CN108627406B - 一种高强金属材料变幅超高周疲劳寿命预测方法 - Google Patents

一种高强金属材料变幅超高周疲劳寿命预测方法 Download PDF

Info

Publication number
CN108627406B
CN108627406B CN201810396381.8A CN201810396381A CN108627406B CN 108627406 B CN108627406 B CN 108627406B CN 201810396381 A CN201810396381 A CN 201810396381A CN 108627406 B CN108627406 B CN 108627406B
Authority
CN
China
Prior art keywords
fatigue
damage
metal material
strength metal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810396381.8A
Other languages
English (en)
Other versions
CN108627406A (zh
Inventor
聂宝华
陈东初
邓锡凤
钟碧琪
赵子华
张峥
孙海波
刘抒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Shandong Longkuang Metal Products Co ltd
Original Assignee
Foshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan University filed Critical Foshan University
Priority to CN201810396381.8A priority Critical patent/CN108627406B/zh
Publication of CN108627406A publication Critical patent/CN108627406A/zh
Application granted granted Critical
Publication of CN108627406B publication Critical patent/CN108627406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0073Fatigue
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/0202Control of the test
    • G01N2203/0212Theories, calculations
    • G01N2203/0216Finite elements

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明公开了一种基于损伤力学的高强金属材料变幅超高周疲劳寿命预测方法,本发明基于超高周疲劳试验结果和损伤力学模型,提供一套高强金属材料变幅超高周疲劳寿命预测方法;采用超声疲劳试验快速获取高强金属材料超高周疲劳性能,试验频率为20kHz,完成109周次仅需要13.9小时;基于非线性损伤力学理论,引入变幅应力水平的损伤因子,建立材料变幅超高周疲劳寿命预测模型,定量预测变幅载荷下的超高周疲劳寿命。该评定模型思路清晰,计算简单快捷。

