CN108631616A - 一种高稳定、双极性高精度的程控电源 - Google Patents

一种高稳定、双极性高精度的程控电源 Download PDF

Info

Publication number
CN108631616A
CN108631616A CN201810351118.7A CN201810351118A CN108631616A CN 108631616 A CN108631616 A CN 108631616A CN 201810351118 A CN201810351118 A CN 201810351118A CN 108631616 A CN108631616 A CN 108631616A
Authority
CN
China
Prior art keywords
phase
unit
power supply
bipolarity
programmable power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810351118.7A
Other languages
English (en)
Inventor
胡安
刘胜道
赵文春
周国华
李志新
高俊吉
熊鑫
孙建龙
卿意
武美娜
刘娣
潘京
王文进
胡石明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan New Energy Institute Of Access Equipment & Technology Co ltd
Naval University of Engineering PLA
Original Assignee
Wuhan New Energy Institute Of Access Equipment & Technology Co ltd
Naval University of Engineering PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan New Energy Institute Of Access Equipment & Technology Co ltd, Naval University of Engineering PLA filed Critical Wuhan New Energy Institute Of Access Equipment & Technology Co ltd
Priority to CN201810351118.7A priority Critical patent/CN108631616A/zh
Publication of CN108631616A publication Critical patent/CN108631616A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/125Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及电气设备技术领域,特别是一种高稳定、双极性高精度的程控电源。包括整流单元、斩波单元和换向单元,所述整流单元输入端与三相交流市电连接,所述整流单元包括三个输出端,所述整流单元的三个输出端分别与一路斩波单元连接,每路所述斩波单元输出端均与一路换向单元连接,所述换向单元输出端与消磁线圈连接,每路所述斩波单元均包括并联设置的主斩波电路和小斩波电路。具有三路输出,每路电流大小及方向均可通过本地操作端或远程监控端程控调节,整流单元可将交流电变为直流电,斩波单元用于调节电流大小,换向单元用于改变电流方向。

