information indicating a relationship between reference signals transmitted on a plurality of reference signal resources within the first packet.
  • the processor instructs the transceiver to transmit the reference signal according to the indication according to the first indication information and the plurality of reference signal resources.
  • a twelfth aspect of the embodiments of the present invention provides a reference signal configuration message sending method.
  • the base station generates an indication of a plurality of reference signal resources, the indication including the plurality of reference signal resource information and the plurality of reference signal resources belonging to the first packet.
  • the base station generates first indication information indicating a relationship between reference signals transmitted on the plurality of reference signal resources in the first packet.
  • the base station sends an indication of the first indication information and the plurality of reference signal resources to the terminal.
  • a thirteenth aspect of the embodiments of the present invention provides a reference signal configuration message transmitting apparatus.
  • the device includes a processor and a transceiver.
  • the processor generates an indication of the plurality of reference signal resources, the indication comprising the plurality of reference signal resource information and the plurality of reference signal resources belonging to the first packet.
  • the processor generates first indication information, the first indication information indicating a relationship between reference signals transmitted on a plurality of reference signal resources within the first packet.
  • the processor instructs the transceiver to transmit an indication of the first indication information and the plurality of reference signal resources to the terminal.
  • the relationship between reference signals transmitted on the plurality of reference signal resources includes a quasi-co-location (QCL) relationship between antenna ports between reference signals transmitted on the plurality of reference signal resources.
  • the QCL relationship refers to determining the parameters of another antenna port according to the parameters of one antenna port.
  • the QCL relationship is at least one of the following: the reference signal uses the same transmit beam, the reference signal uses different transmit beams, the reference signal uses the same receive beam, and the reference signal uses different receive beams.
  • the first indication information includes a time domain difference between time-frequency resources of the multiple reference signal resources.
  • a fourteenth aspect of the embodiments of the present invention provides a communication apparatus including a processor and a transceiver.
  • the processor performs the functions of the processing unit of the eleventh aspect described above, and the transceiver performs the functions of the transceiver unit of the eleventh aspect described above.
  • a fifteenth aspect of the embodiments of the present invention provides a communication apparatus including a processor and a transceiver.
  • the processor performs the functions of the processing unit of the thirteenth aspect described above, and the transceiver performs the functions of the receiving unit of the thirteenth aspect described above.
  • a sixteenth aspect of an embodiment of the present invention provides a program.
  • the method when executed by a processor, is for performing the method of any of the tenth or tenth aspects.
  • a seventeenth aspect of an embodiment of the present invention provides a program.
  • the method when executed by a processor, is for performing the method of any of the twelfth or twelfth aspects.
  • An eighteenth aspect of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the sixteenth aspect or the seventeenth aspect.
  • a nineteenth aspect of the present invention provides a reference signal transmitting method.
  • the terminal receives symbol configuration information for indicating the number of symbols in one slot and the symbol for transmitting the reference signal in the slot.
  • the terminal sends a reference signal according to the above symbol configuration message.
  • a twentieth aspect of the invention provides a reference signal transmitting apparatus.
  • the transmitting device includes a processor and a transceiver.
  • the transceiver receives symbol configuration information from a base station for indicating the number of symbols in a time slot and a symbol for transmitting a reference signal within the time slot.
  • the processor only transmits the reference signal by the transceiver according to the above symbol configuration message.
  • a twenty-first aspect of the present invention provides a symbol configuration message sending method.
  • the base station generates symbol configuration information for indicating the number of symbols in a slot and the symbols used to transmit the reference signal within the slot.
  • the base station sends the above symbol configuration message to the terminal.
  • a twenty-second aspect of the present invention provides a symbol configuration message transmitting apparatus.
  • the transmitting device includes a processor and a transceiver.
  • the processor generates symbol configuration information for indicating the number of symbols in a time slot and a symbol for transmitting a reference signal within the time slot.
  • the processor instructs the transceiver to send the above symbol configuration message to the terminal.
  • a twenty-third aspect of the embodiments of the present invention provides a communication apparatus, including a processor and a transceiver.
  • the processor performs the functions of the processing unit of the twentieth aspect described above, and the transceiver performs the functions of the transceiver unit of the twentieth aspect described above.
  • a twenty-fourth aspect of the embodiments of the present invention provides a communication apparatus including a processor and a transceiver.
  • the processor performs the functions of the processing unit of the twenty-second aspect described above, and the transceiver performs the functions of the receiving unit of the twenty-second aspect described above.
  • a twenty-fifth aspect of an embodiment of the present invention provides a program.
  • the method when executed by a processor, is for performing the method of any of the nineteenth aspect or the first nine aspect.
  • a twenty-sixth aspect of the embodiments of the present invention provides a program.
  • the method when executed by the processor, is for performing the method of any one of the twenty-first aspect or the twenty-first aspect.
  • a twenty-seventh aspect of the embodiments of the present invention provides a program product, such as a computer readable storage medium, comprising the program of the twenty-fifth aspect or the twenty-sixth aspect.
  • FIG. 1 is a schematic diagram of a communication scenario according to an embodiment of the present application.
  • 3 is a schematic flow chart of reference signal transmission
  • FIG. 4 is a schematic view of the RPF
  • Figure 5 is a schematic diagram of frequency hopping bandwidth calculation
  • FIG. 7 is a schematic diagram of a frequency hopping sequence between different frequency domain units
  • FIG. 9 is a schematic diagram of a reference signal resource group of an embodiment.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • Figure 14 is a schematic illustration of a portion of a second bandwidth within a frequency domain unit.
  • the terminal 120 also known as a User Equipment (UE) or a mobile equipment (ME), is a device that provides voice and/or data connectivity to a user.
  • UE User Equipment
  • ME mobile equipment
  • the common terminal 120 includes, for example, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device such as a smart watch, a smart bracelet, a pedometer, and the like.
  • a mobile phone a tablet computer, a notebook computer, a palmtop computer, a mobile internet device (MID), a wearable device such as a smart watch, a smart bracelet, a pedometer, and the like.
  • MID mobile internet device
  • the base station 110 is a device in the network that connects the terminal 120 to the wireless network.
  • the base station 110 includes, but is not limited to, a Transmission Reception Point (TRP), an evolved Node B (eNB), a radio network controller (RNC), and a Node B (Node B, NB).
  • TRP Transmission Reception Point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • home base station for example, Home evolved NodeB, or Home Node B, HNB
  • BBU Baseband Unit
  • AP Wifi access point
  • the slots involved in the embodiments of the present invention may be TTIs and/or time units and/or subframes and/or mini-slots.
  • a major feature of high-frequency communication is that the transmission bandwidth is large, so there may be a transmission bandwidth much larger than the transmission bandwidth of the sub-6G.
  • the maximum transmission bandwidth supported by sub-6G is 20MHz, and the transmission bandwidth of NR may be 100MHz or even 400MHz. Therefore, the transmission bandwidth of the cell is likely to be greater than the maximum bandwidth capability of the terminal 120.
  • the terminal 110 can only use part of the bandwidth, that is, the measurement and transmission of the terminal 110 need to be performed on the part of the bandwidth.
  • the wireless communication system needs to support the SRS to be transmitted by frequency-hopping on a partial band.
  • the partial bandwidth may also be referred to as a frequency domain unit, and the plurality of frequency domain units constitute a transmission bandwidth of the base station 110, or form part of the transmission bandwidth, and may also be a bandwidth part.
  • the bandwidth portion is a contiguous frequency domain resource configured by the base station to the terminal, having a unique subcarrier spacing and a cyclic prefix, and the bandwidth portion may also be a user-specific signaling configuration, such as user-specific RRC signaling and/or Or MAC CE signaling and/or DCI.
  • Different terminals 110 may support different transmission bandwidths, so terminals 120 in the same base station cell support different bandwidths, and the bandwidths required for measurement are different.
  • the terminal 120 obtains a channel with better signal to interference and noise ratio (SINR) or channel quality indicator (CQI) based on downlink measurement.
  • SINR signal to interference and noise ratio
  • CQI channel quality indicator
  • the terminal 120 can obtain the uplink CSI by measuring the SRS by transmitting the SRS, and determine the CSI of the downlink channel according to the channel reciprocity. Since the terminal 120 already knows that the channel quality of that band is good, it is not necessary to transmit the SRS of the entire bandwidth, and only the SRS of the specific frequency band can be transmitted to reduce the overhead and delay.
  • the SRS measurement bandwidth acquired by the terminal 120 may be determined according to its own downlink channel measurement (for example, using a channel state information-reference signal (CSI-RS)), or may be determined according to the SRS measurement bandwidth indication of the base station 110. (The SRS measurement bandwidth may be determined by the base station 110 based on the CQI reported by the terminal 110).
  • CSI-RS channel state information-reference signal
  • the existing SRS of LTE/LTE-A supports frequency hopping.
  • the SRS hopping determines the total bandwidth according to the bandwidth configured by the cell level, and then configures the measurement bandwidth of each hop through user-level signaling.
  • the specifics are shown in Table 1-4 below.
  • Table 1-4 For the number of RBs of the uplink transmission bandwidth, the following four tables are respectively given according to the difference of the uplink transmission bandwidth. This part can also be found in the 3GPP standard TS36.211.
  • the C SRS is the SRS bandwidth configured at the cell level
  • the B SRS is the SRS bandwidth configured by the user level (all of which are high layer signaling configurations).
  • the terminal 110 can determine the total bandwidth of the SRS frequency hopping m SRS, 0 and the bandwidth of each hop according to the received C SRS and B SRS .
  • N b is the slice granularity of the hopping bandwidth of the first stage relative to the hopping bandwidth of the upper level.
  • the first level splits the 96 RBs into two, each with a bandwidth of 48 RBs.
  • the specific frequency hopping method is that the base station 110 configures an initial position of frequency hopping, for example, a position with n frequency hopping, and the initial position is one of the n.
  • the base station 110 configures one of the 24 4 RBs as the initial position of the frequency hopping, and the configuration is a high layer signaling configuration.
  • the terminal 110 calculates the frequency domain position of the current one-hop SRS according to the frequency hopping rule specified by the protocol, and the frequency domain position is one of the n frequency hopping positions.
  • Whether the SRS is frequency hopped is configured by the parameter b hop ⁇ ⁇ 0, 1, 2, 3 ⁇ , and the value is configured by the RRC parameter srs-HoppingBandwidth of the UE level.
  • the specific frequency hopping method is as follows:
  • n b is fixed to (unless RRC connection reconfiguration is performed), where n RRC is configured by freqDomainPosition (periodic SRS) and freqDomainPosition-ap (aperiodic SRS).
  • n RRC signaling the base station 110 is configured to configure the initial position-hopping, the different values of nRRC first hop will lead to different frequency domain locations.
  • F b (n SRS ) is defined by the following formula:
  • T SRS and T offset are the periods of the cell-level SRS symbols configured by the base station 110 and the SRS subframe offset.
  • T offset_max is the maximum T offset value in a specific SRS subframe offset configuration. It should be noted that narrowband SRS does not mean that frequency hopping will occur. If the narrowband SRS does not hop, the UE will only report the SRS information of a certain RB.
  • the frequency domain start position of the channel of each hop of the SRS can be calculated by using the obtained n b .
  • SRS transmission at the beginning of the frequency domain Indicates the offset available for SRS transmission from the low frequency of the uplink transmission bandwidth, that is, the location of the first subcarrier available for SRS transmission in the frequency band, or the location of the starting subcarrier of the wideband SRS
  • n hf a system frame consists of 2 fields. If the UpPTS is on the 1st field, n hf is equal to 0; if the UpPTS is on the 2nd field, n hf is equal to 1.
  • N SP The number of DL to UL switch points in a system frame. For the 5 ms "Downlink-to-Uplink switch-point periodicity", the value is 2; for the 10 ms "Downlink-to-Uplink switch-point periodicity", the value is 1 (see Table 36.211) 4.2-2).
  • N ap The number of antenna ports used for SRS transmission. Antenna port index, see Table 5.2.1-1 of 36.211
  • n b is the frequency domain location index, and its value remains unchanged unless RRC connection reconfiguration; n RRC is configured by freqDomainPosition (for periodic SRS) and freqDomainPosition-ap (for aperiodic SRS) , determines the value of n b , see Figure 7-10. More specifically, n RRC determines the starting position of the SRS transmission in the frequency domain.
  • the base station 110 divides the transmission bandwidth it supports into multiple frequency domain units, and allocates the frequency domain unit to the terminal 120 it serves.
  • the transmission bandwidth of the base station 110 is divided into three frequency domain units 201, 202, 203.
  • the terminal UE1 supports the frequency domain units 201 and 202.
  • the terminal UE2 supports the frequency domain units 202 and 203.
  • the terminal UE3 supports the frequency domain unit 203.
  • the frequency domain unit may be configured by the base station 110 by cell level signaling, such as a broadcast message, a system message. It can also be configured through user-level signaling, such as RRC signaling or MAC CE signaling. Different terminals may support the same frequency domain unit. There are no overlapping frequency domains between different frequency domain units.
  • the base station 110 divides its transmission bandwidth into a plurality of frequency domain units, and allocates them to the terminal 120 served thereby in units of frequency domain units.
  • Different terminals 120 may support the same frequency domain unit.
  • the reference signal is transmitted using the frequency hopping method described above.
  • the bandwidth supported by different terminals 120 is different, that is, the supported frequency domain units are different, for example, UE2 supports frequency domain units 202 and 203, and UE3 only supports frequency domain 203.
  • the bandwidth of the frequency domain unit is used instead of the cell level configuration. The bandwidth is such that during the frequency hopping process, the terminals 110 at different starting positions do not jump to the same position at the same time.
  • the reference signal SRS described in the embodiment of the present invention may also be a De Modulation Reference Signal (DMRS) or a channel state information reference signal CSI-RS.
  • DMRS De Modulation Reference Signal
  • CSI-RS channel state information reference signal
  • the base station 110 can configure the bandwidth of the frequency domain unit, it is not necessary to configure the cell-level reference signal hopping bandwidth in each frequency domain unit.
  • the reference frequency hopping bandwidth of the cell level refers to the total bandwidth of the frequency hopping of the reference signal transmission by the terminal 120 for one cycle.
  • the bandwidth of the frequency domain unit may be used as the frequency hopping bandwidth of the cell level reference signal, and the frequency hopping is performed and the reference signal is sent.
  • a plurality of reference signal hopping bandwidths may also be configured in each frequency domain unit, and the reference signals are transmitted in each hopping bandwidth by frequency hopping.
  • the embodiment of the present invention provides an example in which a reference signal hopping bandwidth of a cell level is not required to be configured in each frequency domain unit, and a case where multiple reference signal hopping bandwidths are configured in one frequency domain unit
  • the reference signal can be transmitted in a manner described in the embodiment of the present invention by using each configured reference signal hopping bandwidth as a frequency domain unit.
  • the base station 110 sends a reference signal transmission configuration information to the terminal 120.
  • the reference signal transmission configuration information instructs the terminal 120 to transmit a reference signal on one or more frequency domain units, wherein the one or more frequency domain units and other frequency domain units form part of a transmission bandwidth supported by the base station 110.
  • the terminal 120 transmits configuration information according to the reference signal, and sends a reference signal to the base station 110 on the one or more frequency domain units.
  • the reference signal transmission configuration information includes a time-frequency resource indicating transmission of the reference signal.
  • the reference signal transmission configuration information may further include a first parameter indicating a sequence in which the terminal 120 transmits the reference signals on the plurality of frequency domain units.
  • the base station 110 instructs the terminal UE3 to transmit the reference signal in the frequency domain unit 202, and then transmits the reference signal in the frequency domain unit 203.
  • the order in which the terminal 120 transmits the reference signals on the multiple frequency domain units may also adopt a preset certain rule, such as determining the transmission reference signals of different frequency domain units according to the order of increasing or decreasing the frequency. order of.
  • the reference signal transmission configuration information includes a second parameter, which is used to indicate a correspondence between a time unit in which the terminal 120 transmits the reference signal and a frequency domain unit that transmits the reference signal. This correspondence determines the frequency domain unit that initially transmits the reference signal during a reference signal transmission period. Then, according to the order indicated by the first parameter, and the corresponding relationship between the time unit and the frequency domain unit in the second parameter, the reference signal is transmitted by frequency hopping between the frequency domain units in sequence.
  • the base station 110 may further instruct the terminal 120 to transmit a frequency domain unit of the reference signal by frequency hopping.
  • the terminal 120 may not transmit the reference signal by means of frequency hopping in all frequency domain units, but only transmit the reference signal on part of the frequency domain unit.
  • the base station 110 can group the frequency domain units, and each of the packets can transmit the reference signals in the manner disclosed in the above embodiments.
  • the manner of grouping can be directly configured, or the number of groups to be configured, the frequency domain unit supported by the terminal 120 according to factors such as the bandwidth to be measured, the number of frequency domain units supported by the terminal 120, and/or the total number of frequency hopping segments of the transmission reference signal. Group by.
  • the same group of frequency domain units may be continuous or discontinuous in the frequency domain.
  • the base station 110 may send the grouping parameters to the terminal 120.
  • the grouping parameter includes a number of frequency division domain unit groups, and the terminal 120 determines frequency domain units included in the frequency domain unit group according to the number of frequency domain units supported by the terminal and the number of frequency domain unit groups.
  • the base station 110 may also configure a blank frequency domain unit between different frequency domain units.
  • the blank frequency domain unit refers to the transmission of the reference signal when hopping to the frequency domain unit.
  • the reference signal configuration information includes one or more of the following: a reference signal transmission period, a reference signal bandwidth, a maximum bandwidth of a reference signal in a frequency domain unit, a starting subcarrier position of a reference signal transmitted in a frequency domain unit, and a reference signal frequency.
  • the reference signal transmission period refers to the time at which the terminal 120 completes the reference signal transmission on all frequency domain units that need to be measured.
  • the frequency domain unit that needs to be measured may be part of all frequency domain units supported by the terminal 120.
  • the terminal 120 can determine the frequency in a certain frequency domain according to the reference signal transmission period, the number of frequency domain units, and the bandwidth of the frequency domain unit or the bandwidth used for reference signal transmission in the frequency domain unit, and the frequency hopping bandwidth of each hop.
  • the time at which the reference signal is transmitted on the unit Specifically, if there are two frequency domain units to be measured, the first frequency domain unit has a bandwidth of 96 RBs, and the hopping bandwidth of each hop is 4 RBs, 24 frequency hopping is required.
  • the bandwidth of the second frequency domain unit is 128 RBs, and the hopping bandwidth of each hop is 16 RBs, and 8 frequency hopping is required.
  • the time required by the first frequency domain unit is twice that of the second frequency domain unit.
  • the time for transmitting the reference signal on the first frequency domain unit is 2/3 T
  • the time for transmitting the reference signal on the second frequency domain unit is 1/3T.
  • the terminal 120 determines the symbol occupied by the reference signal in the frequency domain unit according to the transmission time of the frequency domain unit and the symbol used to transmit the reference signal. Between different frequency domain units, the absolute interval of the time interval for transmitting the reference signal is the same, or has a multiple relationship.
  • a frequency hopping time interval may also be set between the frequency domain units. That is, after the frequency hopping of one frequency domain unit is completed, the frequency hopping of the next frequency domain unit is performed after a period of time.
  • the frequency hopping time interval can be configured according to the information reported by the terminal 120.
  • the frequency hopping interval can be configured according to the RF retuning time.
  • the base station may configure one or more of the frequency domain units for one terminal and configure reference signal configuration information for one or more of the frequency domain units.
  • the reference signal configuration information includes one or more of the following: a transmission period of the reference signal, a bandwidth for reference signal transmission in the frequency domain unit, a bandwidth of the reference signal on the symbol for transmitting the reference signal, and a frequency domain position of the reference signal Correspondence with time domain resources.
  • the bandwidth for the reference signal transmission in the frequency domain unit is the bandwidth that needs to be measured by the reference signal in the frequency domain unit, and is recorded as the first bandwidth.
  • the bandwidth used for reference signal transmission is different from the total bandwidth of the actually transmitted reference signal, which is a continuous bandwidth containing the total bandwidth actually transmitted by the reference signal.
  • the bandwidth of the reference signal on the symbol for transmitting the reference signal is the bandwidth per hop of the reference signal, and is recorded as the second bandwidth.
  • the first bandwidth is comprised of one or more second bandwidths.
  • the terminal 120 determines, according to a predefined rule or a frequency hopping rule indication information sent by the base station, a part of the one or more second bandwidths that constitute the first bandwidth in a reference signal period.