Description

一种高强金属材料变幅超高周疲劳寿命预测方法
技术领域
本发明属于工程结构疲劳领域,涉及一种基于损伤力学的金属材料变幅超高周疲劳寿命预测方法。
背景技术
高强金属材料,如高强金属材料,具有高强轻质、耐高温、耐腐蚀与成型性优良等优点,在航空结构、航空发动机压气机叶片、汽轮机叶片等领域得到广泛运用。高强金属结构在高速运转时承受高频振动疲劳载荷,在长期服役过程中承受的循环载荷可达109周次,即超高周疲劳。在实际服役过程中,高强结构往往承受变幅载荷,其对材料超高周疲劳损伤有显著的影响。高强金属材料变幅超高周疲劳寿命预测对工程结构可靠性有重要的意义。现有的变幅疲劳寿命评估方法主要基于线性累积损伤理论以及修正模型。但是,对于高强金属材料超高周疲劳而言,超高周疲劳损伤是非线性损伤特征,疲劳裂纹萌生寿命是主要部分,线性累积损伤理论是不适用的。考虑到疲劳损伤非线性特征,研究人员在线性累积损伤理论基础上引入非线性因子进行修正,但是缺乏理论基础。疲劳非线性损伤力学寿命模型,如Chaboche损伤力学模型,主要是恒幅载荷下的疲劳损伤演化研究,在变幅载荷下的基于Chaboche损伤力学的疲劳寿命预测模型尚不成熟,而且需要确定参数很多,很难在工程中应用。
发明内容
本发明提供一种基于损伤力学的高强金属材料变幅超高周疲劳寿命预测方法。采用超声疲劳试验获取高强金属材料超高周疲劳性能,建立材料高周、超高周范围内疲劳损伤模型;基于非线性损伤力学理论,引入变幅应力水平的损伤因子,建立材料变幅超高周疲劳寿命预测模型,定量预测变幅载荷下的超高周疲劳寿命。
为实现上述目的,本发明采用下述技术方案。
一种基于损伤力学的高强金属材料变幅超高周疲劳寿命预测方法,包括以下步骤:
(1)采用超声疲劳方法对高强金属材料进行超高周次疲劳试验,试验频率20kHz,获得材料疲劳强度-寿命数据,绘制材料疲劳S-N曲线,根据S-N曲线计算参数S和S1,其中S为材料疲劳损伤强度,S1为非线性累积参数;
(2)对高强金属材料进行拉伸试验,加载速率0.00007s-1~0.002s-1,绘制高强金属材料的拉伸曲线,并根据拉伸曲线得出材料的弹性模量E、硬化系数k、材料参数C=0.6E/k、抗拉强度σb
(3)取1~i份高强金属材料试样,对若干高强金属材料试样进行不同热处理工艺,然后对若干高强金属材料进行金相处理,选取其显微组织中初生α相+转变β相组织为代表单元,用显微硬度计采用显微硬度计测定初生α相的硬度与转变β相的硬度,将α相的硬度值设定为α相的弹性模量Ea,将转变β相的硬度值设定为转变β相的弹性模量Eb;
(4)利用Abaqus有限元分析方法计算材料显微组织的力学参数Kf,选取若干完成不同热处理的高强金属材料试样,并对其进行金相处理,在高强金属材料的显微组织中初生α相+转变β相组织为代表单元,对代表单元进行局部细化网格,施加远场应力σn,并输入步骤(3)中所测定的α相的弹性模量Ea及转变β相的弹性模量Eb,计算初生α相附近区域的应力分布,获得最大应力σmax,则力学参数Kf=σmaxn
(5)将以上述测定的参数代入并建立高强金属材料疲劳性能方程:
Figure GDA0002478393770000021
其中σM为疲劳强度,NR为疲劳寿命,S为材料疲劳损伤强度,S1为非线性累积参数,σe为材料的疲劳极限且
Figure GDA0002478393770000022
E为材料的弹性模量,k为材料的硬化系数,C为材料参数其C=0.6E/k;
为三向应力函数:
Figure GDA0002478393770000031
其中ν为材料泊松比其值取0.33;
Kf为反映材料热处理工艺及显微组织特征的参数;
(6)通过建立高强金属材料疲劳性能方程,绘制高强金属材料疲劳性能曲线;
(7)根据损伤力学理论,建立试件1~x含预损伤Di-1的第i应力水平下的疲劳损伤演化方程;
Figure GDA0002478393770000032
式中Di为第i个应力谱块(σi)的疲劳损伤,Di-1为第i-1个应力谱块的疲劳损伤,Dc,i为第i个应力谱块的疲劳临界损伤;Ni为第i个应力谱块的循环周次数,NR,i为在第i个应力幅下的疲劳寿命;
(8)第i个应力谱块的疲劳临界损伤Dc,i为:
Figure GDA0002478393770000033
式中,Dk为拉伸断裂损伤值,一般取0.1;
(9)根据损伤力学理论,第i-1个应力谱块的疲劳损伤Di-1在第i个应力谱块的疲劳损伤等效值为:
则在第i应力谱块下的疲劳等效损伤演化方程:
Figure GDA0002478393770000034
(10)根据材料载荷谱,编制载荷谱块(σi,Ni);
(11)根据疲劳等效损伤演化方程,计算第i个谱块(σi,Ni)下的疲劳损伤Di;
(12)比较疲劳损伤Di与疲劳临界损伤Dc,i;如果Di<Dc,i,则不断地疲劳循环损伤计算;如果Di≥Dc,i,则疲劳裂纹发生扩展断裂,疲劳寿命为N=N0+∑Ni-1;N0为在第i个应力谱块下Di=Dc,i时的实际循环周次数。
本发明的有益效果为:本发明基于超高周疲劳试验结果和损伤力学模型,提供一套高强金属材料变幅超高周疲劳寿命预测方法;采用超声疲劳试验快速获取高强金属材料超高周疲劳性能,试验频率为20kHz,完成109周次仅需要13.9小时;基于非线性损伤力学理论,引入变幅应力水平的损伤因子,建立材料变幅超高周疲劳寿命预测模型,定量预测变幅载荷下的超高周疲劳寿命。该评定模型思路清晰,计算简单快捷。
具体实施方式
以下将结合实施例对本发明的构思、具体结构及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。另外,文中所提到的所有联接/连接关系,并非单指构件直接相接,而是指可根据具体实施情况,通过添加或减少联接辅件,来组成更优的联接结构。本发明创造中的各个技术特征,在不互相矛盾冲突的前提下可以交互组合。
实施例1
下面以TA15钛合金为例,基于损伤力学的变幅超高周疲劳寿命预测方法具体步骤如下:
(1)设计加工高强金属材料超声疲劳光滑试样,标记为试件1,采用超声疲劳方法对试件1进行超高周次疲劳试验,试验频率20kHz,获得材料疲劳强度-寿命数据,绘制材料疲劳S-N曲线,获得参数S=130和S1=3,其中S为材料疲劳损伤强度,S1为非线性累积参数;
(2)对试件1进行拉伸试验,加载速率0.0002s-1,绘制试件1的拉伸曲线,并根据拉伸曲线得出材料的弹性模量E=110GPa、硬化系数k=1634、材料参数C=0.6E/k=40.4、抗拉强度σb=367MPa;
(3)然后对试件1进行金相处理,选取其显微组织中初生α相+转变β相组织为代表单元,用显微硬度计采用显微硬度计测定初生α相的硬度与转变β相的硬度,将α相的硬度值设定为α相的弹性模量Ea,将转变β相的硬度值设定为转变β相的弹性模量Eb;
(4)利用Abaqus有限元分析方法计算材料显微组织的力学参数Kf,对试件1进行金相处理,在试件1的显微组织中初生α相+转变β相组织为代表单元,对代表单元进行局部细化网格,施加远场应力σn,并输入步骤(3)中所测定的α相的弹性模量Ea及转变β相的弹性模量Eb,计算初生α相附近区域的应力分布,获得最大应力σmax,则力学参数Kf=σmaxn=1.25;
(5)将以上述测定的参数代入并建立试件1的疲劳性能方程:
Figure GDA0002478393770000051
其中σM为疲劳强度,NR为疲劳寿命,S为材料疲劳损伤强度,S1为非线性累积参数,σe为材料的疲劳极限且
Figure GDA0002478393770000052
E为材料的弹性模量,k为材料的硬化系数,C为材料参数其C=0.6E/k;
为三向应力函数:
Figure GDA0002478393770000053
其中ν为材料泊松比其值取0.33;
Kf为反映材料热处理工艺及显微组织特征的参数;
(6)建立试件1的疲劳性能方程;
(7)根据材料载荷谱,编制载荷谱块(σi,Ni);以600MPa/106周次+550MPa/107周次+700MPa/105周次为例,根据损伤力学理论,建立试件1的含预损伤Di-1的第i应力水平下的疲劳损伤演化方程;
Figure GDA0002478393770000054
式中Di为第i个应力谱块(σi)的疲劳损伤,Di-1为第i-1个应力谱块的疲劳损伤,Dc,i为第i个应力谱块的疲劳临界损伤;Ni为第i个应力谱块的循环周次数,NR,i为在第i个应力幅下的疲劳寿命;
(8)第i个应力谱块的疲劳临界损伤Dc,i为:
Figure GDA0002478393770000055
式中,Dk为拉伸断裂损伤值,一般取0.1,在三个应力谱块下,试件1的疲劳临界损伤Dc,i分别为:0.336、0.4、0.286;
(9)根据损伤力学理论,第i-1个应力谱块的疲劳损伤Di-1在第i个应力谱块的疲劳损伤等效值为:
则在第i应力谱块下的疲劳等效损伤演化方程:
Figure GDA0002478393770000056
在第一个循环谱块(600MPa/106周次),D1=0.0027;在第二循环谱块中等效初始损伤为0.0032,经过550MPa/107周次后疲劳损伤为0.006;在第三循环谱块中等效初始损伤为0.0037,经过650MPa/105周次后疲劳损伤为0.0078;循环计算第i个循环疲劳损伤Di
(10)比较疲劳损伤Di与疲劳临界损伤Dc,i;如果Di<Dc,i,则不断地疲劳循环损伤计算;在第62个循环谱块中,疲劳损伤D62=0.41,超过疲劳临界损伤值,疲劳裂纹扩展断裂;在第62个循环谱块中,循环周次N0=7.2×106周次,疲劳损伤达到临界值,则疲劳寿命为N=N0+∑N61=2.3×108周次;
以上对本发明的较佳实施方式进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (1)

