CN108630453B - 一步法制备类石墨烯碳纳米片材料的方法及其用途 - Google Patents

一步法制备类石墨烯碳纳米片材料的方法及其用途 Download PDF

Info

Publication number
CN108630453B
CN108630453B CN201710155086.9A CN201710155086A CN108630453B CN 108630453 B CN108630453 B CN 108630453B CN 201710155086 A CN201710155086 A CN 201710155086A CN 108630453 B CN108630453 B CN 108630453B
Authority
CN
China
Prior art keywords
carbon
carbon nanosheet
nanosheet material
current density
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710155086.9A
Other languages
English (en)
Other versions
CN108630453A (zh
Inventor
王焕磊
崔永朋
毛楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ocean University of China
Original Assignee
Ocean University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocean University of China filed Critical Ocean University of China
Priority to CN201710155086.9A priority Critical patent/CN108630453B/zh
Publication of CN108630453A publication Critical patent/CN108630453A/zh
Application granted granted Critical
Publication of CN108630453B publication Critical patent/CN108630453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明提供了一种以纤维素基材料为前驱体来制备超级电容器电极材料的方法。该方法是将纤维素类前驱体和不同种类、不同浓度的活化剂进行充分混合,然后将混合均匀的混合物置于管式炉中在200~500℃下保温一定时间进行预碳化,之后继续升温至800~1200℃保温一定时间进行化学活化。将得到的产物依次进行酸和/或去离子水清洗至中性,得到碳纳米片材料。该方法得到的碳纳米片材料具有高比表面积、多级孔结构、类石墨烯结构、高比容量等特点,制备这种碳材料具有成本低、方法简单、可大批量生产的优势。作为超级电容器电极材料表现出了优异的电容性能。