  • the reference signal is transmitted on the second bandwidth.
  • the frequency hopping rule indication information which may also be referred to as indication information, is used to indicate that the terminal transmits the reference signal on a part of the second bandwidth.
  • the indication information may be transmitted together with other information in the reference signal configuration information, such as a transmission period of the reference signal, a bandwidth for reference signal transmission in the frequency domain unit, a bandwidth of the reference signal on the symbol on which the reference signal is transmitted, or
  • the reference signal frequency domain location is transmitted along with the time domain resource correspondence; alternatively, it can also be transmitted as a separate information.
  • the reference signal is located at a different symbol on each of the second bandwidths.
  • a part of the second bandwidth of the first bandwidth of the terminal 120 transmits a reference signal in a frequency hopping manner to complete measurement of a portion of the first bandwidth. Referring to Figure 14, the box shows the eight hopping positions of the reference signal 1, 2, 3, 4, 5, 6, 7, 8.
  • the reference signal is transmitted at the frequency hopping positions 2, 4, 6, and 8, and the reference signal is not transmitted at the frequency hopping positions 1, 3, 5, and 7.
  • the scheme can reduce the number of reference signal transmissions in one reference signal period, reduce the overhead of reference signal resources, and reduce the period of the reference signal.
  • the measurement results of this embodiment are transmitted with reference to all of the second bandwidths that make up the first bandwidth. The measurement results of the signal are similar and the performance loss is acceptable.
  • the terminal 120 determines, according to a predefined rule or a frequency hopping rule indication signal sent by the base station, a part of the one or more second bandwidths that constitute the first bandwidth in a reference signal period.
  • the reference signal is transmitted on the second bandwidth.
  • the predefined information is that the currently transmitted reference signal is used for beam scanning, or the subcarrier spacing of the currently transmitted reference signal is greater than the subcarrier spacing or reference subcarrier spacing of the PUSCH transmission of the terminal configured by the base station on the frequency domain unit. Determining, by the terminal 120, transmitting the reference signal on a portion of the second bandwidth of the one or more second bandwidths constituting the first bandwidth within a reference signal period, for example, only at equal intervals The reference signal is transmitted on the second bandwidth.
  • the first bandwidth is 32 RBs and each second bandwidth is 4 RBs
  • the first bandwidth is composed of 8 second bandwidths (see the frequency hopping positions 1, 2, 3, 4, 5, 6, 7 in FIG. 14). ,8).
  • the terminal 120 determines that the reference signal is used for beam scanning, selecting the ⁇ 1, 3, 5, 7 ⁇ second bandwidth to transmit the reference signal, or selecting the ⁇ 2, 4, 6, 8 ⁇ second bandwidth Send a reference signal on.
  • the base station can configure the initial second bandwidth.
  • the terminal 120 determines, according to a predefined rule or a frequency hopping rule indication information sent by the base station, in the one or more second bandwidths that constitute the first bandwidth in a reference signal period.
  • the reference signal is transmitted on a portion of the second bandwidth.
  • the frequency hopping rule indication information sent by the base station is used to indicate at least one of the following: an identifier of a part of the second bandwidth in the second bandwidth that constitutes the first bandwidth; index information, used to obtain the identifier of the part of the second bandwidth; And an interval, configured to indicate that the reference signal is transmitted on a part of the second bandwidth that satisfies the frequency domain interval; and the order interval of the second bandwidth that constitutes the first bandwidth.
  • the terminal When the hopping rule indication signal sent by the base station is used to indicate the identifier of a part of the second bandwidth in the second bandwidth that constitutes the first bandwidth, the terminal transmits the reference on the second bandwidth corresponding to the identifier of the part of the second bandwidth. signal. Specifically, if the first bandwidth is 32 RBs and each second bandwidth is 4 RBs, the first bandwidth is composed of 8 second bandwidths (see the frequency hopping positions 1, 2, 3, 4, 5, 6, 7 in FIG. 14). 8), when the hopping rule indication information sent by the base station is used to indicate the identifier ⁇ 1, 4, 8 ⁇ of a part of the second bandwidth in the second bandwidth constituting the first bandwidth, the terminal is at the ⁇ 1, 4, 8 The reference signal is transmitted on the second bandwidth.
  • the terminal acquires the identifier of the corresponding partial second bandwidth according to the index information, and sends the reference signal on the second bandwidth of the part.
  • the first bandwidth is 32 RBs and each second bandwidth is 4 RBs
  • the first bandwidth is composed of 8 second bandwidths (see the frequency hopping positions 1, 2, 3, 4 in FIG. 14). 5, 6, 7, 8), part of the second bandwidth in the second bandwidth constituting the first bandwidth may be divided into a first configuration ⁇ 1, 3, 5, 7 ⁇ and a second configuration ⁇ 2, 4, 6, 8 ⁇ , this configuration can be configured by higher layer signaling.
  • the terminal When the index of the frequency hopping rule indication signal sent by the base station indicates the first configuration, the terminal sends the reference signal on the ⁇ 1, 3, 5, 7 ⁇ second bandwidths. Similarly, if the index information indicates the second configuration, the terminal transmits the reference signal on the ⁇ 2, 4, 6, 8 ⁇ second bandwidths.
  • the hopping rule indication signal sent by the base station is used to indicate the identifier of the second bandwidth of the initial transmission in the second bandwidth constituting the first bandwidth, and/or the second band in the second bandwidth constituting the first bandwidth And determining, by the terminal, the part of the second bandwidth that constitutes the first bandwidth of the equal frequency domain interval according to the second bandwidth indicated by the identifier and the second bandwidth frequency domain interval of the second bandwidth that constitutes the first bandwidth.
  • One of the second bandwidth frequency domain intervals may be predefined.
  • the first bandwidth is 32 RBs and each second bandwidth is 4 RBs
  • the first bandwidth is composed of 8 second bandwidths (see the frequency hopping positions 1, 2, 3, 4, 5, 6, 7 in FIG. 14).
  • the hopping rule indication signal sent by the base station is used to indicate that the identifier of the second bandwidth of the initial transmission in the second bandwidth constituting the first bandwidth is 1, and the second of the second bandwidth constituting the first bandwidth
  • the bandwidth frequency interval is 2
  • the terminal transmits the reference signal on the ⁇ 1, 3, 5, 7 ⁇ second bandwidth.
  • the hopping rule indication signal sent by the base station is used to indicate that the identifier of the second bandwidth of the initial transmission in the second bandwidth constituting the first bandwidth is 2, and the second bandwidth of the second bandwidth constituting the first bandwidth is used.
  • the terminal transmits the reference signal on the ⁇ 2, 4, 6, 8 ⁇ second bandwidth.
  • the location identifier of the second bandwidth where n is an identifier determined by the time domain location of the reference signal, such as a time domain order, K is the total number of second bandwidths constituting the first bandwidth, and t1 is the second bandwidth constituting the first bandwidth.
  • the reference signal is sent over the bandwidth.
  • the terminal when the frequency hopping rule indication signal sent by the base station is used to indicate an order interval of the second bandwidth that constitutes the first bandwidth, the terminal according to the time domain interval and the reference signal frequency domain location and time domain resources
  • the correspondence determines the frequency domain location of the second bandwidth.
  • n is an identifier determined by the time domain location of the reference signal, such as a time domain order
  • K is the total number of second bandwidths constituting the first bandwidth
  • t2 is an order interval of the second bandwidth constituting the first bandwidth.
  • the base station 110 can also configure the number of cycles in which the terminal 120 transmits the reference signal on one frequency domain unit.
  • the number of cycles represents the number of times the terminal 120 has transmitted a reference signal over the entire frequency domain unit on a frequency domain unit. If the terminal 120 supports two frequency domain units, the number of cycles of one frequency domain unit configuration may be three, and the number of other frequency domain unit periods is one. Thus, the terminal 120 repeats the transmission of the reference signal on the frequency domain unit 3 times on one frequency domain unit, and performs only one reference signal transmission on the other frequency domain unit.
  • the maximum bandwidth of the reference signal in the frequency domain unit that is, the maximum bandwidth that needs to be measured by transmitting the reference signal in the frequency domain unit.
  • the bandwidth of the frequency domain unit 202 in FIG. 2 is 100 RB
  • the maximum bandwidth that needs to be measured by the reference signal is 96 RB
  • the subcarrier position of the reference signal is transmitted in the frequency domain unit.
  • Different terminals 120 may transmit reference signals on the same subframe, the same set of RBs.
  • Different terminals 120 may use different subcarriers in the RB.
  • the subcarrier density that reflects the transmission of the reference signal in the frequency domain may be a time-domain RePetition Factor (RPF), and the value of the RPF is a natural number. If the value of the RPF is 4, it means that one subcarrier per four subcarriers is used to transmit the reference signal. That is to say, at the same time, there may be 4 different terminals 120 occupying one of the four subcarriers respectively to transmit the reference signal.
  • the reference signal subcarrier position in this embodiment indicates the subcarrier on which the terminal 120 can perform reference signal transmission.
  • 401 is a frequency domain bandwidth
  • the frequency domain bandwidth RPF is 2, that is, one out of every two subcarriers is used to transmit a reference signal to one terminal 120.
  • the blank cell portion indicates that the subcarrier of the reference signal can be transmitted to the other terminal 120.
  • the bandwidth indicated by 402 in the figure has an RPF value of 4, that is, one out of every four subcarriers is used for one terminal 120 to transmit a reference signal.
  • the subcarrier position of the base station 110 transmitting the reference signal to the terminal 120 indicates that one subcarrier position in the frequency band, so that the terminal 120 can perform reference signal transmission at the subcarrier position.
  • the base station 110 may configure a frequency hopping bandwidth (bandwidth per hop) of the reference signal, a starting position of the frequency hopping, a frequency hopping period, and a cell level symbol position for each frequency domain unit or part of the frequency domain unit of the terminal 120, respectively. , and RPF.
  • the reference signal configuration information may also be used to configure reference signal transmission of a frequency domain unit, and serve as a reference for obtaining reference signal configuration information by other frequency domain units, that is, obtaining reference signal configuration of other frequency domain units by using the reference signal configuration information. information.
  • the frequency domain unit here can be used as a reference frequency domain unit.
  • the reference frequency domain unit may be a real frequency domain unit, or may be a virtual frequency domain unit, and the frequency domain unit used for supporting by other terminals 120 is used to obtain reference signal transmission configuration information.
  • the reference signal transmission configuration information includes a reference signal reference bandwidth, that is, a bandwidth of each frequency hopping of the reference signal.
  • the terminal 120 acquires a reference signal bandwidth of the frequency domain unit according to the reference signal reference bandwidth, the SCS of the frequency domain unit, and the RPF value in the frequency domain unit.
  • RPF is inversely proportional to the subcarrier spacing.
  • r_RPF is the RPF value of the reference frequency domain unit
  • r_SCS is the subcarrier spacing of the reference frequency domain unit.
  • the reference signal bandwidth of the frequency domain unit may be obtained according to r_RB/r_RPF*RPF.
  • the r_RB in the formula is the reference signal signal reference bandwidth of the reference frequency domain unit
  • the r_RPF is the RPF value of the reference frequency domain unit
  • the RPF is the RPF value of the frequency domain unit.
  • the bandwidth of the reference signal of the frequency domain unit should not be greater than the bandwidth of the frequency domain unit or the maximum bandwidth of the reference signal in the frequency domain unit.
  • the reference frequency domain unit 501 is used as the reference frequency domain unit
  • the reference RPF is 2
  • the reference SCS SubCarrier Spacing, SCS
  • the reference hopping bandwidth is 8 RB.
  • the reference signal transmission configuration information of the frequency domain unit 502 is calculated in accordance with the above formula.
  • the SCS of the frequency domain unit 502 is 60 kHz, and it can be concluded that the RPF of the frequency domain unit 502 is 4.
  • r_RB/r_RPF*RPF it can be concluded that the frequency hopping bandwidth of the frequency domain unit 502 is 16 RB.
  • the same principle can be used to calculate the reference signal transmission configuration information of the frequency domain unit 503.
  • the reference signal transmission configuration information includes an indication of a reference signal frequency domain location and a time domain resource reference correspondence relationship.
  • the terminal 120 determines, according to the reference relationship between the frequency domain location of the reference signal and the time domain resource reference, the correspondence between the frequency domain location and the time domain resource of the reference signal in the frequency domain unit; or the terminal 120 corresponds to the frequency domain location and the time domain resource reference according to the reference signal.
  • the reference signal bandwidth in the relationship and the frequency domain unit determines a frequency domain location of the reference signal in the frequency domain unit and a time domain resource correspondence relationship.
  • the frequency hopping start position is a frequency domain position at which a frequency domain unit starts frequency hopping.
  • the frequency hopping start position may be calculated according to a reference initial value of the reference frequency domain unit, and a ratio of a frequency hopping bandwidth of the frequency domain unit to a reference frequency hopping bandwidth of the reference frequency domain unit, to calculate a frequency hopping start position of the frequency domain unit. .
  • the frequency hopping bandwidth of the frequency domain unit 601 is 16 RB and the frequency hopping bandwidth of the reference frequency domain unit 603 is 4 RB
  • the ratio of the frequency hopping bandwidth of the frequency domain unit 601 to the frequency hopping bandwidth of the reference frequency domain unit 603 is 4. If the initial value is 5, then 5/4 and rounded down to get the starting position of the frequency domain unit, that is, the frequency domain position with the frequency domain number 1 in the figure. In the same manner, the frequency hopping start position of the frequency domain unit 602 can be calculated.
  • the transmission of the reference signal is transmitted on different frequency domain units by means of frequency hopping.
  • the reference signal transmits the reference signal only on the current frequency domain unit where the frequency hopping is located.
  • the frequency domain position of the reference signal of the current frequency domain unit should be determined according to the time at which the reference signal is sent on multiple frequency domain units supported by the terminal 120. Rather than just considering the reference signal transmission time on this frequency domain unit.
  • the terminal 120 has four frequency hopping positions a, b, c, d on the frequency domain unit 702. There are 2 frequency hopping positions (unnumbered) on the frequency domain unit 701.
  • the order of the frequency hopping positions is a, b, c, d.
  • frequency hopping to the frequency domain unit 701 and then hopping to the frequency domain unit 702 for reference signal transmission for the second period.
  • the frequency hopping of the second period considers that the frequency domain unit 701 has two frequency hopping, so the frequency hopping order of the second period is c, d, a, b.
  • the base station 110 may not configure frequency hopping between frequency domain units, that is, each frequency domain unit independently hops, and the base station 110 configures a total frequency hopping period and configures different time domain offset values. Orthogonality between each frequency domain unit. This embodiment requires different frequency domain units to have the same period. For each frequency domain unit, the number of hops required is different, which may result in waste of resources.
  • the terminal 120 may also transmit the reference signals in a multi-shot manner.
  • This way of transmitting the reference signal is more flexible than the periodic method (because the trigger transmission is dynamic signaling, such as downlink control information (DCI) or media access control control unit (MAC CE. media access control control element). ).
  • the total number of transmissions is less (since the end is also a dynamic signaling or pre-configured length), with more transmissions than a non-period that is sent only once. Therefore, the multi-transmission reference signal can be used for frequency-hopping measurement of a certain bandwidth to obtain a measurement result of a certain bandwidth.
  • the multi-transmission reference signal can also be transmitted at the same bandwidth but with different transmit beams or with different receive beams, so that the base station 110 can measure the channel quality corresponding to different transmit beams or receive beams.
  • the base station 110 sends an indication of a plurality of reference signal resources to the terminal 120, and first indication information.
  • the indication of the plurality of reference signal resources includes information of a plurality of reference signal resources and grouping information of the plurality of reference signal resources. And indicating that the plurality of reference signal resources belong to the first group.
  • the first indication information indicates a Quasi Co-located (QCL) relationship between antenna ports of the reference signals transmitted on the plurality of reference signal resources in the first group.
  • QCL relationship refers to a parameter that can define another antenna port according to parameters of one antenna port.
  • step 802 the terminal 120 transmits a reference signal according to the first indication information and an indication of a plurality of reference signal resources.
  • a reference signal resource is a part of resources within a time slot.
  • the information of the reference signal resource includes one or more of the following: a time-frequency resource indication of the reference signal map, a period of the reference signal, a port of the reference signal, and a sequence indication of the reference signal.
  • the time-frequency resource indication of the reference signal mapping includes at least one of: a bandwidth of the reference signal, a frequency domain density RPF of the reference signal, and a frequency domain start position of the reference signal.
  • the sequence of reference signals indicates the root of the sequence including the reference signal.
  • the plurality of reference signal resource information further includes a time offset between time-frequency resources of the reference signal map.
  • the time offset is a time domain difference between time domain resources of a plurality of reference signals.
  • the QCL relationship may refer to the same parameter in the reference signal corresponding to the antenna port.
  • the QCL relationship may also mean that the terminal 120 may determine a parameter of an antenna port having a QCL relationship with the antenna port according to parameters of one antenna port.
  • the QCL relationship may also mean that the two antenna ports have the same parameters, or the QCL relationship refers to the difference between the parameters of the two antenna ports being less than a certain threshold.
  • the parameter may be delay spread, Doppler spread, Doppler shift, average delay, average gain, angle of arrival (AOA), average AOA, AOA extension, and exit angle (Angle of Departure) , AOD), at least one of an average departure angle AOD, an AOD extension, a receive antenna spatial correlation parameter, a transmit beam, a receive beam, and a resource identifier.
  • the beam includes at least one of the following, a precoding, a weight sequence number, and a beam sequence number.
  • the angle may be a decomposition value of a different dimension, or a combination of different dimensional decomposition values.
  • the antenna ports are antenna ports having different antenna port numbers, and/or antenna ports having the same antenna port number for transmitting or receiving information within different time and/or frequency and/or code domain resources, and/or having Antenna ports for transmitting or receiving information at different time and/or frequency and/or code domain resources for different antenna port numbers.
  • the resource identifier includes a Channel State Information Reference Signal (CSI-RS) resource identifier, or a reference signal resource identifier, used to indicate a beam on the resource.
  • CSI-RS Channel State Information Reference Signal
  • the QCL relationship is at least one of the following: the reference signal uses the same transmit beam, the reference signal uses different transmit beams, the reference signal uses the same receive beam, and the reference signal uses different receive beams.
  • the transmit beam corresponds to the AOD/AOD spread/average AOD/transmitter correlation in the QCL parameters.
  • the receive beam corresponds to the AOA/AOA extension/average AOA/receiver correlation in the QCL parameters.
  • the base station 110 transmits configuration information to the terminal 120 for indicating the number of symbles in one slot and the symbols for transmitting reference signals in the slot.
  • the message can be carried in RRC signaling or MAC CE signaling.
  • the number of symbols k ranges from ⁇ 1, 2, 3, 4, n ⁇ .
  • the optional k is not equal to n, and can be expressed as an integer power of 2.
  • k ranges from ⁇ 1, 2, 4, n ⁇ or ⁇ 1, 2, 4, 8, n ⁇ .
  • the number of slot symbols indicated in the configuration information may be one or more, indicating different number of symbols for different slot types.
  • the number of symbols used to transmit the reference signal indicates different sets of symbols for different time slot types.
  • the slot type is determined according to the number of uplink and/or downlink symbols in the slot, such as a full uplink slot, 2 downlink symbols + 11 uplink symbol slots, 11 downlink symbols + 2 uplink symbol slots, and the like.
  • the plurality of reference signal resources belonging to the first group may be resources for transmitting reference signals on one frequency domain unit.
  • the number of frequency domain positions is 1, and the number of repetitions is 4.
  • the number of frequency domain positions of the frequency domain unit 902 is 4, and the number of repetitions is 1.
  • the first indication information includes a frequency hopping sequence, a repetition number, and a sequence configuration of the plurality of reference signal resources.
  • the base station 110 can trigger the configuration of the plurality of resources (resource groups) by DCI.
  • the number of repetitions may not be configured in the first indication information, and the default value is 1.
  • Embodiment 2 it is possible to support transmitting a reference signal on a reference signal resource combination of different relationships.
  • the first configuration information determines a first set of resources.
  • the second configuration information determines a corresponding receiving resource, wherein the second configuration information determines one or more of the first resource sets.
  • the first configuration information further indicates a relationship between the at least one resource in the first resource set and the at least one measurement resource. This relationship is about quasi co-location of a spatial parameter.
  • the first configuration information is related to the result reported by the UE.
  • the identifier indicated by the first configuration information is based on the content reported by the UE.
  • the base station 110 transmits measurement signals to the UE by using different beams by configuring downlink CSI-RS measurement resources.
  • the UE reports the corresponding measurement result to the base station 110 by measuring the corresponding resource.
  • the base station 110 determines the corresponding channel (control channel or data channel) and the beam used by the signal based on the reported content.
  • the base station 110 uses the second configuration information to indicate the UE, and the UE determines the received receive beam according to the indication of the second configuration information.
  • the signaling of the indication may be performed by using information that is assumed by the QCL.
