CN108622866B - 一种化学湿法减薄黑磷的方法及其应用 - Google Patents

一种化学湿法减薄黑磷的方法及其应用 Download PDF

Info

Publication number
CN108622866B
CN108622866B CN201710156072.9A CN201710156072A CN108622866B CN 108622866 B CN108622866 B CN 108622866B CN 201710156072 A CN201710156072 A CN 201710156072A CN 108622866 B CN108622866 B CN 108622866B
Authority
CN
China
Prior art keywords
thinning
black phosphorus
solution
wet
chemically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710156072.9A
Other languages
English (en)
Other versions
CN108622866A (zh
Inventor
刘晶
范双青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201710156072.9A priority Critical patent/CN108622866B/zh
Publication of CN108622866A publication Critical patent/CN108622866A/zh
Application granted granted Critical
Publication of CN108622866B publication Critical patent/CN108622866B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/02Preparation of phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/26Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys
    • H01L29/267Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, elements provided for in two or more of the groups H01L29/16, H01L29/18, H01L29/20, H01L29/22, H01L29/24, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/02Particle morphology depicted by an image obtained by optical microscopy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供一种化学湿法减薄黑磷的方法及其应用,包括以下步骤将片状黑磷浸入减薄溶液中于室温20‑25℃浸泡,所述减薄溶液的溶质为摩尔比为(1‑50):(1‑50)的2,2,6,6‑四甲基哌啶氧化物和三苯基四氟硼酸碳,溶剂为二氯甲烷溶液,浸泡5min‑7h后,取出样品、洗涤干燥。本发明的有益效果是:使黑磷材料减薄,得到干净、完整的晶体表面,还可以起到平整黑磷材料的作用,操作步骤简单,无苛刻条件,可实现产业化。