Description

一步法制备类石墨烯碳纳米片材料的方法及其用途
技术领域
本发明属于化学能源材料领域,提供了一种活化碳化一步法制备纤维素基碳纳米片材料的方法,以及作为超级电容器电极在以离子液体为电解液体系中的应用。
背景技术
能源储存与转化一直是现代社会发展的挑战之一,能够解决环境问题和能源危机。而在能源储存与转化器件中,超级电容器具有功率密度高,循环寿命长等优点,被广泛应用于高功率的启动装置。与电池相比,超级电容器的能量密度较低,因此,寻找一种在不损耗功率密度的前提下的高能量密度的材料是目前研究的瓶颈。碳材料是现在超级电容器中的主导材料之一。多孔碳材料具有较高的比表面积,可以调控的孔结构,优异的导电性,环境友好和低成本等优点。在碳材料电极表面与电解液界面可以形成一种双电层来吸附电荷储存能量,故需要电极材料具有较大的比表面积及丰富的孔结构。
目前,实验室中能合成各种具有不同的形貌、孔隙和结构的碳材料,比如:活性炭、模板碳、碳化物衍生碳、碳纳米管和石墨烯等。它们各自具有不同的优缺点,模板碳的合成过程能够有效地控制比表面积和孔隙率,但是复杂的合成步骤和繁琐的清洗过程限制了碳的大批量生产。碳化物衍生碳是通过移走碳化物中的非碳元素,获得具有高比表面积的碳结构,但制备过程中有毒气体(如:氯气)的使用对生活环境造成了较大的破坏。碳纳米管和石墨烯等新型碳结构具有较好的孔隙率和比表面积,但是其昂贵的价格限制了它的广泛使用。而传统的活化方法可以大批量的生产多孔碳材料,但它的微观形貌不能得到一个较好的调控、并且对电解液具有较差的润湿性,从而在能量储存与转化器件中不能得到较好的电化学性能。因此,为了克服传统活化法的不足,我们探索了一种新型的活化碳化一步进行的方法。
活化碳化一步法的主要挑战是寻找合适的前驱体和活化剂,活化技术包括物理活化和化学活化。活化过程主要是控制合适的孔隙率和较高的比表面积。本专利是使用纤维素基材料(甲基纤维素,微晶纤维素,羧甲基纤维素,氰乙基纤维素,木质纤维素,硝化纤维素等)作为前驱体进行化学活化(活化剂:KOH, NaOH, K2CO3, Na2CO3, KHCO3, NaHCO3等)来获得碳纳米片材料。这种方法在相对较低的热解温度和较短的活化过程就能得到碳纳米片材料,而且不需要复杂的清洗过程。不同的活化剂对微观形貌的调控有不同的作用,为了控制碳材料的结构和形貌,我们采用单一活化剂和两种活化剂共用的策略实现了二维/三维碳纳米片材料的制备。我们将这种碳纳米片材料应用到超级电容器电极中,在离子液体体系以及室温和低于室温的温度范围内能够表现出卓越的电化学性能。
发明内容
本发明所要解决的技术问题是提供一种活化碳化一步进行的方法,利用纤维素类前驱体制备出了类石墨烯碳纳米片材料,且这种碳材料在作为超级电容器电极材料时具有较好的电化学性能。
为了解决上述的技术问题,本发明采用的技术方案是:
取一定量的纤维素类前驱体放置于研钵/烧杯中,按照一定的配比加入活化剂,通过机械混合或溶液混合使其混合均匀。将混合好的复合物经过普通烘箱干燥或冷冻干燥后放置到管式炉中,在惰性气氛保护下以设定的升温速度升温至碳化温度,并在此温度下保温一定时间,再升温到更高的温度保温一定时间进行活化。冷却后得到碳化样品。将样品用稀盐酸和/或去离子水清洗去除杂质,干燥后得到纤维素基碳纳米片材料。
与现有技术相比,本发明的有益效果体现在:
(1)纤维素类材料作为前驱体,利用不同的活化剂能够很容易的调控纳米碳材料的形貌和结构。
(2)获得的电极材料应用于超级电容器电极时,在离子体系中能够表现出非常优异的电化学性能,具有较大的比容量。甚至在0℃条件下,也表现出了较好的倍率性能和循环稳定性。
(3) 这种简单的合成路线生产成本低、环境友好无污染,可以进行大批量的生产。
附图说明
图1 为实施例1得到的碳纳米片材料的扫描电镜(SEM)照片。
图2 为实施例2得到的碳纳米片材料的扫描电镜(SEM)照片。
图3 为实施例3得到的碳纳米片材料的扫描电镜(SEM)照片。
图4为实施例4得到的碳纳米片材料的扫描电镜(SEM)照片。
图5 为本发明实施例1~4制备的碳纳米片材料,在20℃,100 mV s-1 扫描速度下的循环伏安曲线。
图6 为本发明实施例1~4制备的碳纳米片材料,在20℃,10 A g-1电流密度下的恒流充放电曲线。
图7 为本发明实施例1~4制备的碳纳米片材料,在20℃下比容量随电流密度的变化曲线。
图8 为本发明实施例1~4制备的碳纳米片材料,在0℃,100 mV s-1 扫描速度下的循环伏安曲线。
图9 为本发明实施例1~4制备的碳纳米片材料,在0℃,10 A g-1电流密度下的恒流充放电曲线。
图10 为本发明实施例1~4制备的碳纳米片材料,在0℃下比容量随电流密度的变化曲线。
具体实施方式
现参考以下具体实施例对本发明做出说明,但并非仅限于实施例。
实施例1
称量2g甲基纤维素前驱体放置于研钵中,加入1.5g KOH活化剂,混合均匀。将混合好的混合物放入管式炉中,在氮气气氛下以3℃ min-1的速度升温至200℃,并在此温度下保温2h,然后继续升温至800℃,保温4h。自然冷却后将产物取出。将产物在室温下用2M的盐酸清洗12h,再用去离子水充分清洗去除杂质,在80℃下干燥得到碳纳米片材料。
实施例2
本实施例的方法与实施例1基本相同,不同之处为:将活化剂换为NaHCO3,NaHCO3的用量为10 g。
实施例3
本实施例的方法与实施例1基本相同,不同之处为:将活化剂换为KOH和NaHCO3的混合物,KOH的用量为2 g,NaHCO3的用量为10 g。
实施例4
本实施例的方法与实施例3基本相同,不同之处为:混合方式改为溶液混合,将前驱体和活化剂的混合物溶解在水中,然后进行冷冻干燥。
应用例1
将得到的样品、导电剂Super P、粘结剂(聚偏氟乙烯,PVDF)以8:1:1的质量比混合后,加入至1-甲基-2-吡咯烷酮中充分研磨,并均匀滴到铜片上制成电极片。在充满氩气的手套箱中将两个质量相同的电极片组装成对称的电容器,其中电解液为离子液体(1-乙基-3-甲基咪唑啉双(三氟甲基磺酰基)亚胺,EMIM TFSI)。使用Gamry 1000电化学工作站对实施例1~4在20℃下进行循环伏安曲线和恒流充放电曲线的测试,测试结果如图5~图7。
从图5可以看出,在20℃下循环伏安曲线呈类矩形,说明本发明所制备的纤维素基碳纳米片材料具有明显的双电层电容性能。从图6可以看出,恒流充放电曲线基本呈三角形,且在相同的电流密度下,纤维素基碳纳米片材料具有较长的放电时间,说明其具有较大的比容量。从图7可以看出,在恒流充放电测试中,本发明所制备的实施例4碳纳米片材料在1 A g-1的电流密度下的电容值可达137 F g-1,当电流密度增加至 100 A g-1时,电容保持率为79.6%,证明了纤维素基碳纳米片材料在20℃下,离子液体中具有优秀的倍率性能。
应用例2
将得到的样品、导电剂Super P、粘结剂(聚偏氟乙烯,PVDF)以8:1:1的质量比混合后,加入至1-甲基-2-吡咯烷酮中充分研磨,并均匀滴到铜片上制成电极片。在充满氩气的手套箱中将两个质量相同的电极片组装成对称的电容器,其中电解液为离子液体(1-乙基-3-甲基咪唑啉双(三氟甲基磺酰基)亚胺,EMIM TFSI)。使用Gamry 1000电化学工作站对实施例1~4在0℃下进行循环伏安曲线和恒流充放电曲线的测试,测试结果如图8~图10。
从图8中可以看出,循环伏安曲线近似呈矩形,说明本发明所制备的芦苇基碳材料具有明显的双电层电容性能。从图9中可以看出,恒流充放电曲线基本呈三角形,且在相同的电流密度下,纤维素基碳纳米片材料在0℃下也具有较长的放电时间,同样说明其在低温时具有较大的比容量。从图10中可以看出,在恒流充放电测试中,本发明所制备的实施例4碳纳米片材料在1 A g-1的电流密度下电容值可达116 F g-1,当电流密度增加至100 A g-1时,电容保持率为69.0%,证明了纤维素基碳纳米片材料在0℃下,离子液体中具有优秀的倍率性能。