Description

一种高稳定、双极性高精度的程控电源
技术领域
本发明涉及电气设备技术领域,特别是一种高稳定、双极性高精度的程控电源。
背景技术
为防止舰艇受到水中磁性兵器及空中磁探测威胁,国内外都比较重视并提出了相应的消磁技术。消磁电源一般分为主电源和副电源两类设备,消磁主电源输出一般电流较大,且是以一定规律的递减脉冲序列。副电源输出电流较小,恒流方式输出,且方向可调。
作为消磁站的重要组成部分,消磁副电源系统主要负责提供舰艇消磁所需的补偿电流,其供电质量优劣直接决定着消磁站消磁能力及消磁作业效率。以往消磁站副电源一般使用三相不控整流和可控硅半控斩波,使用刀闸开关来完成电流的换向。三相不控整流对电网侧电能质量要求较高,功率因数较低且所产生的谐波较高;可控硅半控斩波调节精度低,且电流稳定度较差;传统消磁站使用刀闸开关来改变输出电流方向,由于刀闸开关属于机械开关,其动作时间较长,导致电流方向切换速度慢,且无法在通电时随时改变电流方向,人机交互差。
发明内容
为解决上述技术问题,本发明的目的在于提供一种具有低谐波、高精度、高稳定、可程控换向及电流大小调节功能的高稳定、双极性高精度的程控电源。
本发明的技术方案为:一种高稳定、双极性高精度的程控电源,包括
整流单元:用于将三相交流市电转化成三路直流电分别输出至三个斩波单元;
斩波单元:用于将不稳定的直流电压变换成负载所需的稳定的直流电压,并分别输出至一个换向单元,每个所述斩波单元均包括并联设置的主斩波电路和小斩波电路,
换向单元:用于实现输出电流正负方向转换,并输出至消磁线圈。
较为优选的,所述主斩波电路为六相六重斩波电路,所述小斩波电路为与六相六重斩波电路并联的单相单重斩波电路。
较为优选的,当整流单元输出电流>20A时,主斩波电路工作,小斩波电路封波;
当整流单元输出电流≤20A时,主斩波电路封波,小斩波电路斩波输出。
较为优选的,每重所述六相六重斩波电路包括IGBT、续流二极管、吸收电路、平波电抗和高精度电流传感器,所述IGBT、平波电抗和高精度电流传感器依次串联,所述续流二极管正极与IGBT发射极连接,负极与IGBT集电极连接。
较为优选的,所述整流单元包括用于将三相交流市电变为四组三相交流电的二十四脉波移相变压器和十二相全桥整流电路。
较为优选的,所述二十四脉波移相变压器包括两台六相移相变压器T1和T2,所述两台六相移相变压器T1和T2均采用Dy11Dd0联结形成,网侧采用延边三角形接法。
较为优选的,所述六相移相变压器T1移相为+7.5度,所述六相移相变压器T2移相为-7.5度。
较为优选的,所述二十四脉波移相变压器输出的四组三相交流电分别通过一个交流断路器与十二相全桥整流电路连接,每个所述交流断路器通过电动操作机构同步控制。
较为优选的,所述十二相整流桥包括十二组并联设置的二极管,每组二极管包括串联设置的两个二极管单体,每个二极管单体均并联有RC吸收电路,并串联有熔断器,所述熔断器设有故障反馈触点。
较为优选的,所述换向单元包括驱动板和由晶闸管构成的H桥电路,所述驱动板通过光纤连接有主控板,所述驱动板在主控板的控制下控制H桥电路中各个晶闸管的导通与截至。
本发明的有益效果是:本电源具有三路输出,每路电流大小及方向均可通过本地操作端或远程监控端程控调节,整流单元可将交流电变为直流电,斩波单元用于调节电流大小,换向单元用于改变电流方向。一个整流桥输出可供三路斩波单元使用,每路斩波单元输出端均有一换向单元,每路输出均可独立控制。本电源整流部分采用24脉波十二相不控整流,十二相不控整流相比三相或六相整流,其整流输出侧电压脉动低、电流纹波系数小且稳定度较高;其网侧输入端功率因数较高(可达0.94以上),且输入谐波较少,对电网污染较小。斩波电路采用六相六重斩波电路和单向单重斩波电路构成,既保证了电路的供电稳定性,又减小了输出纹波,同时保证了小电流的输出精度。每路电源输出端前均有一换向器,根据不同输出要求控制相应晶闸管的通断来完成电流输出方向的控制,具有操作方便、体积小、低噪音、可远程控制等优点。
附图说明
图1为本发明一种高稳定、双极性高精度的程控电源的拓扑图;
图2为整流单元电路图;
图3为斩波单元电路图;
图4为换向单元控制图;
图中:1-整流单元,2-斩波电路,3-换向单元,4-消磁线圈,101-二十四脉波移相变压器,102-十二相全桥整流电路。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,一种高稳定、双极性高精度的程控电源包括整流单元1、斩波单元2和换向单元3,该高精度程控电源具有三路输出,每路电流大小及方向均可通过本地操作端或远程监控端程控调节。整流单元1输入端与三相交流市电连接,整流单元1包括三个输出端,整流单元1的三个输出端分别与一路斩波单元2连接,每路斩波单元2输出端均与一路换向单元3连接,换向单元3输出端与消磁线圈4连接。
如图2所示,整流单元1采用24脉波十二相不控整流,其包括二十四脉波移相变压器101和十二相全桥整流电路102。二十四脉波移相变压器101将三相交流市电变为4组三相交流电,二十四脉波移相变压器101由T1,T2两台六相移相变压器组成,且均采用Dy11Dd0联结的绕组形式,网侧采用延边三角形接法,T1移相+7.5度,T2移相-7.5度。四组三相分别经一交流断路器进入十二相全桥整流电路102中,四个断路器(Q1~Q4)的分合均通过电动操作机构同步控制,即操控信号为同一一脉冲信号。本装置控制断路器脉冲信号即可以使用软件控制也可以通过万能转换开关硬件控制,该控制方式可以有效地防止在软件失控的情况下,整流部分无法断电的情况发生。十二相全桥整流电路102(即十二相整流桥)中每个二极管(1-24号二极管)均配备RC吸收电路以及熔断器(FU1~24),且熔断器配有故障反馈触点,将每个熔断器故障反馈触点分别接入一继电器根据继电器指示灯来判定熔断器的状态,可快速判定故障熔断器的位置。