Description

一种化学湿法减薄黑磷的方法及其应用
技术领域
本发明属于光电技术领域,尤其是涉及一种化学湿法减薄黑磷的方法及其应用。
背景技术
二维材料,例如石墨烯,黑磷,过渡金属硫化物,由于其特殊性质和在纳米电子中的潜在应用受到极大的关注。其中,石墨烯,二硫化钼,黑磷作为代表性的二维材料已经在柔性电子,光电探测器,电催化,气体传感等应用领域被广泛研究。二维材料的性质与应用起到了很大程度上取决于二维材料的厚度。
例如随着黑磷的减薄,其带隙从0.3eV增大到2.0eV。其载流子迁移率也和厚度有关。目前可以用等离子体或者原子力显微镜减薄,但是需要价格昂贵的大型仪器,成本很高,减薄速率不易控制,操作复杂,尤其是不能用于溶液中大规模减薄黑磷,原子力显微镜减薄速率就更低了,不适用于产业化。尽管二维材料领域发展迅速,但是制备高效、高质量、厚度可控的二维材料仍然是一个重大挑战。因此,在已知黑磷具有广阔应用前景的基础下,亟待开发一种大规模减薄黑磷来制备薄层甚至单层黑磷的方法
发明内容
为了克服以上减薄黑磷方法的弊端,本发明的目的在于:提供一种操作简单、应用广泛的通过化学湿法刻蚀来制备薄层或单层黑磷的方法。
本发明的技术方案是:本发明的一种化学湿法减薄黑磷的方法,包括以下步骤:
将片状黑磷浸入减薄溶液中于室温20-25℃浸泡,所述减薄溶液的溶质为摩尔比为(1-50):(1-50)的2,2,6,6-四甲基哌啶氧化物和三苯基四氟硼酸碳,溶剂为二氯甲烷溶液,浸泡5min-7h后,取出样品、洗涤干燥。
优选的,所述片状黑磷由块状黑磷通过机械剥离或超声、机械搅拌的方式分解而成。
优选的,所述浸泡时间为30-100min。
优选的,所述洗涤溶剂为二氯甲烷或异丙醇。
优选的,所述干燥作业采用氮气枪吹扫完成。
优选的,所述减薄溶液为等摩尔比的2,2,6,6-四甲基哌啶氧化物和三苯基四氟硼酸碳的二氯甲烷溶液。
优选的,所述减薄溶液的溶质为10mmol的2,2,6,6-四甲基哌啶氧化物和10mmol的三苯基四氟硼酸碳,所述减薄溶液的溶剂为2mL二氯甲烷。
本发明的另一方面,还包括化学湿法减薄黑磷的方法在制备晶体管上的应用,所述晶体管的开关比为106,亚阈值摆幅为450mV/decade,源漏电压差在-40mV-40mV范围内,源漏电流随源漏电压成线性变化,且高度对称。
本发明的另一方面,还包括一种减薄溶液在减薄黑磷上的应用,所述减薄溶液的溶质为摩尔比为(1-50):(1-50)的2,2,6,6-四甲基哌啶氧化物和三苯基四氟硼酸碳,溶剂为二氯甲烷溶液。
优选的,减薄溶液的溶质为等摩尔比的2,2,6,6-四甲基哌啶氧化物和三苯基四氟硼酸碳。
优选的,所述减薄溶液的溶质为10mmol的2,2,6,6-四甲基哌啶氧化物和10mmol的三苯基四氟硼酸碳,所述减薄溶液的溶剂为2mL二氯甲烷。
本发明具有的优点和积极效果是:
1、本发明除了使黑磷材料减薄,得到干净、完整的晶体表面,还可以起到平整黑磷材料的作用,从而可能实现产业化。
2、该方法操作流程简单,工艺成本低廉,无需价格昂贵的大型仪器,无需在无水无氧条件下操作,无需专业人员即可完成流程。
3、可以在很短时间内对大批量黑磷同时减薄。
附图说明
图1是实施例1黑磷的光学显微镜图(光学显微镜采用高分辨透射电子显微镜Tecnai G2 F20(FEI,USA)),其中图1a是通过机械剥离方法将片状黑磷转移到了Si/SiO2基底上,减薄前的光学显微镜图。图1b是化学湿法减薄2h后得到的黑磷的光学显微镜图。
图2是实施例2化学湿法减薄过程中得到的黑磷的原子力显微镜图(原子力显微镜采用Dimension Icon(Bruker,German))。其中图2a是机械剥离制得的片状黑磷材料的原子力显微镜图,图2b是化学湿法减薄5min后的原子力显微镜图。图2c是化学湿法减薄10min后的原子力显微镜图。其厚度变化为0min,5.78nm(2a);5min,4.75nm(2b);10min,2.22nm(2c)。
图3是实施例1化学湿法减薄后得到的黑磷的透射电子显微镜图。
图4是实施例1化学湿法减薄后得到的黑磷的选取电子衍射图。
图5是实施例1化学湿法减薄过程中减薄不同时间得到的黑磷的拉曼光谱图。