  • the QCL hypothesis refers to the fact that the base station 110 transmits the beam used by the current channel and the transmission beam of a resource that is previously subjected to the CSI-RS measurement is assumed to be QCL. That is, the base station 110 transmits the current channel or signal using the same beam as the previous one of the CSI-RS transmission beams. Based on such information, the UE can use the previous receive beam to receive the current channel or signal.
  • the difference in the number of resources may cause the overhead of the indication to be too large. For example, if the downlink scan is configured with 32 resources, 5 bits are required for indication. To reduce the overhead of the indication, a small set of resources for indication can be established. For example, if there are 4 elements in the definition resource set, then 2bit is used to indicate, so the overhead of the indication decreases. The establishment and update of the set can be implemented by the first configuration information.
  • the content of the resource set is updated based on the report of the UE after each measurement, and the quantity and content reported by the UE may be inconsistent each time, and the base station 110 updates the resource set according to the reported content and quantity.
  • the gNB needs to send the updated information to the UE in time through the first configuration information, so as to ensure that the understanding of the indication information by the gNB and the UE is consistent.
  • the information indicated by the first configuration information has a certain relationship with the report result. For example, if the content of the report is four, it indicates that only 2 bits are needed to distinguish which one of the four, so that the cost can also be saved. If the gNB finds that there is no required beam in the reported result, it can keep it from updating.
  • Each of the resource sets indicates an identity that is associated with a previously measured resource. For example, suppose the resource set contains 4 element labels ⁇ 00, 01, 10, 11 ⁇ , where the first element 00 is associated with the previous measured beam a. After the current measurement and reporting, the base station 110 finds that the quality of a certain beam b is better than the quality of the previous beam a. At this point, base station 110 can update the beam associated with element 00 in the set. The base station 110 transmits the first configuration information update information, so that the UE can update the beam information associated with its own resource set, that is, the beam associated with the element 00 is updated to b. Thus, when the next indication 00, the UE understands that 00 is associated with beam b.
  • the set may be channel based, ie different channels maintain different sets. For example, each channel of PDCCH ⁇ PDSCH ⁇ PUCCH ⁇ PUSCH maintains one set, and the opposite beam of the control channel can be wider, and the beam of the data channel can be relatively narrow. It is also possible that a plurality of channels share a set having a wide beam and a narrow beam. It is also possible to maintain a set of uplinks and maintain a set of downlinks. If there is beam reciprocity, it is also possible to maintain a set up and down. The beams to which each element label in the set is associated may have a different relationship. For example, the two beams corresponding to element 00 and element 01 may have a relatively small correlation, thus facilitating robust transmission of the beam. When one beam is occluded and the communication is interrupted, another beam is used for communication. Recovery.
  • the method can be applied to the uplink as well.
  • the uplink is configured by the SRS measurement resource
  • the UE sends the measurement signal to the base station 110
  • the base station 110 notifies the UE of the transmission beam, such as the PUCCH/PUSCH transmission beam and the previously transmitted SRS.
  • the spatial parameters are QCL.
  • the base station 110 and the UE can also maintain a resource set, and each element in the resource set and the beam of a certain measurement resource are QCL. Each indication only needs to indicate an element in the collection.
  • the terminal 110 receives the first configuration information sent by the base station 110, and is used to determine a first resource or a set of the first resources that transmit the first signal.
  • the terminal 110 receives the second configuration information sent by the base station 110, where the second configuration information is used to indicate a second resource or a second resource collection of the second signal.
  • the base station 110 sends third configuration information, which is used to indicate that the second signal has a reference signal feature associated with the first signal, and the associated reference signal feature is that the first reference signal and the second reference signal port have a QCL relationship, or Have the same spatial characteristics, or corresponding upper and lower spatial features.
  • the terminal 110 transmits or receives a second reference signal according to the first reference signal and the associated reference signal characteristic.
  • the spatial feature includes at least one of: an angle of arrival (AOA), an average AOA, an AOA extension, an Angle of Departure (AOD), an average departure angle AOD, an AOD extension, and a receive antenna spatial correlation parameter.
  • AOA angle of arrival
  • AOA extension an angle of Departure
  • AOD Angle of Departure
  • AOD extension an average departure angle AOD
  • AOD extension a receive antenna spatial correlation parameter.
  • transmit beam receive beam.
  • receive beam receive beam.
  • the QCL relationship refers to the same parameter in the reference signal corresponding to the antenna port, or the QCL relationship refers to the parameter that the user can determine the QCL relationship with the antenna port according to the parameter of one antenna port.
  • the QCL relationship refers to the fact that the two antenna ports have the same parameters, or the QCL relationship refers to the difference between the parameters of the two antenna ports being less than a certain threshold.
  • the parameter may be delay spread, Doppler spread, Doppler shift, average delay, average gain, angle of arrival (AOA), average AOA, AOA extension, and exit angle (Angle of Departure) , AOD), at least one of an average departure angle AOD, an AOD extension, a receive antenna spatial correlation parameter, a transmit beam, a receive beam, and a resource identifier.
  • the beam includes at least one of the following, a precoding, a weight sequence number, and a beam sequence number.
  • the angle may be a decomposition value of a different dimension, or a combination of different dimensional decomposition values.
  • the antenna ports are antenna ports having different antenna port numbers, and/or antenna ports having the same antenna port number for transmitting or receiving information within different time and/or frequency and/or code domain resources, and/or having Antenna ports for transmitting or receiving information at different time and/or frequency and/or code domain resources for different antenna port numbers.
  • the resource identifier includes a channel state information reference signal (CSI-RS) resource identifier, or an SRS resource identifier, which is used to indicate a beam on the resource.
  • CSI-RS channel state information reference signal
  • the first resource further includes at least one of the following first port, the time domain resource, the frequency domain resource, and the code domain resource; the second resource further includes at least one of the following ports, the time domain resource, and the frequency domain of the second reference signal Resources, code domain resources.
  • the first reference signal may be a first uplink reference signal and/or a first downlink reference signal.
  • the first uplink reference signal includes at least one of the following: a sounding reference signal, a physical layer random access channel, a preamble sequence, and an uplink demodulation reference signal.
  • the first downlink reference signal includes at least one of the following: a primary synchronization signal, a secondary synchronization signal, a demodulation reference signal, a channel state information reference signal, a motion reference signal, and a beam reference signal.
  • the first reference signal candidate set may include one or more types of reference signals in the first uplink reference signal, or one or more types of reference signals in the first downlink reference signal, or One or more of the reference signals and one or more of the first downlink reference signals of an uplink reference signal.
  • the first reference signal candidate set may include an SRS resource, or include an SRS resource and a PRACH resource.
  • the first reference signal candidate set includes a CSI-RS resource, or includes a CSI-RS resource and a synchronization signal resource.
  • the first reference signal candidate set includes an SRS resource and a CSI-RS resource.
  • the second reference signal may be a second uplink reference signal and/or a second downlink reference signal.
  • the second uplink reference signal includes at least one of the following: a sounding reference signal, a physical layer random access channel, a preamble sequence, and an uplink demodulation reference signal.
  • the second downlink reference signal includes at least one of the following: a primary synchronization signal, a secondary synchronization signal, a demodulation reference signal, a channel state information reference signal, a mobile reference signal, and a beam reference signal.
  • scenario 1 if the first reference signal is the first uplink reference signal, the second reference signal is the second uplink reference signal, and the third configuration information indicates the first reference signal and the second reference signal. If the QCL relationship has the same AOD, or the same spatial characteristics include the same AOD, the UE transmit beam of the first reference signal and the second reference signal is considered to be the same.
  • the first reference signal and the second reference signal are SRS, and the user determines, according to the third configuration information, that both have the same UE transmit beam.
  • Scenario 2 If the first reference signal is the first uplink reference signal, the second reference signal is the second uplink reference signal, and the third configuration information indicates that the QCL relationship between the first reference signal and the second reference signal includes the same AOA If the same spatial characteristics include the same AOA, the base station receiving beams of the first reference signal and the second reference signal are considered to be the same. For example, the first reference signal and the second reference signal are SRS, and the user determines, according to the third configuration information, that both have the same receive beam.
  • the first reference signal is the first uplink reference signal
  • the second reference signal is the second downlink reference signal
  • the third configuration information indicates that the QCL relationship between the first reference signal and the second reference signal includes a user according to the
  • the AOD of the reference signal determines the AOA of the second reference signal, or the spatial characteristic corresponding to the uplink and downlink includes the AOD of the first reference signal corresponding to the AOA of the second reference signal, and the UE transmit beam and the second reference of the first reference signal are considered
  • the user end of the signal receives the beam correspondence.
  • the first reference signal is an SRS and the second reference signal is a CSI-RS
  • the user determines, according to the third configuration information, that the SRS transmission beam and the reception beam of the CSI-RS correspond.
  • the first reference signal is the first uplink reference signal
  • the second reference signal is the second downlink reference signal
  • the third configuration information indicates that the QCL relationship between the first reference signal and the second reference signal includes a user according to the
  • the AOA of a reference signal determines the AOD of the second reference signal, or the spatial characteristic corresponding to the uplink and downlink includes the AOD of the first reference signal corresponding to the AOD of the second reference signal, and the base station end receiving beam and the second reference of the first reference signal are considered
  • the base station side of the signal transmits a beam correspondence.
  • the first reference signal is an SRS and the second reference signal is a CSI-RS
  • the user determines, according to the third configuration information, the SRS receive beam and the transmit beam corresponding to the CSI-RS.
  • Scenario 5 If the first reference signal is the first downlink reference signal, the second reference signal is the second uplink reference signal, and the third configuration information indicates that the QCL relationship between the first reference signal and the second reference signal includes a user basis
  • the AOD of the first reference signal determines the AOA of the second reference signal, or the spatial characteristic corresponding to the uplink and downlink includes the AOD of the first reference signal corresponding to the AOA of the second reference signal, and the base station of the first reference signal is considered to transmit the beam and the second
  • the base station side of the reference signal receives the beam correspondence.
  • the first reference signal is a CSI-RS and the second reference signal is an SRS
  • the user determines, according to the third configuration information, that the CSI-RS transmit beam and the receive beam of the SRS correspond.
  • the first reference signal is the first downlink reference signal
  • the second reference signal is the second uplink reference signal
  • the third configuration information indicates that the QCL relationship between the first reference signal and the second reference signal includes a user basis
  • the AOA of the first reference signal determines the AOD of the second reference signal, or the spatial characteristics corresponding to the uplink and downlink include that the AOA of the first reference signal corresponds to the AOD of the second reference signal
  • the UE receives the beam and the second of the first reference signal
  • the UE of the reference signal transmits a beam correspondence. For example, if the first reference signal is a CSI-RS and the second reference signal is an SRS, the user determines, according to the third configuration information, a CSI-RS receive beam and a transmit beam corresponding to the SRS.
  • Scenario 7 If the first reference signal is the first downlink reference signal, the second reference signal is the second downlink reference signal, and the third configuration information indicates that the QCL relationship of the first reference signal and the second reference signal has the same The AOD, or the same spatial characteristic including the same AOD, is considered to be the same as the base station transmit beam of the first reference signal and the second reference signal.
  • the first reference signal and the second reference signal are CSI-RSs, and the user determines, according to the third configuration information, that both have the same base station side transmit beam.
  • Scenario 8 If the first reference signal is the first downlink reference signal, the second reference signal is the second downlink reference signal, and the third configuration information indicates that the QCL relationship between the first reference signal and the second reference signal includes the same The AOA, or the same spatial characteristics include the same AOA, and the first receive signal and the second reference signal are considered to be the same as the UE receive beam.
  • the first reference signal and the second reference signal are CSI-RSs, and the user determines, according to the third configuration information, that both have the same receive beam.
  • the first reference signal may be sent before the third configuration information
  • the third configuration information may be sent before the first reference signal is sent.
  • the third configuration information is sent before the reference first reference signal, indicating a resource correspondence relationship between sending the first reference signal and transmitting the second reference signal.
  • the third configuration information is used to indicate a correspondence between the first resource and the second resource, or a correspondence between the first resource set and the second resource, or a correspondence between the first resource and the second resource set, or the first A resource set and a second resource set correspondence.
  • the third configuration information includes the first resource identifier and the second resource identifier, or the identifier and the second resource identifier in the first resource candidate set, or the identifier in the first resource identifier and the second resource candidate set, or the first The identifier in the resource candidate set and the identifier in the second resource candidate set.
  • the candidate set of the first resource includes one or more first resources, configured for the base station and/or reported by the user.
  • the candidate set of the second resource includes one or more second resources, configured for the base station and/or reported by the user.
  • the first reference signal is the first downlink reference signal
  • the first reference signal port on the first reference signal resource in the first reference signal resource set has a QCL relationship
  • the second reference signal is a second uplink reference signal
  • the second reference signal port on the second reference signal resource in the second reference signal resource set has a QCL relationship or has the same spatial feature
  • the QCL relationship The parameter in the AOD, or the spatial feature includes the AOD, the second reference signal port on the plurality of second reference signal resources and the first reference signal port on the first reference signal resource have a corresponding QCL relationship or
  • the corresponding spatial characteristics of the row for example, the AOD of the second reference signal port on all the second reference signal resources corresponds to the AOA of the first reference signal port on the first reference signal resource, and the user performs measurement according to the downlink receiving the first reference signal.
  • the user selects a receiving beam of the CSI-RS according to the measurement condition of the CSI-RS, and uses the transmitting beam corresponding to the received beam of the selected CSI-RS. SRS transmission on all SRS resources is performed.
  • the first reference signal is the first uplink reference signal
  • the first reference signal port on the first reference signal resource in the first reference signal resource set has a QCL relationship
  • the second reference signal is a second downlink reference signal
  • the second reference signal port on the second reference signal resource in the second reference signal resource set has a QCL relationship or has the same spatial feature
  • the QCL relationship The parameter includes the AOD, or the spatial feature includes the AOD
  • the second reference signal port on the plurality of second reference signal resources has a corresponding QCL relationship or uplink and downlink with the first reference signal port on the first reference signal resource.
  • Corresponding spatial characteristics such as the AOD of the second reference signal port on all the second reference signal resources and the AOA of the first reference signal port on the first reference signal resource
  • the base station performs measurement selection according to the uplink receiving the first reference signal.
  • the first reference signal resource For example, if the first reference signal is SRS and the second reference signal is CSI-RS, the base station selects a receiving beam of the SRS according to the measurement condition of the SRS, and performs all CSI-RS resources by using the transmitting beam corresponding to the received beam of the selected SRS. Send on CSI-RS.
  • the AOAs in the above embodiments may include average AOA and/or AOA extension and/or receiver spatial correlation.
  • the AOD in the above embodiments may include an average AOD and/or AOD extension and/or a transmission end spatial correlation.
  • the base station 110 that performs the methods in Embodiments 1 and 2 above includes a first processing unit 102 and a first transceiver unit 101.
  • the first processing unit 102 is configured to perform generation of a message such as a reference signal configuration message or a symbol configuration message of the base station 110 in the foregoing steps 301 and 801.
  • the first transceiver unit 101 is configured to send a reference signal configuration message or a symbol configuration message generated by the first processing unit 102 to the terminal 120.
  • the terminal 120 includes a second transceiver unit 111 and a second processing unit 112.
  • the second transceiver unit 111 is configured to receive a reference signal configuration message from the base station 110, or a symbol configuration message.
  • the second processing unit 112 is configured to perform as in steps 302 and 802.
  • the reference signal is transmitted according to the reference signal configuration message received by the second transceiver unit 111.
  • each unit of the above communication device is only a division of a logical function, and may be integrated into one physical entity or physically separated in whole or in part.
  • these units can be realized by software in the form of processing component calls; or all of them can be realized in the form of hardware; some units can be realized by software in the form of processing component calls, and some units are realized by hardware.
  • the first processing unit 102 or the second processing unit 112 may be a separately set processing element, or may be implemented in a chip on the base station 110 or the terminal 120. Such as baseband chips.
  • the function of the processing unit may be called and executed by one of the processing elements of the base station 110 or the terminal 120.
  • the terminal 120 can receive the information sent by the base station 110 through the antenna, and the information is sent to the baseband device by the radio frequency device processing.
  • the first and second transceiver units can receive/transmit the base station 110 or the terminal 120 through the interface between the radio frequency device and the baseband device. The information transmitted.
  • the units of the base station 110 or the terminal 120 may be integrated in whole or in part, or may be implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities. In the implementation process, each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above first processing unit or second processing unit may be one or more integrated circuits configured to implement the above method, for example, one or more Application Specific Integrated Circuits (ASICs), or one or A plurality of microprocessors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • ASICs Application Specific Integrated Circuits
  • DSPs microprocessors
  • FPGAs Field Programmable Gate Arrays
  • the processing element may be a baseband processor, or a general purpose processor, such as a central processing unit (CPU) or other callable program. Device.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the base station 110 includes a first transceiver 121 and a first processor 122.
  • the first processor 122 may be a general purpose processor such as, but not limited to, a central processing unit (CPU), or may be a dedicated processor such as, but not limited to, a baseband processor, a digital signal processor (Digital Signal) Processor, DSP), Application Specific Integrated Circuit (ASIC), and Field Programmable Gate Array (FPGA).
  • the first processor 122 can also be a combination of multiple processors.
  • the first processor 122 may be configured to execute, for example, the steps performed by the first processing unit 102.
  • the first processor 122 may be a processor specifically designed to perform the steps and/or operations described above, or may be a processor that performs the steps and/or operations described above by reading and executing the instructions stored in the memory.
  • the first transceiver 121 includes a transmitter and a receiver, wherein the transmitter is configured to transmit a signal through at least one of the plurality of antennas.
  • the receiver is configured to receive a signal through at least one of the plurality of antennas.
  • the first transceiver 121 may be specifically configured to be executed by multiple antennas, for example, the function of the first transceiver unit.
  • FIG. 13 is a configuration diagram of the terminal 120.
  • the terminal 120 includes a second processor 132 and a second transceiver 131.
  • the second processor 132 may be a general purpose processor, such as but not limited to a central processing unit (CPU), or may be a dedicated processor such as, but not limited to, a digital signal processor (DSP). Application Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA). Further, the second processor 132 may also be a combination of a plurality of processors. In particular, in the technical solution provided by the embodiment of the present invention, the second processor 132 can be used to execute, for example, the steps and functions performed by the second processing unit.
  • the second processor 132 may be a processor specifically designed to perform the above steps and/or operations, or may be a processor that performs the steps and/or operations described above by reading and executing the instructions stored in the memory.
  • the second transceiver 131 includes a transmitter and a receiver, wherein the transmitter is configured to transmit a signal through at least one of the plurality of antennas.
  • the receiver is configured to receive a signal through at least one of the plurality of antennas.
  • the second transceiver 131 may be specifically configured to be executed by multiple antennas, for example, functions and steps performed by the second transceiver unit 111.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种参考信号传输技术。基站将传输带宽划分为多个频域单元。并向终端发送参考信号发送配置信息,终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分。终端根据上述参考信号发送配置信息,在所述一个或多个频域单元上向基站发送参考信号。