1.一种基于损伤力学的高强金属材料变幅超高周疲劳寿命预测方法,其特征在于,包括以下步骤:
(1)采用超声疲劳方法对高强金属材料进行超高周次疲劳试验,试验频率20kHz,获得材料疲劳强度-寿命数据,绘制材料疲劳S-N曲线,根据S-N曲线计算参数S和S1,其中S为材料疲劳损伤强度,S1为非线性累积参数;
(2)对高强金属材料进行拉伸试验,加载速率0.00007s-1~0.002s-1,绘制高强金属材料的拉伸曲线,并根据拉伸曲线得出材料的弹性模量E、硬化系数k、材料参数C=0.6E/k、抗拉强度σb
(3)对高强金属材料进行金相处理,选取其显微组织中初生α相+转变β相组织为代表单元,采用显微硬度计测定初生α相的硬度与转变β相的硬度,将α相的硬度值设定为α相的弹性模量Ea,将转变β相的硬度值设定为转变β相的弹性模量Eb;
(4)利用Abaqus有限元分析方法计算材料显微组织的力学参数Kf,对高强金属材料试样进行金相处理,在高强金属材料的显微组织中初生α相+转变β相组织为代表单元,对代表单元进行局部细化网格,施加远场应力σn,并输入步骤(3)中所测定的α相的弹性模量Ea及转变β相的弹性模量Eb,计算初生α相附近区域的应力分布,获得最大应力σmax,则力学参数Kf=σmaxn
(5)将以上述测定的参数代入并建立高强金属材料疲劳性能方程:
Figure FDA0002489861320000011
其中σM为疲劳强度,NR为疲劳寿命,S为材料疲劳损伤强度,S1为非线性累积参数,σe为材料的疲劳极限且
Figure FDA0002489861320000012
E为材料的弹性模量,k为材料的硬化系数,C为材料参数且C=0.6E/k;
Figure FDA0002489861320000013
为三向应力函数:
Figure FDA0002489861320000014
其中v为材料泊松比其值取0.33;
Kf为反映材料热处理工艺及显微组织特征的参数;
(6)通过高强金属材料的疲劳性能方程,绘制高强金属材料疲劳性能曲线;
(7)根据损伤力学理论,建立高强金属材料的含预损伤Di-1的第i应力水平下的疲劳损伤演化方程;
Figure FDA0002489861320000021
式中Di为第i个应力谱块的疲劳损伤,Di-1为第i-1个应力谱块的疲劳损伤,Dc,i为第i个应力谱块的疲劳临界损伤;Ni为第i个应力谱块的循环周次数,NR,i为在第i个应力幅下的疲劳寿命;
(8)第i个应力谱块的疲劳临界损伤Dc,i为:
Figure FDA0002489861320000022
式中,Dk为拉伸断裂损伤值,一般取0.1;
(9)根据损伤力学理论,第i-1个应力谱块的疲劳损伤Di-1在第i个应力谱块的疲劳损伤等效值为:
Figure FDA0002489861320000023
则在第i应力谱块下的疲劳等效损伤演化方程:
Figure FDA0002489861320000024
(10)根据疲劳等效损伤演化方程,计算第i个谱块(σi,Ni)下的疲劳损伤Di
(11)比较疲劳损伤Di与疲劳临界损伤Dc,i;如果Di<Dc,i,则不断地疲劳循环损伤计算;如果Di≥Dc,i,则疲劳裂纹发生扩展断裂,疲劳寿命为N=N0+∑Ni-1;N0为在第i个应力谱块下Di=Dc,i时的实际循环周次数。
CN201810396381.8A 2018-04-27 2018-04-27 一种高强金属材料变幅超高周疲劳寿命预测方法 Active CN108627406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810396381.8A CN108627406B (zh) 2018-04-27 2018-04-27 一种高强金属材料变幅超高周疲劳寿命预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810396381.8A CN108627406B (zh) 2018-04-27 2018-04-27 一种高强金属材料变幅超高周疲劳寿命预测方法