图6是实施例2黑磷浸泡前(a)和浸泡30分钟后(b)的原子力显微镜扫描图。
图7是场效应晶体管测试示意图。
图例如下:
1-漏电极Cr/Pd,2-源电极Cr/Pd,3-用四甲基哌啶氮氧化物和三苯基碳四氟硼酸盐溶液减薄的薄层黑磷,4-热氧化的二氧化硅,5-硅衬底,6-半导体分析仪(B1500)
图8是晶体管的输运曲线。
图9是晶体管的输出特性曲线。栅极电压分别设置为-7V(a)、-8V(b)、-9V(c)、-10V(d)。
具体实施方式
下面结合附图对本发明做详细说明。
2,2,6,6-四甲基哌啶氧化物购买于天津希恩思生化科技有限公司,三苯基四氟硼酸碳购买于梯希爱(上海)化成工业发展有限公司。
作为一个实施例,以化学湿法减薄黑磷为例加以说明:
实施例1
(1)将少量块状黑磷置于蓝光胶带上,折叠胶带若干次,通过聚二甲基硅氧烷,将片状黑磷转移到Si/SiO2基底上,光学显微镜图如图1a所示,原子力显微镜图如图2a所示。
(2)在棕色瓶中加入2,2,6,6-四甲基哌啶氧化物(3.1mg,2mmol),三苯基四氟硼酸碳(6.6mg,2mmol)和2mL二氯甲烷,震荡使其溶解。将上述方法得到的片状黑磷浸入溶剂瓶中,于室温浸泡。
(3)用镊子夹出基底,经二氯甲烷、异丙醇洗涤、氮气枪吹干得到尺寸在几个纳米到几百微米,厚度在1nm-30nm的薄层黑磷材料。
当步骤(2)中的室温浸泡时间(减薄时间)为5min,测其原子力显微镜图,如图2b所示,片状黑磷的厚度为4.75nm;
当步骤(2)中的室温浸泡时间(减薄时间)为10min,测其原子力显微镜图,如图2c所示,片状黑磷的厚度为2.22nm。
当步骤(2)室温浸泡时间(减薄时间)为2h时,得到的黑磷的光学显微镜图如图1b所示。
实施例1中得到的黑磷的透射电子显微镜图如图3所示,可见晶格完整,得到的黑磷的选取电子衍射图如图4所示,由此可见黑磷的结构并未发生变化。
对实施例1中减薄时间分别为0min、10min、20min、30min、40min、50min、60min、70min、80min、90min、100min的样品进行拉曼光谱的检测,得到如图5,由此可见,减薄时间越长,拉曼强度越小,黑磷的厚度越薄。
实施例2
(1)将少量块状黑磷置于蓝光胶带上,折叠胶带若干次,通过聚二甲基硅氧烷,将片状黑磷转移到Si/SiO2基底上。
(2)在棕色瓶中加入2,2,6,6-四甲基哌啶氧化物(15.5mg,10mmol),三苯基四氟硼酸碳(33.0mg,10mmol)和2mL二氯甲烷,震荡使其溶解。将上述方法得到的片状黑磷浸入溶剂瓶中,于室温浸泡30分钟。
(3)用镊子夹出基底,经二氯甲烷、异丙醇洗涤、氮气枪吹干得到厚度为2.7nm的薄层黑磷材料。
黑磷浸泡前的原子力显微镜扫描图如图6a所示,厚度为10.8nm,浸泡30分钟后样品的原子力显微镜扫描图如图6b所示,厚度为2.7nm。
实施例3
由实施例1或实施例2减薄的黑磷,制备晶体管,制得的晶体管的结构如图7所示,包括设置在最底层的硅衬底5,硅衬底5的顶端设有热氧化的二氧化硅4,热氧化的二氧化硅4的顶端设有用上述湿法减薄方法减薄的薄层黑磷3,所述薄层黑磷3的左右两侧分别设有漏电极1Cr/Pd(5nm/50nm)和源电极2Cr/Pd(5nm/50nm)。
将上述晶体管半导体放在分析仪载物台进行测试,将源电压Vd设为20mV,漏电压Vs设为0mV,源漏电压差Vds为20mV,栅极电压Vg设置为从-10V到10V,测试得到图8所示的源漏电流随栅极电压变化曲线,开关比(最大源漏电流除以最小源漏电流)为106,亚阈值摆幅(电流每下降一个数量级,电压的变化)为450mV/decade,由图可知栅极电压从-10V到-8V,在小范围内就可实现本装置的场效应晶体管可迅速开关,灵敏度高。
图9为源漏电流随源漏电压变化曲线,将栅极电压Vg分别设置为-7V、-8V、-9V、-10V,由图可看出源漏电压差Vds在-40mV-40mV范围内,源漏电流随源漏电压成线性变化,且高度对称,说明在负电压条件下为欧姆接触。
以上对本发明的一个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (10)