Description

参考信号传输技术 技术领域
本发明实施例涉及通信技术,尤其涉及一种参考信号的传输技术。
背景技术
在LTE/LTE-A系统中,终端110的上行测量是通过发送探测参考信号(Sounding Reference Signal,SRS)实现的。请参见图1,基站110通过测量接收到来自终端120的SRS,获取上行的信道状态信息。若终端120和基站110端具有上下行信道互易性,则基站110可以进一步获得下行信道信息。在LTE/LTE-A系统中,由于终端120距离基站110的距离不同,远距离的终端120可能受限于终端110功率,如果在整个传输带宽上发SRS可能功率不足而导致接收信号强度低,测试准确性差。为了保证基站110接收的SRS功率足够,终端120发送的SRS可以只在传输带宽中的一部分带宽上发送SRS。为了测量传输带宽的SRS,需要通过跳频的方式,在不同的部分带宽上传输SRS,从而完成系统宽带的测量。在LTE/LTE-A系统中的跳频是基于小区级配置的带宽进行的,即终端110的跳频方法都是根据小区统一配置的SRS测量总带宽确定的,从而保证跳频正交。虽然也支持终端120测量基站110的总带宽的一部分,但是其跳频方法也是根据总带宽确定的,且时延也与跳完总带宽的时延相关。
而在新一代移动通信系统(NR,new radio)中,或其他通信系统中,一个基站110服务的终端120需要测量的带宽可能会不同,因此原有的根据小区统一配置的SRS测量总带宽来进行跳频的方式,可能不适用。
发明内容
本发明实施例提供适用于多种传输带宽的参考信号发送技术,以提高无线传输性能。
本发明实施例第一方面提供一种参考信号发送方法。终端接收来自基站的参考信号发送配置信息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号。其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;终端根据上述参考信号发送配置信息,在所述一个或多个频域单元上向基站发送参考信号。
本发明实施例第二方面提供一种参考信号发送装置。该装置包括处理单元和收发单元。收发单元接收来自基站的参考信号发送配置消息。所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号。其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分。处理单元根据上述参考信号发送配置信息,指示收发单元在所述一个或多个频域单元上向基站发送参考信号。
本发明实施例第三方面提供一种参考信号配置信息发送方法。基站生成参考信号发送配置信息。所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号。其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分。基站向终端发送该参考信号发送配置信息。
本发明实施例第四方面提供一种参考信号配置信息的发送装置。该发送装置包含处理单元和收发单元。所述处理单元生成参考信号发送配置信息。所述参考信号发送配置信息 指示终端在一个或多个频域单元上传输参考信号。其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分。所述收发单元向终端发送该参考信号发送配置信息。
作为一种可能的实施方式:所述参考信号发送配置信息包括指示用于传输所述参考信号的时频资源,所述参考信号发送配置信息包括第一参数,用于指示所述终端在多个频域单元上传输参考信号的的顺序。
作为一种可能的实施方式:终端在所述多个频域单元上发送参考信号的顺序是预先设定的。
作为一种可能的实施方式:第二方面的处理单元指示收发单元在所述多个频域单元上发送参考信号的顺序是预先设定的。
作为一种可能的实施方式:所述参考信号发送配置信息包括第二参数,用于指示终端发送参考信号的时间单元,和发送参考信号的频域单元的对应关系。
作为一种可能的实施方式:所述参考信号发送配置信息包含分组参数,用于指示终端对所述多个频域单元进行分组,不同组的频域单元可以同时发送参考信号。
作为一种可能的实施方式:所述分组参数包含分频域单元组数量;所述终端,或所述第二方面的处理单元,根据其所支持的频域单元的数量和频域单元组的数量,确定所述频域单元组中包含的频域单元。
作为一种可能的实施方式:所述参考信号配置信息包括以下一个或多个信息:频域单元内的参考信号传输周期,频域单元内参考信号带宽,频域单元中参考信号的最大带宽,频域单元内发送参考信号的起始子载波位置,频域单元内参考信号频域位置与时域资源对应关系。
作为一种可能的实施方式:所述参考信号配置信息包括参考信号的参考周期指示参数,终端或所述第二方面的处理单元,根据其所支持的频域单元的数量,所述频域单元的带宽或频域单元内用于参考信号传输的带宽,和每一跳的跳频带宽,确定一个频域单元的参考信号传输周期。
作为一种可能的实施方式:所述参考信号发送配置信息包括参考信号参考带宽指示,终端或或所述第二方面的处理单元,根据所述参考信号的参考带宽指示,频域单元的子载波间隔,和频域单元内参考信号的频域密度,获取频域单元的参考信号带宽。
作为一种可能的实施方式:所述参考信号带宽不大于频域单元的带宽或频域单元内参考信号的最大带宽。
作为一种可能的实施方式:所述参考信号发送配置信息包括参考信号参考起始子载波指示,用于指示发送所述参考信号的起始子载波。
作为一种可能的实施方式:所述多个频域单元内的参考信号起始子载波标识相同。
作为一种可能的实施方式:所述参考信号发送配置信息包括参考信号频域位置与时域资源参考对应关系的指示,终端或所述第二方面的处理单元,根据参考信号频域位置与时域资源参考对应关系确定所述频域单元内的参考信号频域位置与时域资源对应关系;或终端或所述第二方面的处理单元,根据参考信号频域位置与时域资源参考对应关系和频域单元内参考信号带宽确定所述频域单元内的参考信号频域位置与时域资源对应关系。
作为一种可能的实施方式:频域单元内的参考信号的频域位置,根据终端支持的多个频域单元上发送参考信号的时间确定。
作为一种可能的实施方式:所述参考发送信号配置消息包括:第一带宽,用于指示频域单元用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成。所述终端根据预先设定的规则或来自基站的配置信息,确定在一个参考信号周期内,选择一部分第二带宽进行参考信号发送。
作为一种可能的实施方式:所述用于进行参考信号发送的多个第二带宽,位于不同的符号上。
作为一种可能的实施方式:所述预先预定的规则为:当前传输的参考信号用于波束扫描,或当前传输的参考信号的子载波间隔大于基站配置的终端在该频域单元上PUSCH传输的子载波间隔或参考子载波间隔,则终端确定在一个参考信号周期内,在所述组成所述第一带宽的多个第二带宽中的部分第二带宽上发送参考信号。
作为一种可能的实施方式:所述来自基站的配置信息为以下几种配置信息中的至少一种::(1)指示信息中包含部分第二带宽的标识,指示终端在所述部分第二带宽上发送参考信号;(2)指示信息中包含索引信息,用于获取部分第二带宽的标识,指示终端在所述部分第二带宽上发送参考信号;(3)指示信息中包含频域间隔,指示终端在间隔为所述频域间隔的多个第二带宽上传输参考信号,所述满足频域间隔的第二带宽中包含一个预定或基站指示的起始频域位置;(4)指示信息中包含第二带宽的次序间隔,指示终端根据次序间隔确定发送参考信号的部分第二带宽。
本发明实施例第五方面提供一种通信装置,包括处理器和收发器。处理器执行上述第二方面处理单元的功能,而收发器执行上述第二方面收发单元的功能。
本发明实施例第六方面提供一种通信装置包括处理器和收发器。处理器执行上述第四方面处理单元的功能,而收发器则执行上述第四方面接收单元的功能。
本发明实施例的第七方面提供一种程序。该程序在被处理器执行时用于执行第一方面或第一方面任一种可选方式的方法。
本发明实施例的第八方面提供一种程序。该程序在被处理器执行时用于执行第三方面或第三方面任一种可选方式的方法。
本发明实施例的第九方面提供一种程序产品,例如计算机可读存储介质,包括第七方面或第八方面的程序。
在以上各方面中,通过分别针对频域单元发送参考信号发送配置消息的方式,使同一个基站所服务的终端,在支持的带宽不同的情况下,仍然可以通过跳频的方式反馈参考信号。
本发明实施例第十方面提供一种参考信号的发送方法。终端接收多个参考信号资源的指示,所述指示包括多个参考信号资源信息和所述多个参考信号资源属于第一分组。终端接收第一指示信息,所述第一指示信息指示第一分组内多个参考信号资源上传输的参考信号间的关系。终端根据根据所述第一指示信息和多个参考信号资源的指示,发送参考信号。
本发明实施例第十一方面提供一种参考信号的发送装置。该发送装置包括处理器和收 发器。所述收发器接收多个参考信号资源的指示,所述指示包括多个参考信号资源信息和所述多个参考信号资源属于第一分组。所述收发器接收第一指示信息,所述第一指示信息指示第一分组内多个参考信号资源上传输的参考信号间的关系。所述处理器根据根据所述第一指示信息和多个参考信号资源的指示,指示收发器发送参考信号。
本发明实施例第十二方面提供一种参考信号配置消息发送方法。基站生成多个参考信号资源的指示,所述指示包括多个参考信号资源信息和所述多个参考信号资源属于第一分组。基站生成第一指示信息,所述第一指示信息指示第一分组内多个参考信号资源上传输的参考信号间的关系。基站向终端发送所述第一指示信息和多个参考信号资源的指示。
本发明实施例第十三方面提供一种参考信号配置消息发送装置。所述装置包括处理器和收发器。处理器生成多个参考信号资源的指示,所述指示包括多个参考信号资源信息和所述多个参考信号资源属于第一分组。所述处理器生成第一指示信息,所述第一指示信息指示第一分组内多个参考信号资源上传输的参考信号间的关系。所述处理器指令收发器向终端发送所述第一指示信息和多个参考信号资源的指示。
作为一种可能的实施方式:所述多个参考信号资源上传输的参考信号间的关系包括多个参考信号资源上传输的参考信号间的天线端口间的准共址(QCL)关系。所述QCL关系是指根据一个天线端口的参数,可以确定另外一个天线端口的参数。
作为一种可能的实施方式,所述QCL关系以下至少之一:参考信号采用相同发送波束,参考信号采用不同的发送波束,参考信号采用相同的接收波束,参考信号采用不同的接收波束。
作为一种可能的实施方式:所述第一指示信息包括所述多个参考信号资源的时频资源之间的时域差值。
本发明实施例第十四方面提供一种通信装置,包括处理器和收发器。处理器执行上述第十一方面处理单元的功能,而收发器执行上述第十一方面收发单元的功能。
本发明实施例第十五方面提供一种通信装置包括处理器和收发器。处理器执行上述第十三方面处理单元的功能,而收发器则执行上述第十三方面接收单元的功能。
本发明实施例的第十六方面提供一种程序。该程序在被处理器执行时用于执行第十方面或第十方面任一种可选方式的方法。
本发明实施例的第十七方面提供一种程序。该程序在被处理器执行时用于执行第十二方面或第十二方面任一种可选方式的方法。
本发明实施例的第十八方面提供一种程序产品,例如计算机可读存储介质,包括第十六方面或第十七方面的程序。
本发明第十九方面提供一种参考信号发送方法。终端接收符号配置信息,用于指示一个时隙内符号的数量和该时隙内用于传输参考信号的符号。终端按照上述符号配置消息,发送参考信号。
本发明第二十方面提供一种参考信号发送装置。该发送装置包括处理器和收发器。所述收发器接收来自基站的符号配置信息,用于指示一个时隙内符号的数量和该时隙内用于传输参考信号的符号。处理器只是收发器按照上述符号配置消息,发送参考信号。
本发明第二十一方面提供一种符号配置消息发送方法。基站生成符号配置信息,用于 指示一个时隙内符号的数量和该时隙内用于传输参考信号的符号。基站向终端发送上述符号配置消息。
本发明第二十二方面提供一种符号配置消息发送装置。该发送装置包括处理器和收发器。所述处理器生成符号配置信息,用于指示一个时隙内符号的数量和该时隙内用于传输参考信号的符号。处理器指示收发器向终端发送上述符号配置消息。
作为一种可能的实施方式:该时隙内用于传输参考信号的符号数量为k,且k=n或k<=m,其中k,m为自然数,m<n,n为所述时隙中上行传输符号的数量。
本发明实施例第二十三方面提供一种通信装置,包括处理器和收发器。处理器执行上述第二十方面处理单元的功能,而收发器执行上述第二十方面收发单元的功能。
本发明实施例第二十四方面提供一种通信装置包括处理器和收发器。处理器执行上述第二十二方面处理单元的功能,而收发器则执行上述第二十二方面接收单元的功能。
本发明实施例的第二十五方面提供一种程序。该程序在被处理器执行时用于执行第十九方面或第一九方面任一种可选方式的方法。
本发明实施例的第二十六方面提供一种程序。该程序在被处理器执行时用于执行第二十一方面或第二十一方面任一种可选方式的方法。
本发明实施例的第二十七方面提供一种程序产品,例如计算机可读存储介质,包括第二十五方面或第二十六方面的程序。
附图说明
图1为本申请实施例提供的一种通信场景的示意图;
图2为频域单元划分的示意图;
图3为参考信号发送的流程示意图;
图4为RPF的示意图;
图5为跳频带宽计算的示意图;
图6为跳频初始值计算的示意图;
图7为不同频域单元之间跳频顺序的示意图;
图8为参考信号发送的流程示意图;
图9为实施例参考信号资源组示意图
图10为本申请实施例提供的一种基站的结构示意图;
图11是本申请实施例提供的一种终端的结构示意图;
图12为本申请实施例提供的一种基站的结构示意图;
图13是本申请实施例提供的一种终端的结构示意图;
图14是一个频域单元内部分第二带宽的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端120,又称之为用户设备(User Equipment,UE)或移动设备(mobile equipment, ME),是一种向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。常见的终端120例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、基站110是网络中将终端120接入到无线网络的设备。基站110,包括但不限于:传输接收点(Transmission Reception Point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),或Wifi接入点(Access Point,AP)等。
本发明实施例中涉及的时隙(slot)可以是TTI和/或时间单元和/或子帧和/或迷你时隙。
随着移动互联网的发展,sub-6G频谱资源已经愈发紧张。为了满足日益增长的通信速率与容量需求,频谱资源丰富的高频无线资源成为无线通信系统研究的重点方向。高频通信的一大特点是传输带宽大,因此可能会出现比sub-6G的传输带宽大很多的传输带宽。例如sub-6G支持的最大传输带宽为20MHz,而NR的传输带宽可能到100MHz,甚至400MHz等。因此小区的传输带宽很可能会大于终端120的最大带宽能力,此时终端110只能使用其中的部分带宽,即终端110的测量和传输都需要在该部分带宽上进行。因此,无线通信系统需要支持SRS在部分带宽(partial band)上通过跳频(Frequency-hopping)的方式发送。部分带宽也可称为频域单元,多个频域单元组成基站110的传输带宽,或组成传输带宽的一部分,也可以为带宽部分(bandwidth part)。一个所述带宽部分为基站配置给终端的一端连续的频域资源,具有唯一的子载波间隔和循环前缀,带宽部分也可以是用户特定的信令配置的,如用户特定的RRC信令和/或MAC CE信令和/或DCI。不同的终端110可能支持不同的传输带宽,所以同一基站小区内的终端120支持的带宽不同,其所需测量的带宽不同。
在具有上下行信道互易性的场景中,终端120基于下行测量获得信干躁比(SINR,signal to interference and noise ratio)或信道质量指示(CQI,channel quality indicator)较好的信道。但是若将该信道的信道状态信息(CSI,channel state information)量化上报给基站110会影响信道精度,并占用较大的上行控制开销。因此,终端120可以通过发送SRS的方式,让基站110通过测量SRS获得上行CSI,再根据信道互易性确定下行信道的CSI。由于终端120已经知道那个频段信道质量好,因此不需要发送整个带宽的SRS,可以只发送特定频段的SRS以减少开销和时延。终端120获取的SRS测量带宽可以是根据自己的下行信道测量(例如利用信道状态信息参考信号(CSI-RS,channel state information-reference signal)),也可以是根据基站110的SRS测量带宽指示确定的(SRS测量带宽可以是基站110根据终端110上报的CQI确定的)。
现有LTE/LTE-A的SRS是支持跳频的,SRS跳频根据小区级配置的带宽确定测量总带宽的,然后通过用户级信令配置每一跳的测量带宽。具体的如下表1-4所示。
Figure PCTCN2018080398-appb-000001
为上行传输带宽的RB数,根据上行传输带宽的不同,分别给出以下4个表。这部分内容也可以 参见3GPP标准TS36.211。
表1:
Figure PCTCN2018080398-appb-000002
m SRS,band N b,b=0,1,2,3
Figure PCTCN2018080398-appb-000003
表2:
Figure PCTCN2018080398-appb-000004
m SRS,b,N b,b=0,1,2,3
Figure PCTCN2018080398-appb-000005
表3:
Figure PCTCN2018080398-appb-000006
m SRS,band N b,b=0,1,2,3
Figure PCTCN2018080398-appb-000007
表4:
Figure PCTCN2018080398-appb-000008
m SRS,band N b,b=0,1,2,3
Figure PCTCN2018080398-appb-000009
对于不同的传输带宽,对应不同的表格。在表格中,C SRS为小区级配置的SRS带宽,B SRS为用户级配置的SRS带宽(均为高层信令配置)。终端110根据收到的C SRS和B SRS,可以确定SRS跳频的总带宽m SRS,0,以及每一跳的带宽
Figure PCTCN2018080398-appb-000010
其中N b为本级跳频带宽相对上一级跳频带宽的切分粒度。从表中可以看出SRS最多支持4级共3次切分,例如对于
Figure PCTCN2018080398-appb-000011
的情况,C SRS=1,B SRS=3,则终端110的跳频总带宽96个RB,第0级为96RB。第一级将96个RB切分为两份,每个带宽为48个RB。第二级将每个48个RB切分为2份,每个带宽为24RB,共2*2=4个带宽。第三级将每个24RB切分为6份,每个带宽为4个RB,共2*2*6=24个带宽,即SRS每一跳带宽为4个RB,总共需要24跳完成全带宽测量。
具体的跳频方法为,基站110配置跳频的初始位置,例如有n个跳频的位置,则初始位置为这n个中的一个。例如在上述例子中,基站110配置24个4RB中的某一个为跳频的初始位置,该配置为高层信令配置。随后的跳频过程中,终端110根据协议规定的跳频规则,计算当前一跳的SRS的频域位置,该频域位置为n个跳频位置中的一个。这里的每一跳的跳频位置是通过对4级的每一级的位置共同决定的,即包括对4级的位置n b,b=0,1,2,3。SRS是否跳频通过参数b hop∈{0,1,2,3}配置的,该值是通过UE级的RRC参数srs-HoppingBandwidth来配置的。具体的跳频方法如下:
如果没有使能SRS跳频(b hop≥B SRS),则频率位置索引n b的值固定为
Figure PCTCN2018080398-appb-000012
(除非进行RRC连接重配置),其中n RRC是通过freqDomainPosition(周期性SRS)和freqDomainPosition-ap(非周期性SRS)配置的。
如果使能了SRS跳频(b hop<B SRS),则频率位置索引n b的值为
Figure PCTCN2018080398-appb-000013
其中n RRC为基站110配置的信令,用于配置初始的跳频·位置,不同的nRRC值会导致第一跳的频域位置不同。F b(n SRS)按下面的公式定义:
Figure PCTCN2018080398-appb-000014
其中
Figure PCTCN2018080398-appb-000015
(无论N b取何值),且有
Figure PCTCN2018080398-appb-000016
n SRS计算的是UE特定的SRS传输数目,T SRS和T offset为基站110配置的小区级SRS符号的周期以及SRS子帧偏移。T offset_max为特定SRS子帧偏移配置下的最大T offset值。需要注意的是,窄带SRS并不意味着一定会跳频。如果窄带SRS不跳频,则UE就只会固定上报某一段RB的SRS信息。
通过获得的n b可以计算出SRS每一跳的信道的频域起始位置,计算方法参见下面的公式。SRS传输在频域的起始位置
Figure PCTCN2018080398-appb-000017
表示了从上行传输带宽的低频处开始的可用于SRS传输的偏移,也即频带上可用于SRS传输的第一个子载波的位置,或者说宽带SRS的起始子载波所在的位置
Figure PCTCN2018080398-appb-000018
Figure PCTCN2018080398-appb-000019
Figure PCTCN2018080398-appb-000020
其中n f系统帧号,n hf一个系统帧由2个半帧组成。如果UpPTS位于第1个半帧上,则n hf等于0;如果UpPTS位于第2个半帧上,则n hf等于1。N SP一个系统帧内DL到UL的交换 点(switch point)的个数。对于5 ms的“Downlink-to-Uplink switch-point periodicity”而言,其值为2;对于10 ms的“Downlink-to-Uplink switch-point periodicity”而言,其值为1(见36.211的Table 4.2-2)。N ap用于SRS传输的天线端口数。