Publications (2)

Publication Number Publication Date
CN108627406A CN108627406A (zh) 2018-10-09
CN108627406B true CN108627406B (zh) 2020-07-14

Family

ID=63694989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810396381.8A Active CN108627406B (zh) 2018-04-27 2018-04-27 一种高强金属材料变幅超高周疲劳寿命预测方法

Country Status (1)

Country Link
CN (1) CN108627406B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112824866B (zh) * 2019-11-20 2021-11-26 中国科学院金属研究所 通过微观组织分散性预测金属材料不同温度疲劳强度的方法
CN111090933B (zh) * 2019-12-11 2023-04-07 中国飞机强度研究所 一种复合材料单向层压板寿命预测方法
CN111044349B (zh) * 2019-12-18 2022-04-26 佛山科学技术学院 一种高强度钢低温超高周疲劳寿命预测方法
CN112948941B (zh) * 2021-03-16 2023-12-12 宁波大学 受剪构件的高周疲劳损伤数值计算方法、装置
CN113591268B (zh) * 2021-06-24 2023-06-23 内蒙古工业大学 变幅载荷下齿轮接触疲劳寿命可靠性评估方法及装置
CN114708927A (zh) * 2022-03-09 2022-07-05 北京理工大学 基于灰色预测和lstm的高温合金疲劳性能预测方法
CN116050202A (zh) * 2022-12-22 2023-05-02 中国人民解放军海军工程大学 适应多种平均应力表现的Chaboche叶片疲劳寿命预测模型及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU977993A1 (ru) * 1981-03-31 1982-11-30 Рижский Филиал Всесоюзного Научно-Исследовательского Института Вагоностроения Устройство дл измерени усталостной долговечности машиностроительных конструкций
CN104833536A (zh) * 2014-02-12 2015-08-12 大连理工大学 一种基于非线性累积损伤理论的结构疲劳寿命计算方法
CN105628373A (zh) * 2016-03-21 2016-06-01 金陵科技学院 一种焊接钢结构的疲劳损伤计算方法
CN107290216A (zh) * 2017-06-28 2017-10-24 南京理工大学 一种316l不锈钢棘轮效应的预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU977993A1 (ru) * 1981-03-31 1982-11-30 Рижский Филиал Всесоюзного Научно-Исследовательского Института Вагоностроения Устройство дл измерени усталостной долговечности машиностроительных конструкций
CN104833536A (zh) * 2014-02-12 2015-08-12 大连理工大学 一种基于非线性累积损伤理论的结构疲劳寿命计算方法
CN105628373A (zh) * 2016-03-21 2016-06-01 金陵科技学院 一种焊接钢结构的疲劳损伤计算方法
CN107290216A (zh) * 2017-06-28 2017-10-24 南京理工大学 一种316l不锈钢棘轮效应的预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
《A new nonlinear fatigue damage model based only on S-N curve parameters》;Ashish Aeran et al.;《International Journal of Fatigue》;20170616;第327-341页 *
《单轴非线性连续疲劳损伤累积模型的研究》;尚德广 等.;《航空学报》;19981130;第19卷(第6期);第647-656页 *