1.化学湿法减薄黑磷的方法,其特征在于:包括以下步骤:将片状黑磷浸入减薄溶液中于室温20-25℃浸泡,所述减薄溶液的溶质为摩尔比为(1-50):(1-50)的2,2,6,6-四甲基哌啶氧化物和三苯基四氟硼酸碳,溶剂为二氯甲烷溶液,浸泡5min-7h后,取出样品、洗涤干燥。
2.根据权利要求1所述的化学湿法减薄黑磷的方法,其特征在于:所述片状黑磷由块状黑磷通过机械剥离或超声、机械搅拌的方式分解而成。
3.根据权利要求1所述的化学湿法减薄黑磷的方法,其特征在于:所述浸泡时间为30-100min。
4.根据权利要求1所述的化学湿法减薄黑磷的方法,其特征在于:所述洗涤溶剂为二氯甲烷或异丙醇。
5.根据权利要求1所述的化学湿法减薄黑磷的方法,其特征在于:所述干燥作业采用氮气枪吹扫完成。
6.根据权利要求1所述的化学湿法减薄黑磷的方法,其特征在于:所述减薄溶液为等摩尔比的2,2,6,6-四甲基哌啶氧化物和三苯基四氟硼酸碳的二氯甲烷溶液。
7.根据权利要求1所述的化学湿法减薄黑磷的方法,其特征在于:所述减薄溶液的溶质为10mmol的2,2,6,6-四甲基哌啶氧化物和10mmol的三苯基四氟硼酸碳,所述减薄溶液的溶剂为2mL二氯甲烷。
8.如权利要求1-7中任一项的减薄黑磷的方法在制备晶体管上的应用,其特征在于:制得的晶体管的开关比为106,亚阈值摆幅为450mV/decade,源漏电压差在-40mV-40mV范围内,源漏电流随源漏电压成线性变化,且高度对称。
9.一种减薄溶液在减薄黑磷上的应用,其特征在于:所述减薄溶液的溶质为摩尔比为(1-50):(1-50)的2,2,6,6-四甲基哌啶氧化物和三苯基四氟硼酸碳,溶剂为二氯甲烷溶液。
10.根据权利要求9所述的一种减薄溶液在减薄黑磷上的应用,其特征在于:减薄溶液的溶质为等摩尔比的2,2,6,6-四甲基哌啶氧化物和三苯基四氟硼酸碳。
CN201710156072.9A 2017-03-17 2017-03-17 一种化学湿法减薄黑磷的方法及其应用 Expired - Fee Related CN108622866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710156072.9A CN108622866B (zh) 2017-03-17 2017-03-17 一种化学湿法减薄黑磷的方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710156072.9A CN108622866B (zh) 2017-03-17 2017-03-17 一种化学湿法减薄黑磷的方法及其应用