Figure PCTCN2018080398-appb-000021
天线端口索引,见36.211的Table 5.2.1-1
这里我们把公式分为
Figure PCTCN2018080398-appb-000022
Figure PCTCN2018080398-appb-000023
两部分来分析。对于正常的子帧而言,
Figure PCTCN2018080398-appb-000024
其中
Figure PCTCN2018080398-appb-000025
是为了把上行系统的低频处,SRS不关心的用于PUCCH传输的区域排除掉。
Figure PCTCN2018080398-appb-000026
的值为0或1,用于确定使用哪个梳齿。图中是正常子帧,
Figure PCTCN2018080398-appb-000027
C SRS=0的一个例子,可以看出,如果
Figure PCTCN2018080398-appb-000028
的值为0,则
Figure PCTCN2018080398-appb-000029
如果
Figure PCTCN2018080398-appb-000030
的值为1,则
Figure PCTCN2018080398-appb-000031
Figure PCTCN2018080398-appb-000032
可以看做是把宽带SRS等分成N份后,所取的那一份。其中n b为频域位置索引,除非RRC连接重配置,否则其值是保持不变的;n RRC是通过freqDomainPosition(用于周期性SRS)和freqDomainPosition-ap(用于非周期性SRS)配置的,决定了n b的值,见图7-10。更确切地说,n RRC决定了SRS传输在频域上的起始位置。
Figure PCTCN2018080398-appb-000033
C SRS=0的一个例子(为了简单,省略了B SRS=3的场景)。由于N 0值固定为1,所以可以计算出n 0值固定为0。同时,
Figure PCTCN2018080398-appb-000034
等于一个SRS带宽。
从前面的介绍可以看出,不同UE可以在相同子帧、相同RB集合上发送SRS,但彼此之间使用不同的
Figure PCTCN2018080398-appb-000035
予以区分。
实施例一
本发明实施例中,基站110将其所支持的传输带宽划分成多个频域单元,并将频域单元分配给其所服务的终端120。请参见图2,作为一个例子,基站110的传输带宽划分为3个频域单元201,202,203。其中,终端UE1支持频域单元201和202。终端UE2支持频域单元202和203。终端UE3支持频域单元203。频域单元可以是基站110通过小区级信令配置的,如广播消息,系统消息。也可以是通过用户级信令配置的,比如RRC信令或MAC CE信令。不同终端可能支持相同的频域单元。不同频域单元之间没有重叠的频域。
基站110将其传输带宽划分为多个频域单元,并以频域单元为单位分配给其所服务的终端120。不同终端120可能支持相同的频域单元。在该频域单元内,使用上面所介绍的 跳频的方式发送参考信号。这样,虽然不同终端120支持的带宽不同,即所支持的频域单元不同,如UE2支持频域单元202和203,而UE3仅支持频域203。但是对于相同的频域单元202,由于终端UE2和UE3在相同带宽(如频域单元202)上使用上面所介绍的跳频方式发送参考信号,但是用频域单元的带宽来替代小区级配置的带宽,这样可保证跳频过程中,不同起始位置的终端110不会在同一时间跳到相同的位置。
本发明实施例中所述的参考信号SRS,也可以是解调参考信号(De Modulation Reference Signal,DMRS),或是信道状态信息参考信号CSI-RS。
作为一种可选的实施方式,由于基站110可以配置频域单元的带宽,因此可以不需要在每个频域单元内配置小区级的参考信号跳频带宽。小区级的参考信号跳频带宽是指终端120完成一个周期的参考信号发送所跳频的总带宽。本实施例中可以采用频域单元的带宽作为小区级参考信号跳频带宽,进行跳频并发送参考信号。每个频域单元内也可以配置多个参考信号跳频带宽,参考信号通过跳频方式,在每个跳频带宽内传输。但是为说明方便,本发明实施例以不需要在每个频域单元内配置小区级的参考信号跳频带宽为例进行说明,对于一个频域单元内配置有多个参考信号跳频带宽的情况,可以通过将每个配置的参考信号跳频带宽作为一个频域单元,从而使用本发明实施例介绍的方式来传输参考信号。
请参见图3,步骤301基站110向终端120发送参考信号发送配置信息。所述参考信号发送配置信息指示终端120在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站110支持的传输带宽的一部分。步骤302中,终端120根据上述参考信号发送配置信息,在所述一个或多个频域单元上向基站110发送参考信号。
所述参考信号发送配置信息包括指示用于传输所述参考信号的时频资源。在终端120支持多个频域单元的情况下,该参考信号发送配置信息还可以包括第一参数,第一参数指示所述终端120在多个频域单元上传输参考信号的的顺序。如图2中,基站110指示终端UE3现在频域单元202中传输参考信号,之后再在频域单元203中传输参考信号。当然,作为另外一个实施方式,终端120在多个频域单元上传输参考信号的顺序也可以采用预先设定的某种规则,如按照频率增加或减少的顺序,确定不同频域单元传输参考信号的顺序。所述参考信号发送配置信息包括第二参数,用于指示终端120发送参考信号的时间单元,和发送参考信号的频域单元的对应关系。这个对应关系决定了在一个参考信号发送周期内,初始发送参考信号的频域单元。之后按照第一参数指示的顺序,和第二参数中时间单元与频域单元的对应关系,按照顺序在频域单元间通过跳频传输参考信号。
作为一个实施方式,在终端120支持多个频域单元的情况下,基站110还可以指示终端120需要通过跳频传输参考信号的频域单元。这样,终端120可以不在所有频域单元通过跳频的方式来传输参考信号,而仅在部分频域单元上传输参考信号。
若终端110可以在多个频域单元上同时传输参考信号,则基站110可以将频域单元进行分组,每个分组可以按照上述实施例中所揭示的方式发送参考信号。分组的方式可以直接配置,或配置组数,根据需要测量的带宽,终端120支持的频域单元的数量,和/或传输参考信号的跳频总段数等因素,对终端120支持的频域单元进行分组。同一组的频域单元,在频域上可以是连续的,也可以是不连续的。具体的,基站110可以向终端120下发 分组参数。所述分组参数包含分频域单元组数量,所述终端120根据其所支持的频域单元的数量和频域单元组的数量,确定所述频域单元组中包含的频域单元。
可选的,为了避免碰撞,基站110还可以在不同的频域单元之间配置空白频域单元。空白频域单元是指这个当跳频到这个频域单元上时,不进行参考信号的传输。
所述参考信号配置信息包括以下一个或多个信息:参考信号传输周期,参考信号带宽,频域单元中参考信号的最大带宽,频域单元内发送参考信号的起始子载波位置,参考信号频域位置与时域资源对应关系。参考信号传输周期是指终端120在所有需要测量的频域单元上,完成参考信号传输的时间。所述需要测量的频域单元可能是终端120支持的所有频域单元中的一部分。终端120根据参考信号传输周期,以及频域单元的数量,和频域单元的带宽或频域单元内用于参考信号传输的带宽,和每一跳的跳频带宽,可以确定在某一个频域单元上传输参考信号的时间。具体的,如果需要测量的频域单元有2个,第一个频域单元带宽为96RB,每一跳的跳频带宽为4RB,则需要进行24次跳频。第二个频域单元带宽为128RB,每一跳的跳频带宽为16RB,则需要进行8次跳频。这样第一频域单元所需要的时间,是第二频域单元的2倍。如果参考信号传输周期为T,则第一频域单元上传输参考信号的时间为2/3 T,而第二频域单元上传输参考信号的时间为1/3T。终端120根据频域单元的传输时间,和用于传输参考信号的符号,确定频域单元内参考信号所占用的符号。不同的频域单元之间,发送参考信号的时间间隔绝对值相同,或有倍数关系。
作为一种实施方式,还可以在频域单元之间设置的跳频时间间隔。即完成一个频域单元的跳频之后,隔一段时间之后再进行下一个频域单元的跳频。作为一个例子,跳频时间间隔可以根据终端120上报的信息进行配置。跳频时间间隔可以根据射频调整时间(RF retuning time)配置。
作为一种实施方式,基站可以配置给一个终端一个或多个所述频域单元并为其中一个或多个频域单元配置参考信号配置信息。所述参考信号配置信息包括以下一个或多个信息:参考信号的传输周期,频域单元内用于参考信号传输的带宽,发送所述参考信号的符号上参考信号的带宽,参考信号频域位置与时域资源对应关系。所述频域单元内用于参考信号传输的带宽为频域单元内需要通过所述参考信号测量的带宽,记作第一带宽。用于参考信号传输的带宽和实际发送的参考信号的总带宽不同,为包含参考信号实际传输的总带宽的一段连续的带宽。可以是频率单元,或频率单元中部分频域资源。所述发送所述参考信号的符号上参考信号的带宽为参考信号每跳的带宽,记作第二带宽。所述第一带宽由一个或多个第二带宽组成。本实施方式中,终端120根据预定义的规则或基站发送的跳频规则指示信息,确定在一个参考信号周期内,在所述组成所述第一带宽的一个或多个第二带宽中的部分第二带宽上发送所述参考信号。所述跳频规则指示信息,也可以称为指示信息,用于指示终端在部分第二带宽上传输参考信号。指示信息可以和上述参考信号配置信息中的其他信息一起传输,如和参考信号的传输周期,频域单元内用于参考信号传输的带宽,发送所述参考信号的符号上参考信号的带宽,或参考信号频域位置与时域资源对应关系一起传输;可选的,也可以作为一个独立的信息单独传输。可选的,所述参考信号在每一个第二带宽上位于不同的符号。该方案中终端120第一带宽中的部分第二带宽间以跳频的方式发送参考信号,完成部分第一带宽的测量。请参见图14,图中方框表示参考信号的8个 跳频位置1,2,3,4,5,6,7,8。其中,作为一种例子,在跳频位置2,4,6,8上发送参考信号,而在跳频位置1,3,5,7上不发送参考信号。该方案可以降低一个参考信号周期内的参考信号发送次数,降低参考信号资源的开销,同时降低参考信号的周期。对于随频率变化而变化缓慢的测量结果,例如波束选择,参考信号接收功率,或信道随频率变化缓慢的场景下,该实施方式的测量结果与在所有组成第一带宽的第二带宽上传输参考信号的测量结果近似,性能损失可以接受。
可选的,所述终端120根据预定义的规则或基站发送的跳频规则指示信确定在一个参考信号周期内,在所述组成所述第一带宽的一个或多个第二带宽中的部分第二带宽上发送所述参考信号。所述预定义的信息为,当前传输的参考信号用于波束扫描,或当前传输的参考信号的子载波间隔大于基站配置的终端在该频域单元上PUSCH传输的子载波间隔或参考子载波间隔,则终端120确定在一个参考信号周期内,在所述组成所述第一带宽的一个或多个第二带宽中的部分第二带宽上发送所述参考信号,例如仅在具有等间隔的第二带宽上发送所述参考信号。具体的,如果第一带宽为32RB,每个第二带宽为4RB,则第一带宽由8个第二带宽组成(见图14中跳频位置1,2,3,4,5,6,7,8)。当终端120确定所述参考信号用于波束扫描,则选择第{1,3,5,7}个第二带宽上发送参考信号,或选择第{2,4,6,8}个第二带宽上发送参考信号。基站可以配置起始的第二带宽。
可选的,所述终端120根据预定义的规则或基站发送的跳频规则指示信息,确定在一个参考信号周期内,在所述组成所述第一带宽的一个或多个第二带宽中的部分第二带宽上发送所述参考信号。所述基站发送的跳频规则指示信息用于指示以下至少之一:组成第一带宽的第二带宽中的部分第二带宽的标识;索引信息,用于获取部分第二带宽的标识;频域间隔,用于指示在满足频域间隔的部分第二带宽上传输参考信号;组成第一带宽的第二带宽的次序间隔。
当所述基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽中的部分第二带宽的标识时,终端在所述部分第二带宽的标识对应的第二带宽上传输参考信号。具体的,如果第一带宽为32RB,每个第二带宽为4RB,则第一带宽由8个第二带宽组成(见图14中跳频位置1,2,3,4,5,6,7,8),当基站发送的跳频规则指示信息用于指示组成第一带宽的第二带宽中的部分第二带宽的标识{1,4,8},则终端在第{1,4,8}个第二带宽上发送参考信号。
当所述基站发送的跳频规则指示信号包含索引信息时,终端根据所述索引信息获取对应的部分第二带宽的标识,并在这些部分第二带宽上发送所述参考信号。具体的,仍然参见图14,如果第一带宽为32RB,每个第二带宽为4RB,则第一带宽由8个第二带宽组成(见图14中跳频位置1,2,3,4,5,6,7,8),组成第一带宽的第二带宽中的部分第二带宽的可以分为第一配置{1,3,5,7}和第二配置{2,4,6,8},该配置可以由高层信令配置。当所述基站发送的跳频规则指示信号的索引指示为第一配置时,则终端在第{1,3,5,7}个第二带宽上发送参考信号。同理,如果索引信息指示第二配置时,则终端在第{2,4,6,8}个第二带宽上发送参考信号。
当所述基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽中的起始传输的第二带宽的标识,和/或组成第一带宽的第二带宽中的第二带宽频域间隔时,终端根 据标识所指示的第二带宽,以及组成第一带宽的第二带宽中的第二带宽频域间隔,确定等频域间隔的组成第一带宽的第二带宽中的部分第二带宽,并在所述部分第二带宽上发送参考信号,所述组成第一带宽的第二带宽中的起始传输的第二带宽的标识,和组成第一带宽的第二带宽中的第二带宽频域间隔之一可以为预定义的。具体的,如果第一带宽为32RB,每个第二带宽为4RB,则第一带宽由8个第二带宽组成(见图14中跳频位置1,2,3,4,5,6,7,8),当基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽中的起始传输的第二带宽的标识为1,组成第一带宽的第二带宽中的第二带宽频域间隔为2时,则终端在第{1,3,5,7}个第二带宽上发送参考信号。又利于当基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽中的起始传输的第二带宽的标识为2,组成第一带宽的第二带宽中的第二带宽频域间隔为2时,则终端在第{2,4,6,8}个第二带宽上发送参考信号。
又例如,参考信号频域位置与时域资源对应关系为F=(f(n)*t1)mod K,其中f为参考信号频域位置与时域资源位置的函数,F为组成第一带宽的第二带宽的位置标识,n为参考信号时域位置确定的标识,例如时域次序,K为组成第一带宽的第二带宽的总数,t1为所述组成第一带宽的第二带宽中的第二带宽频域间隔。则配置t=1时,终端在每一个组成第一带宽的第二带宽中发送参考信号,配置t=2时,终端在组成第一带宽的第二带宽中每间隔一个第二带宽的第二带宽上发送参考信号。
可选的,当所述基站发送的跳频规则指示信号用于指示组成第一带宽的第二带宽的次序间隔时,终端根据所述时域间隔和所述参考信号频域位置与时域资源对应关系确定第二带宽的频域位置。例如参考信号频域位置与时域资源对应关系为F=(f(n*t2))mod K,其中f为参考信号频域位置与时域资源位置的函数,F为组成第一带宽的第二带宽的位置标识,n为参考信号时域位置确定的标识,例如时域次序,K为组成第一带宽的第二带宽的总数,t2为所述组成第一带宽的第二带宽的次序间隔。则配置t2=1时,终端在每一个组成第一带宽的第二带宽中发送参考信号,配置t2=2时,终端在组成第一带宽的第二带宽中,根据参考信号频域位置与时域资源对应关系确定的第二带宽发送次序中,在间隔一个第二带宽的第二带宽上发送参考信号。
作为一种实施方式,基站110还可以配置终端120在一个频域单元上传输参考信号的周期数。周期数代表终端120在一个频域单元上,完成在整个频域单元上发送参考信号的次数。如终端120支持两个频域单元,可以对其中一个频域单元配置周期数为3,而另外一个频域单元周期数为1。这样,终端120在一个频域单元上,重复3次在该频域单元上传输参考信号,而在另外一个频域单元上,仅做1次参考信号传输。
频域单元中参考信号的最大带宽,即频域单元中,需要通过传输参考信号进行测量的最大带宽。如假设图2中频域单元202的带宽是100RB,而需要通过参考信号进行测量的最大带宽为96RB,则在频域单元内,只需要在参考信号的最大带宽,即96RB的带宽中传输参考信号即可。
频域单元内发送参考信号的子载波位置。不同的终端120可以在相同子帧、相同RB集合上发送参考信号。不同终端120采用该RB中不同的子载波即可。体现频域上传输参考信号的子载波密度可以用时间重复因子(time-domain RePetition Factor,RPF),RPF 的值为自然数。如RPF的值为4,即表示每四个子载波中有一个子载波用于传输参考信号。也就是说,在同一时间内,可以有4个不同的终端120,分别占据四个子载波中的一个来传输参考信号。本实施例中的参考信号子载波位置,就是指示终端120可以在哪个子载波上进行参考信号传输。
请参见图4,图中401为一个频域带宽,该频域带宽RPF为2,即每2个子载波中,有一个用于给一个终端120传输参考信号。而空白格部分标示可以给另外一个终端120传输参考信号的子载波。同理,图中402所标示的带宽,RPF值为4,即每4个子载波中,有一个用于一个终端120传输参考信号。而基站110发给终端120的发送参考信号的子载波位置,即是指示该频带中的一个子载波位置,从而终端120可以在该子载波位置上进行参考信号传输。
基站110可以分别为终端120的每个频域单元,或部分频域单元,配置参考信号的跳频带宽(每一跳的带宽),跳频的起始位置,跳频周期,小区级符号位置,和RPF。也可以将参考信号配置信息用于配置一个频域单元的参考信号传输,并作为其他频域单元获取参考信号配置信息的参考,即通过该参考信号配置信息,获取其他频域单元的参考信号配置信息。这里的频域单元可以作为参考频域单元。参考频域单元可以是一个真实的频域单元你,也可以是一个虚拟的频域单元,指用来供其他终端120支持的频域单元用来获取参考信号发送配置信息。
所述参考信号发送配置信息包括参考信号参考带宽,即参考信号每次跳频的带宽。终端120根据所述参考信号参考带宽,频域单元的SCS,和频域单元内的RPF值,获取频域单元的参考信号带宽。具体的,一个频域单元与参考频域单元之间,大子载波间隔就需要较小的RPF值。RPF与子载波间隔成反比。由此可以通过公式RPF=r_RPF*r_SCS/SCS,来或去频域单元的RPF值。其中,r_RPF为参考频域单元的RPF值,r_SCS为参考频域单元的子载波间隔。在根据参考频域单元,获取一个频域单元的RPF值之后,可以根据r_RB/r_RPF*RPF来获取频域单元的参考信号带宽。其中公式中的r_RB为参考频域单元的参考信号信号参考带宽,r_RPF为参考频域单元的RPF值,RPF为频域单元的RPF值。
当然,所述频域单元的参考信号的带宽,应该不大于频域单元的带宽或频域单元内参考信号的最大带宽。
作为一个例子,请参见图5。图5中,如果以频域单元501作为参考频域单元,则参考RPF为2,参考SCS(SubCarrier Spacing,SCS)为120kHz,参考跳频带宽为8RB。下面根据上面的公式计算频域单元502的参考信号发送配置信息。首先,频域单元502的SCS为60kHz,则可以得出频域单元502的RPF为4。之后,根据公式r_RB/r_RPF*RPF则可以得出,频域单元502的跳频带宽为16RB。同样的道理可以计算频域单元503的参考信号发送配置信息。
所述参考信号发送配置信息包括参考信号频域位置与时域资源参考对应关系的指示。终端120根据参考信号频域位置与时域资源参考对应关系确定所述频域单元内的参考信号频域位置与时域资源对应关系;或终端120根据参考信号频域位置与时域资源参考对应关系和频域单元内参考信号带宽确定所述频域单元内的参考信号频域位置与时域资源对应关系。作为一个例子,跳频起始位置为一个频域单元开始跳频的频域位置。跳频起始位 置可以根据参考频域单元的参考初始值,和频域单元的跳频带宽与参考频域单元的参考跳频带宽的比值,计算得出该频域单元的跳频起始位置。请参见图6,如频域单元601的跳频带宽为16RB,参考频域单元603的跳频带宽为4RB,则频域单元601的跳频带宽与参考频域单元603的跳频带宽比值为4。如果初始值为5,则5/4并向下取整可以得出频域单元的起始位置,即图中频域编号为1的频域位置。同样的方式可以计算频域单元602的跳频起始位置。
在终端120支持多个频域单元的场景中,参考信号的传输会通过跳频的方式,在不同的频域单元上进行传输。参考信号仅在跳频所在的当前频域单元上传输参考信号。当跳频位置从其他频域单元跳到当前频域单元之后,这时当前频域单元的参考信号的频域位置,应该根据终端120支持的多个频域单元上发送参考信号的时间确定,而不仅仅考虑本频域单元上的参考信号传输时间。请参见图7,终端120在频域单元702上具有4个跳频位置a,b,c,d。在频域单元701上有2个跳频位置(未编号)。终端120在频域单元702上的第一个跳频周期中,跳频位置的顺序是a,b,c,d。在完成这一个跳频周期之后,跳频到频域单元701,之后又跳频到频域单元702,进行第二个周期的参考信号传输。第二个周期的跳频考虑到频域单元701经过两次跳频,因此第二个周期的跳频顺序为c,d,a,b。
作为一种实施方式,基站110也可以不配置频域单元间的跳频,即每个频域单元独立跳频,基站110通过配置总的跳频周期,并配置不同的时域偏移值实现各频域单元间的正交。该实施方式要求不同频域单元有相同的周期,对于每个频域单元需要的跳数不同的情况,可能会造成资源浪费。
实施例二
除了周期性和非周期性发送参考信号,终端120还可以采用多发传输(multi-shot)的方式来传输参考信号。这种发送参考信号的方式比周期性的方式更灵活(因为触发发送为动态信令通知,例如下行控制信息(DCI,downlink control information)或媒体介入控制单元(MAC CE.media access control control element))。发送总次数更少(因为结束也为动态信令通知或预先配置的长度),相比仅发送一次的非周期具有更多的发送次数。因此多发传输参考信号可以用于一定带宽的跳频测量从而获取一定带宽的测量结果。多发传输参考信号还可以在相同带宽的重复但用不同发送波束发送或用不同的接收波束接收,从而让基站110可以测量不同的发送波束或接收波束对应的信道质量。
请参见图8,步骤801中,基站110向终端120发送多个参考信号资源的指示,和第一指示信息。所述多个参考信号资源的指示包括多个参考信号资源的信息和所述多个参考信号资源的分组信息。如指示所述多个参考信号资源属于第1组。所述第一指示信息指示第1组内多个参考信号资源上传输的参考信号的天线端口间的准共址(Quasi co-located,QCL)关系。所述QCL关系是指根据一个天线端口的参数,可以限定另外一个天线端口的参数。
在步骤802中,终端120根据所述第一指示信息和多个参考信号资源的指示,发送参考信号。
一个参考信号资源为一个时隙内的部分资源。参考信号资源的信息包括以下一个或多个:参考信号映射的时频资源指示,参考信号的周期,参考信号的端口,参考信号的序列 指示。所述参考信号映射的时频资源指示包括以下至少之一:参考信号的带宽,参考信号的频域密度RPF,和参考信号的频域起始位置。所述参考信号的序列指示包括参考信号的序列的根。
所述多个参考信号资源信息还包括参考信号映射的时频资源之间的时间偏移量。所述时间偏移量为多个参考信号时域资源间的时域差值。
作为例子,QCL关系可以是指的是天线端口对应的参考信号中具有相同的参数。QCL关系还可以指的是终端120可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数。QCL关系还可以指两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送波束,接收波束,资源标识中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源标识,或参考信号资源标识,用于指示资源上的波束。
具体的,作为一个例子,所述QCL关系为以下至少之一:参考信号采用相同的发送波束,参考信号采用不同的发送波束,参考信号采用相同的接收波束,参考信号采用不同的接收波束。发送波束对应QCL参数中的AOD/AOD扩展/平均AOD/发送端相关性。接收波束对应QCL参数中的AOA/AOA扩展/平均AOA/接收端相关性。
基站110向终端120发送配置信息,用于指示一个时隙(Slot)内符号(symble)的数量和该时隙内用于传输参考信号的符号。如该时隙内用于传输参考信号的符号数量为k,且k=n或k<=m,其中k,m为自然数,m<n,n为所述时隙中上行传输符号的数量。该消息可以承载于RRC信令或MAC CE信令中。例如符号数量k的取值范围为{1,2,3,4,n}。可选的k不等于n时可以表示为2的整数次幂,例如k的取值范围为{1,2,4,n}或{1,2,4,8,n}。
该配置信息中指示的时隙符号数量可以是一个或多个,对于不同时隙类型指示不同的符号数。其中,用于传输参考信号的符号数量,对于不同的时隙类型指示不同的符号集合。时隙类型根据时隙中上行和/或下行符号数确定,例如全上行时隙,2个下行符号+11个上行符号的时隙,11个下行符号+2个上行符号的时隙等。
如图9所示,上述属于第1组的多个参考信号资源可以是一个频域单元上传输参考信号的资源。如频域单元901,频域位置数量为1,重复次数为4。频域单元902的频域位置数量为4,重复次数为1。上述第一指示信息包括多个参考信号资源的跳频顺序,重复次数,和序列配置。基站110可以通过DCI触发对该这多个资源(资源组)的配置。当然,第一指示信息中也可以不配置重复次数,采用默认值为1。
采用实施例2的实施方式,可以支持在不同关系的参考信号资源组合上发送参考信号。
实施例三
基站110向终端120发送的测量资源,第一配置信息,和第二配置信息。第一配置信息确定第一资源集合。第二配置信息确定对应的接收资源,其中,第二配置信息确定第一资源集合中的一个或多个。第一配置信息还指示第一资源集合中的至少一个资源同至少一个测量资源之间的关系。该关系是关于某个空间参数准共址的。第一配置信息和UE上报的结果有关系。第一配置信息指示的标识基于UE上报的内容。
以下行为例,波束管理中,基站110通过配置下行的CSI-RS测量资源,采用不同的波束向UE发送测量信号。UE通过测量对应的资源,上报对应的测量结果给基站110。基站110根据上报的内容,决定对应的信道(控制信道或数据信道)和信号所采用的波束。基站110会采用第二配置信息来指示UE,UE根据第二配置信息的指示确定采用的接收波束。其中,指示的信令可以通过QCL假设的信息进行,QCL假设是指的基站110发送当前信道采用的波束和之前进行CSI-RS测量的某个资源的发送波束关于空间参数的假设是QCL的,也就是说,基站110采用和之前的某个CSI-RS的发送波束相同的波束来发送当前的信道或信号。基于这样的信息,UE就可以采用之前的接收波束来接收当前的信道或信号。
由于配置的CSI-RS测量资源可能有很多,从资源的数量角度来区分,会导致指示的开销过大。比如下行扫描配置了32个资源,就需要5bit来进行指示。为了降低指示的开销,可以建立一个用于指示的小的资源集合。比如定义资源集合中共有4个元素,则就采用2bit来进行指示,这样,指示的开销就下降。该集合的建立和更新可以通过第一配置信息来实现。
该资源集合的内容基于每次测量后UE的上报进行更新,UE每次上报的数量和内容可以不一致,基站110根据上报的内容和数量对资源集合进行更新。同时,gNB需要通过第一配置信息及时将更新后的信息发给UE,以保证gNB和UE对指示信息的理解一致。其中,第一配置信息指示的信息和上报结果有一定的关系,比如,上报的内容为4个,则指示只需要2bit来区分4个中的哪一个,这样也可以节省开销。如果gNB发现上报的结果中都没有需要的波束,则可以保持不更新。
资源集合中的每一个指示标识,分别和之前的某次测量的资源有关联的关系。例如,假设资源集合中含有4个元素标号为{00,01,10,11},其中第一个元素00关联到之前的某次测量的波束a。在当前的测量和上报之后,基站110发现某个波束b的质量比之前的波束a的质量更好。此时,基站110可以对集合中的元素00所关联的波束进行更新。基站110通过发送第一配置信息更新信息,使得UE能够更新自己的资源集合所关联的波束信息,即元素00关联的波束更新为b。这样,当下次指示00的时候,UE就理解00是关联到波束b。
该集合可以是基于信道配置的,即不同的信道维持不同的集合。比如PDCCH\PDSCH\PUCCH\PUSCH每种信道都维持一个集合,控制信道相对的波束可以宽一些,数据信道的波束可以相对窄一些。也可以是多种信道共用一个集合,该集合中有宽的波束,也有窄的波束。也可以是上行维持一个集合,下行维持一个集合。如果有波束的互易性,也可以上下行维持一个集合。集合中的每个元素标号关联到的波束可以有不同的关系。比如,元素00和元素01对应的两个波束可以是相关性比较小的,这样,有助于实现波束的鲁棒传输,当一个波束被遮挡导致通信中断的时候,有另一个波束来进行通信的恢复。
该方法可以同样应用于上行,在上行传输中,上行的通过配置SRS测量资源,UE向基站110发送测量信号,基站110通知UE采用的发送波束,比如PUCCH/PUSCH的发送波束和之前发送的SRS关于空间参数是QCL的。此时,基站110和UE也可以维持一个资源集合,该资源集合中的每个元素都和某个测量资源的波束是QCL的。每次指示只需要指示集合中的某个元素。
作为一种实施方式,终端110端接收基站110发送的第一配置信息,用于确定传输第一信号的第一资源或第一资源的集合。终端110接受基站110发送的第二配置信息,所述第二配置信息用于指示传输第二信号的第二资源或第二资源的集合。基站110发送第三配置信息,用于指示所述第二信号与第一信号具有关联的参考信号特征,所述关联的参考信号特征为第一参考信号和第二参考信号端口具有QCL关系,或具有相同的空间特征,或对应的上下行空间特征。终端110根据第一参考信号以及关联的参考信号特征发送或接收第二参考信号。所述空间特征包括以下至少之一:到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送波束,接收波束。所述具有QCL关系指的是天线端口对应的参考信号中具有相同的参数,或者,QCL关系指的是用户可以根据一个天线端口的参数确定与所述天线端口具有QCL关系的一个天线端口的参数,或者,QCL关系指的是两个天线端口具有相同的参数,或者,QCL关系指的是两个天线端口具的参数差小于某阈值。其中,该参数可以为时延扩展,多普勒扩展,多普勒频移,平均时延,平均增益,到达角(Angle of arrival,AOA),平均AOA、AOA扩展,离开角(Angle of Departure,AOD),平均离开角AOD、AOD扩展,接收天线空间相关性参数,发送波束,接收波束,资源标识中的至少一个。所述波束包括以下至少一个,预编码,权值序号,波束序号。所述角度可以为不同维度的分解值,或不同维度分解值的组合。所述的天线端口为具有不同天线端口编号的天线端口,和/或具有相同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口,和/或具有不同天线端口号在不同时间和/或频率和/或码域资源内进行信息发送或接收的天线端口。所述资源标识包括信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)资源标识,或SRS资源标识,用于指示资源上的波束。
第一资源还包括第一参考信号的以下至少之一端口、时域资源、频域资源、码域资源;第二资源还包括第二参考信号的以下至少之一端口、时域资源、频域资源、码域资源。
第一参考信号可以为第一上行参考信号和/或第一下行参考信号。所述的第一上行参考信号包括以下至少之一:探测参考信号,物理层随机接入信道,前导序列,上行解调参考信号。所述第一下行参考信号包括以下至少之一:主同步信号,辅同步信号,解调参考信号,信道状态信息参考信号,移动参考信号,波束参考信号。
可选的,第一参考信号候选集可以包含第一上行参考信号中的一类或多于一类参考信号,或第一下行参考信号中的一类或多于一类参考信号,或第一上行参考信号中的一类或多于一类参考信号和第一下行参考信号中的一类或多于一类参考信号。例如第一参考信号候选集可以包含SRS资源,或包含SRS资源和PRACH资源。又例如第一参考信号候选集包含CSI-RS资源,或包含CSI-RS资源和同步信号资源。又例如第一参考信号候选集包含 SRS资源和CSI-RS资源。第二参考信号可以为第二上行参考信号和/或第二下行参考信号。所述的第二上行参考信号包括以下至少之一:探测参考信号,物理层随机接入信道,前导序列,上行解调参考信号。所述第二下行参考信号包括以下至少之一:主同步信号,辅同步信号,解调参考信号,信道状态信息参考信号,移动参考信号,波束参考信号。
具体的,可以包括以下实施方式:场景一:若第一参考信号为第一上行参考信号,第二参考信号为第二上行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具有相同的AOD,或相同的空间特性包括相同的AOD,则认为第一参考信号和第二参考信号的用户端发送波束相同。例如第一参考信号和第二参考信号为SRS,则用户根据第三配置信息确定两者具有相同的用户端发送波束。
场景二:若第一参考信号为第一上行参考信号,第二参考信号为第二上行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具有相同的AOA,或相同的空间特性包括相同的AOA,则认为第一参考信号和第二参考信号的基站端接收波束相同。例如第一参考信号和第二参考信号为SRS,则用户根据第三配置信息确定两者具有相同的接收波束。
场景三:若第一参考信号为第一上行参考信号,第二参考信号为第二下行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具用户根据第一参考信号的AOD确定第二参考信号的AOA,或上下行对应的空间特性包括第一参考信号的AOD对应第二参考信号的AOA,则认为第一参考信号的用户端发送波束和第二参考信号的用户端接收波束对应。例如第一参考信号为SRS,第二参考信号为CSI-RS,则用户根据第三配置信息确定SRS发送波束和CSI-RS的接收波束对应。
场景四:若第一参考信号为第一上行参考信号,第二参考信号为第二下行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具用户根据第一参考信号的AOA确定第二参考信号的AOD,或上下行对应的空间特性包括第一参考信号的AOA对应第二参考信号的AOD,则认为第一参考信号的基站端接收波束和第二参考信号的基站端发送波束对应。例如第一参考信号为SRS,第二参考信号为CSI-RS,则用户根据第三配置信息确定SRS接收波束和CSI-RS的发送波束对应。
场景五:若第一参考信号为第一下行参考信号,第二参考信号为第二上行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具用户根据第一参考信号的AOD确定第二参考信号的AOA,或上下行对应的空间特性包括第一参考信号的AOD对应第二参考信号的AOA,则认为第一参考信号的基站端发送波束和第二参考信号的基站端接收波束对应。例如第一参考信号为CSI-RS,第二参考信号为SRS,则用户根据第三配置信息确定CSI-RS发送波束和SRS的接收波束对应。
场景六:若第一参考信号为第一下行参考信号,第二参考信号为第二上行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具用户根据第一参考信号的AOA确定第二参考信号的AOD,或上下行对应的空间特性包括第一参考信号的AOA对应第二参考信号的AOD,则认为第一参考信号的用户端接收波束和第二参考信号的用户端发送波束对应。例如第一参考信号为CSI-RS,第二参考信号为SRS,则用户根据第三配置信息确定CSI-RS接收波束和SRS的发送波束对应。
场景七:若第一参考信号为第一下行参考信号,第二参考信号为第二下行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具有相同的AOD,或相同的空间特性包括相同的AOD,则认为第一参考信号和第二参考信号的基站端发送波束相同。例如第一参考信号和第二参考信号为CSI-RS,则用户根据第三配置信息确定两者具有相同的基站端发送波束。
场景八:若第一参考信号为第一下行参考信号,第二参考信号为第二下行参考信号,当第三配置信息指示第一参考信号和第二参考信号具有的QCL关系包含具有相同的AOA,或相同的空间特性包括相同的AOA,则认为第一参考信号和第二参考信号的用户端接收波束相同。例如第一参考信号和第二参考信号为CSI-RS,则用户根据第三配置信息确定两者具有相同的接收波束。
作为一种实施方式,第一参考信号发送可以在第三配置信息之前,可以第三配置信息在第一参考信号发送之前。若第三配置信息位于参考第一参考信号前发送,则用于指示发送第一参考信号和发送第二参考信号的资源对应关系。具体的,第三配置信息用于指示第一资源与第二资源的对应关系,或第一资源集合与第二资源的对应关系,或第一资源与第二资源集合的对应关系,或第一资源集合和第二资源集合对应关系。此时第三配置信息包含第一资源标识和第二资源标识,或第一资源候选集合中的标识和第二资源标识,或第一资源标识和第二资源候选集合中的标识,或第一资源候选集合中的标识和第二资源候选集合中的标识。
作为一种实施方式,所述第一资源的候选集合包含一个或多个第一资源,为基站配置和/或用户上报的。所述第二资源的候选集合包含一个或多个第二资源,为基站配置和/或用户上报的。
作为一种实施方式,若第一参考信号为第一下行参考信号,且第一参考信号资源集合内的第一参考信号资源上的第一参考信号端口间具有QCL关系,或具有相同的空间特征,且第二参考信号为第二上行参考信号,且第二参考信号资源集合内的第二参考信号资源上的第二参考信号端口间具有QCL关系,或具有相同的空间特征,其中QCL关系中的参数包括AOD,或空间特征包括AOD,则所述多个第二参考信号资源上的第二参考信号端口与一个第一参考信号资源上的第一参考信号端口具有对应的QCL关系或上下行对应的空间特性,如所有第二参考信号资源上的第二参考信号端口的AOD与一个第一参考信号资源上的第一参考信号端口的AOA对应,用户根据下行接收第一参考信号进行测量选择所述的一个第一参考信号资源。例如第一参考信号为CSI-RS,第二参考信号为SRS,则用户根据CSI-RS的测量情况,选择一个CSI-RS的接收波束,并使用选择的CSI-RS的接收波束对应的发送波束进行所有SRS资源上的SRS发送。
作为一种实施方式,若第一参考信号为第一上行参考信号,且第一参考信号资源集合内的第一参考信号资源上的第一参考信号端口间具有QCL关系,或具有相同的空间特征,且第二参考信号为第二下行参考信号,且第二参考信号资源集合内的第二参考信号资源上的第二参考信号端口间具有QCL关系,或具有相同的空间特征,其中QCL关系中的参数包括AOD,或空间特征包括AOD,则所述多个第二参考信号资源上的第二参考信号端口与一个第一参考信号资源上的第一参考信号端口具有对应的QCL关系或上下行对应的空间特 性,如所有第二参考信号资源上的第二参考信号端口的AOD与一个第一参考信号资源上的第一参考信号端口的AOA对应,基站根据上行接收第一参考信号进行测量选择所述的一个第一参考信号资源。例如第一参考信号为SRS,第二参考信号为CSI-RS,则基站根据SRS的测量情况,选择一个SRS的接收波束,并使用选择的SRS的接收波束对应的发送波束进行所有CSI-RS资源上的CSI-RS发送。
上述实施例中的AOA可以包含平均AOA和/或AOA扩展和/或接收端空间相关性。上述实施例中的AOD可以包含平均AOD和/或AOD扩展和/或发送端空间相关性。
请参见图10,执行上述实施例一和实施二中的方法的基站110包括第一处理单元102和第一收发单元101。第一处理单元102用于执行上述步骤301和801中基站110的参考信号配置消息或符号配置消息等消息的生成。第一收发单元101用于将第一处理单元102生成的参考信号配置消息,或符号配置消息发送到终端120。请进一步参见图11,终端120包括第二收发单元111和第二处理单元112。第二收发单元111用于接收来自基站110的参考信号配置消息,或符号配置消息。第二处理单元112用于执行如步骤302和步骤802中。根据第二收发单元111接收到的参考信号配置消息,发送参考信号。
应理解以上通信装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,第一处理单元102或第二处理单元112可以为单独设立的处理元件,也可以集成在基站110或终端120上的某一个芯片中实现。如基带芯片。此外,也可以以程序的形式存储于基站110或终端120的存储器中,由基站110或终端120的某一个处理元件调用并执行处理单元的功能。其它单元的实现与之类似。终端120可以通过天线接收基站110发送的信息,该信息通过射频装置处理发送给基带装置,以上第一、第二收发单元可以通过射频装置与基带装置之间的接口接收/发送基站110或终端120传送的信息。此外基站110或终端120的单元可以全部或部分集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上第一处理单元或第二处理单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是基带处理器,或通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现
请查阅图12,基站110包括第一收发器121和第一处理器122。第一处理器122可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,基带处理器,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场 可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,第一处理器122还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,第一处理器122可以用于执行,例如,第一处理单元102所执行的步骤。第一处理器122可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器中存储的指令来执行上述步骤和/或操作的处理器。
第一收发器121包括发射器和接收器,其中,发射器用于通过多根天线之中的至少一根天线发送信号。接收器用于通过多根天线之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,第一收发器121具体可以用于通过多根天线执行,例如,第一收发单元的功能。
图13是终端120的结构图。终端120包括第二处理器132和第二收发器131。第二处理器132可以是通用处理器,例如但不限于,中央处理器(Central Processing Unit,CPU),也可以是专用处理器,例如但不限于,数字信号处理器(Digital Signal Processor,DSP)、应用专用集成电路(Application Specific Integrated Circuit,ASIC)和现场可编程门阵列(Field Programmable Gate Array,FPGA)等。此外,第二处理器132还可以是多个处理器的组合。特别的,在本发明实施例提供的技术方案中,第二处理器132可以用于执行,例如,第二处理单元所执行的步骤,功能。第二处理器132可以是专门设计用于执行上述步骤和/或操作的处理器,也可以是通过读取并执行存储器中存储的指令来执行上述步骤和/或操作的处理器。
第二收发器131包括发射器和接收器,其中,发射器用于通过多根天线之中的至少一根天线发送信号。接收器用于通过多根天线之中的至少一根天线接收信号。特别的,在本发明实施例提供的技术方案中,第二收发器131具体可以用于通过多根天线执行,例如,第二收发单元111所执行的功能,步骤。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (23)

  1. 一种参考信号发送方法,其特征在于:
    终端接收来自基站的参考信号发送配置信息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;
    终端根据上述参考信号发送配置信息,在所述一个或多个频域单元上向基站发送参考信号。
  2. 一种参考信号发送装置,其特征在于:包括处理单元和收发单元;
    所述收发单元接收来自基站的参考信号发送配置消息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;
    所述处理单元根据上述参考信号发送配置信息,指示收发单元在所述一个或多个频域单元上向基站发送参考信号。
  3. 一种参考信号发送配置信息发送方法,其特征在于:
    基站生成参考信号发送配置信息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;
    基站向终端发送该参考信号发送配置信息。
  4. 一种参考信号配置信息的发送装置,其特征在于:包括
    处理单元,生成参考信号发送配置信息,所述参考信号发送配置信息指示终端在一个或多个频域单元上传输参考信号,其中,所述一个或多个频域单元和其他频域单元组成基站支持的传输带宽的一部分;
    所述收发单元向终端发送该参考信号发送配置信息。
  5. 如权利要求1或3所述的方法,或权利要求2或4所述的装置,其特征在于:所述参考信号发送配置信息包括指示用于传输所述参考信号的时频资源,所述参考信号发送配置信息包括第一参数,用于指示所述终端在多个频域单元上传输参考信号的的顺序。
  6. 如权利要求1所述的方法,其特征在于:终端在所述多个频域单元上发送参考信号的顺序是预先设定的。
  7. 如权利要求2所述的装置,其特征在于处理单元指示收发单元在所述多个频域单元上发送参考信号的顺序是预先设定的。
  8. 如权利要求1-7中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包括第二参数,用于指示终端发送参考信号的时间单元,和发送参考信号的频域单元的对应关系。
  9. 如权利要求1-8中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包含分组参数,用于指示终端对所述多个频域单元进行分组,不同组的频域单元可以同时发送参考信号。
  10. 如权利要求1-9中所述的方法或装置,其特征在于:所述参考信号配置信息包括以下一个或多个信息:频域单元内的参考信号传输周期,频域单元内参考信号带宽,频域单元中参考信号的最大带宽,频域单元内发送参考信号的起始子载波位置,频域单元内参 考信号频域位置与时域资源对应关系。
  11. 如权利要求1-10中任一所述的方法或装置,其特征在于:所述参考信号配置信息包括参考信号的参考周期指示参数,终端或处理单元根据其所支持的频域单元的数量,所述频域单元的带宽或频域单元内用于参考信号传输的带宽,和每一跳的跳频带宽,确定一个频域单元的参考信号传输周期。
  12. 如权利要求1-11中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包括参考信号参考带宽指示,终端或处理单元根据所述参考信号的参考带宽指示,频域单元的子载波间隔,和频域单元内参考信号的频域密度,获取频域单元的参考信号带宽。
  13. 如权利要求1-12中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包括参考信号参考起始子载波指示,用于指示发送所述参考信号的起始子载波。
  14. 如权利要求1-13中任一所述的方法或装置,其特征在于:所述多个频域单元内的参考信号起始子载波标识相同。
  15. 如权利要求1-14中任一所述的方法或装置,其特征在于:所述参考信号发送配置信息包括参考信号频域位置与时域资源参考对应关系的指示,终端或处理单元根据参考信号频域位置与时域资源参考对应关系确定所述频域单元内的参考信号频域位置与时域资源对应关系;或终端或处理单元根据参考信号频域位置与时域资源参考对应关系和频域单元内参考信号带宽确定所述频域单元内的参考信号频域位置与时域资源对应关系。
  16. 如权利要求1-15中任一所述的方法或装置,其特征在于:频域单元内的参考信号的频域位置,根据终端支持的多个频域单元上发送参考信号的时间确定。
  17. 一种参考信号发送方法,其特征在于:
    终端接收来自基站的参考信号发送配置信息,所述参考信号发送配置信息指示终端在至少一个频域单元上传输参考信号,其中,所述频域单元是基站支持的传输带宽的一部分,所述参考信号发送配置信息包括第一带宽,用于指示频域单元内用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成;
    终端根据预先设定的规则或来自基站的指示信息,确定在一个参考信号周期内,选择一部分第二带宽进行参考信号发送。
  18. 一种参考信号发送装置,其特征在于:包括处理单元和收发单元;收发单元接收来自基站的参考信号发送配置信息,所述参考信号发送配置信息指示终端在至少一个频域单元上传输参考信号,其中,所述频域单元是基站支持的传输带宽的一部分,所述参考信号发送配置信息包括第一带宽,用于指示频域单元内用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成;处理单元根据预先设定的规则或来自基站的指示信息,确定在一个参考信号周期内,选择一部分第二带宽进行参考信号发送。
  19. 一种参考信号发送配置信息发送方法,其特征在于:
    基站生成参考信号发送配置信息,用于指示终端在至少一个频域单元上传输参考信号,其中,所述频域单元是基站支持的传输带宽的一部分,所述参考信号发送配置信息包括第一带宽,用于指示频域单元内用于参考信号传输的带宽,第二带宽,用于指示在符号上发 送参考信号的带宽,所述第一带宽由多个第二带宽组成,和指示信息,用于指示终端在部分第二带宽上传输参考信号;
    基站向终端发送所述参考信号发送配置信息。
  20. 一种参考信号发送配置信息发送装置,其特征在于:包括处理单元和收发单元;
    所述处理单元生成参考信号发送配置信息,用于指示终端在至少一个频域单元上传输参考信号,其中,所述频域单元是基站支持的传输带宽的一部分,所述参考信号发送配置信息包括第一带宽,用于指示频域单元内用于参考信号传输的带宽,第二带宽,用于指示在符号上发送参考信号的带宽,所述第一带宽由多个第二带宽组成,和指示信息,用于指示终端在部分第二带宽上传输参考信号;
    所述收发单元向终端发送所述参考信号发送配置信息。
  21. 如权利要求17-20中任一项所述的装置或方法,其特征在于:所述用于进行参考信号发送的多个第二带宽,位于不同的符号上。
  22. 如权利要求17或18中任一项所述的装置或方法,其特征在于:所述预先预定的规则为:当前传输的参考信号用于波束扫描,或当前传输的参考信号的子载波间隔大于基站配置的终端在该频域单元上PUSCH传输的子载波间隔或参考子载波间隔,则终端确定在一个参考信号周期内,在所述组成所述第一带宽的多个第二带宽中的部分第二带宽上发送参考信号。
  23. 如权利要求17-20中任一项所述的方法或装置,其特征在于:所述指示信息为以下几种信息中的至少一种:(1)指示信息中包含部分第二带宽的标识,指示终端在所述部分第二带宽上发送参考信号;(2)指示信息中包含索引信息,用于获取部分第二带宽的标识,指示终端在所述部分第二带宽上发送参考信号;(3)指示信息中包含频域间隔,指示终端在间隔为所述频域间隔的多个第二带宽上传输参考信号,所述满足频域间隔的第二带宽中包含一个预定或基站指示的起始频域位置;(4)指示信息中含第二带宽的次序间隔,指示终端根据次序间隔确定发送参考信号的部分第二带宽。
PCT/CN2018/080398 2017-03-24 2018-03-24 参考信号传输技术 WO2018171793A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112019017970A BR112019017970A2 (pt) 2017-03-24 2018-03-24 tecnologia de transmissão de sinal de referência
EP18771023.1A EP3565349B1 (en) 2017-03-24 2018-03-24 Reference signal transmission technology
US16/576,114 US11239969B2 (en) 2017-03-24 2019-09-19 Reference signal transmission technology