如图3所示,三路斩波单元的输入均与整流单元正负母排连接,每路输出均通过断路器单独控制,每路斩波单元包括大功率斩波(即主斩波电路)和小功率斩波(即小斩波电路)两个斩波模块。主斩波电路为六相六重斩波电路,小斩波电路为与六相六重斩波电路并联的单相单重斩波电路。每重六相六重斩波电路包括IGBT、续流二极管、吸收电路、平波电抗(L1~L6)和高精度电流传感器,IGBT、平波电抗和高精度电流传感器依次串联,续流二极管正极与IGBT发射极连接,负极与IGBT集电极连接。其将整流单元输出直流以5KHz开关频率斩波,根据实际纹波电流的要求选择合适的支撑电容和平波电抗。小斩波的目的是保证电源输出小电流情况的稳定度、精度。当整流单元输出电流>20A时,主斩波电路工作,小斩波电路封波;当整流单元输出电流≤20A时,主斩波电路封波,小斩波电路斩波输出。两种斩波模块每重斩波模块输出端均配置一高精度电流传感器来保证输出电流的精度。
如图4所示,换向单元包括驱动板和由晶闸管构成的H桥电路,驱动板通过光纤连接有主控板,驱动板在主控板的控制下控制H桥电路中各个晶闸管的导通与截至。当晶闸管触发板接收到主控制器输出正向命令时,1号、4号晶闸管导通,2号、3号截止,流过负载的电流为正向电流;当晶闸管触发板接收到主控制器输出负向命令时触发2号、3号晶闸管导通,1号、4号截止,流过负载的电流为负向电流。为防止晶闸管过流损坏以及换向时发生过压故障,晶闸管均配置有熔断器和RC吸收电路。
本电源还包括控制单元,控制单元的主要功能包括:根据操控人员输入的指令要求,控制PWM脉冲使斩波输出电流质量满足相应要求,控制输出电流大小,监控装置自身的状态,提供友好的人机接口界面,并提供远程操作与监控接口。该控制单元采用DSP+ARM+FPGA组成的全数字控制系统,其中DSP主要负责对斩波电路的控制,ARM负责实现本地及远程通信,FPGA主要是方便扩展外部接口。本电源的柜体面板嵌入有一块工控触摸屏,通过该触摸屏可直观的观察设备运行状态,且该触摸屏作为本地操控端可以很方便的控制电源输出大小及电流方向。柜内内部遵循模块化设计,三路输出独立控制,输出端均使用快速连接器,使得与消磁线圈的连接和切换更加便捷。高精度程控电源每路输出均配有绝缘电阻在线监测装置,保证安全性的同时,可检测负载与地发生短路故障。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种高稳定、双极性高精度的程控电源,其特征在于:包括
整流单元(1):用于将三相交流市电转化成三路直流电分别输出至三个斩波单元(2);
斩波单元(2):用于将不稳定的直流电压变换成负载所需的稳定的直流电压,并分别输出至一个换向单元,每个所述斩波单元(2)均包括并联设置的主斩波电路和小斩波电路,
换向单元(3):用于实现输出电流正负方向转换,并输出至消磁线圈(4)。
2.如权利要求1所述高稳定、双极性高精度的程控电源,其特征在于:所述主斩波电路为六相六重斩波电路,所述小斩波电路为与六相六重斩波电路并联的单相单重斩波电路。
3.如权利要求1所述高稳定、双极性高精度的程控电源,其特征在于:当整流单元(1)输出电流>20A时,主斩波电路工作,小斩波电路封波;
当整流单元(1)输出电流≤20A时,主斩波电路封波,小斩波电路斩波输出。
4.如权利要求2所述高稳定、双极性高精度的程控电源,其特征在于:每重所述六相六重斩波电路包括IGBT、续流二极管、吸收电路、平波电抗和高精度电流传感器,所述IGBT、平波电抗和高精度电流传感器依次串联,所述续流二极管正极与IGBT发射极连接,负极与IGBT集电极连接。
5.如权利要求1所述高稳定、双极性高精度的程控电源,其特征在于:所述整流单元(1)包括用于将三相交流市电变为四组三相交流电的二十四脉波移相变压器(101)和十二相全桥整流电路(102)。
6.如权利要求1所述高稳定、双极性高精度的程控电源,其特征在于:所述二十四脉波移相变压器(101)包括两台六相移相变压器T1和T2,所述两台六相移相变压器T1和T2均采用Dy11Dd0联结形成,网侧采用延边三角形接法。
7.如权利要求6所述高稳定、双极性高精度的程控电源,其特征在于:所述六相移相变压器T1移相为+7.5度,所述六相移相变压器T2移相为-7.5度。
8.如权利要求5所述高稳定、双极性高精度的程控电源,其特征在于:所述二十四脉波移相变压器(101)输出的四组三相交流电分别通过一个交流断路器与十二相全桥整流电路(102)连接,每个所述交流断路器通过电动操作机构同步控制。
9.如权利要求5所述高稳定、双极性高精度的程控电源,其特征在于:所述十二相整流桥(102)包括十二组并联设置的二极管,每组二极管包括串联设置的两个二极管单体,每个二极管单体均并联有RC吸收电路,并串联有熔断器,所述熔断器设有故障反馈触点。
10.如权利要求1所述高稳定、双极性高精度的程控电源,其特征在于:所述换向单元(3)包括驱动板和由晶闸管构成的H桥电路,所述驱动板通过光纤连接有主控板,所述驱动板在主控板的控制下控制H桥电路中各个晶闸管的导通与截至。
CN201810351118.7A 2018-04-18 2018-04-18 一种高稳定、双极性高精度的程控电源 Pending CN108631616A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810351118.7A CN108631616A (zh) 2018-04-18 2018-04-18 一种高稳定、双极性高精度的程控电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810351118.7A CN108631616A (zh) 2018-04-18 2018-04-18 一种高稳定、双极性高精度的程控电源

Publications (1)

Publication Number Publication Date
CN108631616A true CN108631616A (zh) 2018-10-09

Family

ID=63705544

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810351118.7A Pending CN108631616A (zh) 2018-04-18 2018-04-18 一种高稳定、双极性高精度的程控电源

Country Status (1)

Country Link
CN (1) CN108631616A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114984A1 (en) * 2005-11-21 2007-05-24 Ning Li Register with default control and built-in level shifter
CN101951011A (zh) * 2010-08-25 2011-01-19 南京航空航天大学 太阳能光伏与市电联合供电系统及其控制方法
CN102013817A (zh) * 2010-10-30 2011-04-13 江苏华鹏变压器有限公司 三相48脉波整流变压器
CN201873431U (zh) * 2010-08-17 2011-06-22 岳阳特瑞机电设备厂 基于igbt功率器件和超级电容技术的停电保磁设备
CN104410294A (zh) * 2014-12-26 2015-03-11 株洲南车时代电气股份有限公司 列车供电系统
CN205986270U (zh) * 2016-09-08 2017-02-22 西门子(中国)有限公司 储能装置和逆变器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070114984A1 (en) * 2005-11-21 2007-05-24 Ning Li Register with default control and built-in level shifter
CN201873431U (zh) * 2010-08-17 2011-06-22 岳阳特瑞机电设备厂 基于igbt功率器件和超级电容技术的停电保磁设备
CN101951011A (zh) * 2010-08-25 2011-01-19 南京航空航天大学 太阳能光伏与市电联合供电系统及其控制方法
CN102013817A (zh) * 2010-10-30 2011-04-13 江苏华鹏变压器有限公司 三相48脉波整流变压器
CN104410294A (zh) * 2014-12-26 2015-03-11 株洲南车时代电气股份有限公司 列车供电系统
CN205986270U (zh) * 2016-09-08 2017-02-22 西门子(中国)有限公司 储能装置和逆变器

Similar Documents

Publication Publication Date Title
US20200177100A1 (en) Conversion circuit, control method, and power supply device
Suryawanshi et al. Unity-power-factor operation of three-phase AC–DC soft switched converter based on boost active clamp topology in modular approach
CN100533166C (zh) 一种变流器的试验电路
Iman-Eini et al. Analysis and design of power electronic transformer for medium voltage levels
US11967859B2 (en) Power factor correction circuit, power factor correction assembly and on-line uninterruptible power supply comprising same
JP2013526827A (ja) 電気エネルギー転換装置
CN103701309A (zh) 变频设备用交直流供电系统及变频空调器
CN107153152A (zh) 一种电网适应性测试装置
CN206415753U (zh) 一种大功率SiC埋弧焊接电源
JP5963197B2 (ja) 交流交流双方向電力変換器
CN108599611A (zh) 一种基于电网直供的大功率脉冲电源
Hosseini et al. Improved power quality three phase AC-DC converter
CN206945888U (zh) 一种电网适应性测试装置
CN108631616A (zh) 一种高稳定、双极性高精度的程控电源
CN213906557U (zh) 分布式低谐波高频整流装置
CN209767396U (zh) 一种固态高频感应加热电源的调功装置
Hossain et al. True three-phase bidirectional switch based ac-ac buck-boost converter topology
CN105406457A (zh) 基于晶闸管的双路供电的高压变频器单元旁路装置
KR100713691B1 (ko) 전압 강하 전용 전압제어장치
CN215870891U (zh) 一种高压智能节电装置
CN117081070B (zh) 电网友好型igbt连续调压低压大功率整流装置、水电解制氢电源及其控制方法
CN212012490U (zh) 等离子炬电磁线圈用电源
Inaba et al. Operation of three-phase to single-phase matrix converter with power decoupling inductor for distribution network at zero power factor
CN203734547U (zh) 一种多功能大功率交流电源装置
Rahman Matrix Converter and Its Probable Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20181009