Publications (2)

Publication Number Publication Date
CN108622866A CN108622866A (zh) 2018-10-09
CN108622866B true CN108622866B (zh) 2021-06-15

Family

ID=63687432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710156072.9A Expired - Fee Related CN108622866B (zh) 2017-03-17 2017-03-17 一种化学湿法减薄黑磷的方法及其应用

Country Status (1)

Country Link
CN (1) CN108622866B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121682A1 (en) * 2014-02-17 2015-08-20 Ucl Business Plc Method for producing dispersions of nanosheets
CN104961113A (zh) * 2015-07-01 2015-10-07 北京石油化工学院 一种制备磷烯的方法
CN105565289A (zh) * 2016-01-29 2016-05-11 西北大学 黑磷及磷烯的制备方法
CN105645366A (zh) * 2016-01-11 2016-06-08 上海交通大学 单层或少层磷烯的液相剥离制备方法
CN105668531A (zh) * 2016-01-11 2016-06-15 上海交通大学 磷烯纳米条带或磷纳米条带的液相剥离制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121682A1 (en) * 2014-02-17 2015-08-20 Ucl Business Plc Method for producing dispersions of nanosheets
CN104961113A (zh) * 2015-07-01 2015-10-07 北京石油化工学院 一种制备磷烯的方法
CN105645366A (zh) * 2016-01-11 2016-06-08 上海交通大学 单层或少层磷烯的液相剥离制备方法
CN105668531A (zh) * 2016-01-11 2016-06-15 上海交通大学 磷烯纳米条带或磷纳米条带的液相剥离制备方法
CN105565289A (zh) * 2016-01-29 2016-05-11 西北大学 黑磷及磷烯的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tuning the thickness of black phosphorus via ion bombardment-free plasma etching for device performance improvement;Geonyeop Lee et al.;《Journal of Materials Chemistry C》;20160513;第4卷(第26期);全文 *
超薄二维黑磷材料的制备及其光学性质研究;徐靖银;《中国优秀硕士学位论文全文数据库 工程科技1辑》;20160815;全文 *

Also Published As

Publication number Publication date
CN108622866A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
Fu et al. High mobility graphene ion-sensitive field-effect transistors by noncovalent functionalization
US10541374B2 (en) Electronically pure single chirality semiconducting single-walled carbon nanotube for large scale electronic devices
US8008650B2 (en) Transistor with nanotube structure exhibiting N-type semiconductor-like characteristics
Kang et al. Mechanism of the effects of low temperature Al2O3 passivation on graphene field effect transistors
US9761443B2 (en) Method for passivating surfaces, functionalizing inert surfaces, layers and devices including same
Wang et al. Large-area flexible printed thin-film transistors with semiconducting single-walled carbon nanotubes for NO2 sensors
Cernetic et al. Systematic Doping Control of CVD Graphene Transistors with Functionalized Aromatic Self‐Assembled Monolayers
Vázquez Sulleiro et al. Fabrication of devices featuring covalently linked MoS2–graphene heterostructures
Tu et al. Uniform high-k amorphous native oxide synthesized by oxygen plasma for top-gated transistors
CN103946964A (zh) 掺杂碳纳米管和石墨烯用于改善电子迁移率
Klarskov et al. Fast and direct measurements of the electrical properties of graphene using micro four-point probes
Wei et al. Understanding asymmetric transfer characteristics and hysteresis behaviors in graphene devices under different chemical atmospheres
CN108622866B (zh) 一种化学湿法减薄黑磷的方法及其应用
CN109142466B (zh) Cvd石墨烯的无污染转移工艺获得氧化石墨烯与石墨烯复合结构的气敏薄膜传感器及方法
Kumar et al. Fabrication and characterization of gridded Pt/SiO2/Si MOS structure for hydrogen and hydrogen sulphide sensing
Vaziri et al. PDMS-supported graphene transfer using intermediary polymer layers
Son et al. Efficient large-scale removal of poly (methyl methacrylate) layers by using a methyl isobutyl ketone solution
CN108630759B (zh) 基于黑磷的具有高开关比低亚阀值摆幅的场效应晶体管
Sciuto et al. Pentacene organic thin-film transistor based on Archimedean interdigitated spiral pattern
Aikawa et al. Simple Fabrication Technique for Field-Effect Transistor Array Using As-Grown Single-Walled Carbon Nanotubes
Martin-Fernandez et al. Batch wafer scale fabrication of passivated carbon nanotube transistors for electrochemical sensing applications
Nagareddy et al. Improved chemical detection and ultra-fast recovery using oxygen functionalized epitaxial graphene sensors
Drozdowska et al. Pulsed UV-irradiated graphene sensors for ethanol detection at room temperature
Cui et al. Graphene-based hall effect biosensor for improved specificity and sensitivity of label-free DNA detection
Masoumi et al. Fabrication of field-effect transistor based on RGO

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210615

CF01 Termination of patent right due to non-payment of annual fee