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710184923.0 2017-03-24
CN201710184923 2017-03-24
CN201710459768.9 2017-06-16
CN201710459768.9A CN108632008B (zh) 2017-03-24 2017-06-16 一种参考信号发送方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/576,114 Continuation US11239969B2 (en) 2017-03-24 2019-09-19 Reference signal transmission technology

Publications (1)

Publication Number Publication Date
WO2018171793A1 true WO2018171793A1 (zh) 2018-09-27

Family

ID=63584666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080398 WO2018171793A1 (zh) 2017-03-24 2018-03-24 参考信号传输技术

Country Status (1)

Country Link
WO (1) WO2018171793A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841918A (zh) * 2010-04-21 2010-09-22 华为技术有限公司 测量参考信号的带宽资源分配方法及装置
CN102281642A (zh) * 2010-06-10 2011-12-14 中兴通讯股份有限公司 一种lte系统中srs资源分配方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841918A (zh) * 2010-04-21 2010-09-22 华为技术有限公司 测量参考信号的带宽资源分配方法及装置
CN102281642A (zh) * 2010-06-10 2011-12-14 中兴通讯股份有限公司 一种lte系统中srs资源分配方法和装置

Similar Documents

Publication Publication Date Title
CN108632008B (zh) 一种参考信号发送方法及装置
US11329779B2 (en) Information transmission method and device
CN111295847B (zh) 发送和接收信号的方法、装置和系统
US11153774B2 (en) Signal transmission method and device, and system
CN107534986B (zh) 终端、基站,以及探测参考信号的配置和传输方法
WO2018126926A1 (zh) 信号传输方法和装置
JP6880200B2 (ja) 無線通信方法、端末デバイス、及びネットワークデバイス
US11219055B2 (en) Data transmission method and apparatus
US20150358899A1 (en) Method for cell discovery
JP6050898B2 (ja) 協調セルのサウンディング参照信号リソース設定方法及び装置
WO2018082672A1 (zh) 一种上行测量参考信号传输方法、装置和系统
WO2016131186A1 (zh) 一种上行参考信号的通信装置及方法
US10531313B2 (en) Method and system for generating and processing user-equipment-to-user-equipment probe signal
CN110830219B (zh) 资源管理的方法和装置
US20230299923A1 (en) Method and device for generating aperiodic positioning reference signal in wireless communication system
WO2018171793A1 (zh) 参考信号传输技术
WO2020200296A1 (zh) Csi测量方法及装置
CN116961855A (zh) 信息传输方法、装置及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018771023

Country of ref document: EP

Effective date: 20190729

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019017970

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019017970

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190828