Also Published As

Publication number Publication date
CN108627406A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
CN108627406B (zh) 一种高强金属材料变幅超高周疲劳寿命预测方法
Kamal et al. Advances in fatigue life modeling: A review
Wang et al. Effect of constraint induced by crack depth on creep crack-tip stress field in CT specimens
CN109344553B (zh) 一种高低周复合疲劳载荷作用下结构细节寿命预测方法
CN109918789B (zh) 一种多轴变幅加载下基于短裂纹扩展的全寿命预测方法
Xu et al. Quantifying the creep crack-tip constraint effects using a load-independent constraint parameter Q
Mlikota et al. Modelling of overload effects on fatigue crack initiation in case of carbon steel
CN112711835B (zh) 一种基于修正塑性应变能的金属材料疲劳寿命预测方法
EP2724141A2 (en) System and method for generating a combined model for isothermal and anisothermal fatigue life
Guo et al. A damage coupled elastic-plastic constitutive model and its application on low cycle fatigue life prediction of turbine blade
Li et al. A systematical weight function modified critical distance method to estimate the creep-fatigue life of geometrically different structures
CN109142528A (zh) 一种高强度钛合金高温超高周疲劳寿命预测方法
Zhenhua et al. Prediction of combined cycle fatigue life of TC11 alloy based on modified nonlinear cumulative damage model
Singh et al. Fatigue reliability assessment in time domain using stochastic-induced random stress loads due to limited experimental data
Agaram et al. Crystal plasticity modelling of stability of residual stresses induced by shot peening
Wei et al. Failure analysis of dovetail assemblies under fretting load
Kakavand et al. An investigation on the crack growth in aluminum alloy 7075-T6 under cyclic mechanical and thermal loads
Chen et al. A nonlinear fatigue damage accumulation model under variable amplitude loading considering the loading sequence effect
Xiang et al. Mechanism modelling of shot peening effect on fatigue life prediction
Aeran et al. Novel non-linear relationship to evaluate the critical plane orientation
Niesłony et al. Universal method for applying the mean-stress effect correction in stochastic fatigue-damage accumulation
CN111859619B (zh) 一种利用硬度对热老化材料低周疲劳寿命的无损预测方法
Niesłony et al. Influence of the selected fatigue characteristics of the material on calculated fatigue life under variable amplitude loading
Sanaieei et al. Life estimate of a compressor blade through fractography
CN108664716B (zh) 一种基于超高周疲劳性能的高强钛合金热处理工艺评价模型

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230814

Address after: Qingyang Town, Hushanpu Village North, Zouping County, Binzhou City, Shandong Province, 256600

Patentee after: Shandong longkuang metal products Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

Effective date of registration: 20230814

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 528000 Foshan Institute of science and technology, Xianxi reservoir West Road, Shishan town, Nanhai District, Foshan City, Guangdong Province

Patentee before: FOSHAN University

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A method for predicting the variable amplitude ultra-high cycle fatigue life of high-strength metal materials

Effective date of registration: 20231225

Granted publication date: 20200714

Pledgee: Zouping sub branch of Postal Savings Bank of China

Pledgor: Shandong longkuang metal products Co.,Ltd.

Registration number: Y2023980074053

PE01 Entry into force of the registration of the contract for pledge of patent right