Claims (2)

1.一种利用一步法制备类石墨烯碳纳米片材料的制备方法,其特征在于包含如下的步骤:
(a) 混合:将2g甲基纤维素前驱体与活化剂的混合物溶解在水中,然后进行冷冻干燥;其中活化剂为:KOH和NaHCO3的混合物,KOH的用量为2g,NaHCO3的用量为10g;
(b) 一步活化碳化:将混合好的混合物放入管式炉中,在氮气气氛下以3℃ min-1的速度升温至200℃,并在此温度下保温2h,然后继续升温至800℃,保温4h,以进行化学活化;
(c) 清洗:自然冷却后将产物取出,将产物在室温下用2M盐酸清洗12h,再用去离子水充分清洗去除杂质,在80℃下干燥得到碳纳米片材料;
其中,20℃条件下,制得的所述碳纳米片材料在1 A g-1的电流密度下的电容值达137 Fg-1,当电流密度增加至 100 A g-1时,电容保持率为79.6%;0℃条件下,制得的所述碳纳米片材料在1 A g-1的电流密度下电容值达116 F g-1,当电流密度增加至100 A g-1时,电容保持率为69.0%。
2.根据权利要求1所述的制备方法,其特征在于:该碳纳米片材料可应用于超级电容器的电极材料。
CN201710155086.9A 2017-03-16 2017-03-16 一步法制备类石墨烯碳纳米片材料的方法及其用途 Active CN108630453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710155086.9A CN108630453B (zh) 2017-03-16 2017-03-16 一步法制备类石墨烯碳纳米片材料的方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710155086.9A CN108630453B (zh) 2017-03-16 2017-03-16 一步法制备类石墨烯碳纳米片材料的方法及其用途

Publications (2)

Publication Number Publication Date
CN108630453A CN108630453A (zh) 2018-10-09
CN108630453B true CN108630453B (zh) 2020-09-29

Family

ID=63686843

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710155086.9A Active CN108630453B (zh) 2017-03-16 2017-03-16 一步法制备类石墨烯碳纳米片材料的方法及其用途

Country Status (1)

Country Link
CN (1) CN108630453B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473288B (zh) * 2018-10-22 2020-12-18 江苏大学 一种制备三维石墨烯/泡沫镍复合材料的方法
CN110104637A (zh) * 2019-05-20 2019-08-09 中国矿业大学 一种石墨烯纳米片的制备方法
CN110092367B (zh) * 2019-05-20 2021-03-30 中国矿业大学 一种卷绕炭纳米片的制备方法
CN110451482B (zh) * 2019-08-19 2021-04-20 北京理工大学 一种氮硫共掺杂碳纳米片材料的制备方法
CN113130219B (zh) * 2021-04-27 2023-07-18 刘大佐 一种氮硫共掺多孔碳包覆介孔vn超级电容器材料及制法
CN113804712A (zh) * 2021-08-06 2021-12-17 云南大学 层状碳氮化合物刻蚀过程的扫描电镜原位观测制样方法
CN113774402A (zh) * 2021-09-13 2021-12-10 辽宁大学 一种负载钴镍双金属硒化物的纤维素基石墨烯复合材料及其在电催化中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741959A (zh) * 2010-01-22 2012-10-17 康宁股份有限公司 用于edlc的微孔活性炭
CN106185920A (zh) * 2016-06-27 2016-12-07 农业部环境保护科研监测所 一种多孔碳材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102741959A (zh) * 2010-01-22 2012-10-17 康宁股份有限公司 用于edlc的微孔活性炭
CN106185920A (zh) * 2016-06-27 2016-12-07 农业部环境保护科研监测所 一种多孔碳材料及其制备方法和应用

Also Published As

Publication number Publication date
CN108630453A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
CN108630453B (zh) 一步法制备类石墨烯碳纳米片材料的方法及其用途
Hu et al. Highly nitrogen-doped carbon capsules: scalable preparation and high-performance applications in fuel cells and lithium ion batteries
Shang et al. Nitrogen-doped carbon composite derived from ZIF-8/polyaniline@ cellulose-derived carbon aerogel for high-performance symmetric supercapacitors
Yang et al. Zeolitic imidazolate framework-derived Co 3 S 4@ Co (OH) 2 nanoarrays as self-supported electrodes for asymmetric supercapacitors
Yu et al. Porous carbon derived from metal–organic framework@ graphene quantum dots as electrode materials for supercapacitors and lithium-ion batteries
Yu et al. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-Doped mesoporous carbon nanofiber
Zhao et al. An alkali metal–selenium battery with a wide temperature range and low self-discharge
CN110323072B (zh) 一种应用于超级电容器的氮掺杂空心碳球/mof基多孔炭复合材料的制备方法
CN111320172B (zh) 一种含微孔-介孔孔道的生物质活性炭基电极材料的定向合成方法及其应用
CN108288547B (zh) 氮磷硫三元共掺杂有序介孔碳材料的制备方法
CN107768600B (zh) 一种泡沫铜基锂离子电池负极材料及其制备方法
Du et al. Carbonized Enteromorpha prolifera with porous architecture and its polyaniline composites as high-performance electrode materials for supercapacitors
Feng et al. Nitrogen-doped nanostructured porous carbon derived from monosodium glutamate for high-performance lithium sulfur battery
Qin et al. Analogous graphite carbon sheets derived from corn stalks as high performance sodium-ion battery anodes
CN108492996A (zh) 一种氟、氮共掺杂的类石墨烯片层材料的制备方法
Xia et al. Long cycle performance folium cycas biochar/S composite material for lithium-sulfur batteries
Zhang et al. Shaddock wadding created activated carbon as high sulfur content encapsulator for lithium-sulfur batteries
Bian et al. Optimized mesopores enable enhanced capacitance of electrochemical capacitors using ultrahigh surface area carbon derived from waste feathers
CN109390163B (zh) 二维Cu-MOF衍生的多孔碳纳米片的制备方法
CN110993919A (zh) 一种钾离子电池负极储能材料的制备方法和应用
CN112320784B (zh) 一种硫掺杂铁-氮-碳超级电容器电极材料及其制备方法和应用
Zhang et al. Porous structure of fixed sulfur and networked electronic channels in three-dimensional skeletal structure of polyaniline and MOF-derived materials
Han et al. Stable Li-ion storage in Ge/N-doped carbon microsphere anodes
CN110739159B (zh) 一种超级电容器用纳米线状二氧化锰/石墨烯气凝胶复合材料的制备方法
Feng et al. 3D CuO@ nitrogen-graphene aerogel hybrids as anodes for lithium-ion batteries: Gas-liquid interfacial assembly and superior electrochemical performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant