CN108605327B - 终端、无线通信方法、基站以及系统 - Google Patents

终端、无线通信方法、基站以及系统 Download PDF

Info

Publication number
CN108605327B
CN108605327B CN201780008904.0A CN201780008904A CN108605327B CN 108605327 B CN108605327 B CN 108605327B CN 201780008904 A CN201780008904 A CN 201780008904A CN 108605327 B CN108605327 B CN 108605327B
Authority
CN
China
Prior art keywords
pdcch
tti
pdsch
period
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780008904.0A
Other languages
English (en)
Other versions
CN108605327A (zh
Inventor
武田一树
原田浩树
武田和晃
永田聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of CN108605327A publication Critical patent/CN108605327A/zh
Application granted granted Critical
Publication of CN108605327B publication Critical patent/CN108605327B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

即使在应用缩短TTI的情况下,也适当地进行通信。利用第一发送时间间隔(TTI:Transmission Time Interval)、和与所述第一TTI相比TTI长度更短的第二TTI来进行通信的用户终端,具有:接收单元,接收从无线基站发送的L1/L2控制信道;以及控制单元,控制按每个所述第一TTI发送的第一L1/L2控制信道以及在所述第二TTI中发送的第二L1/L2控制信道的接收。

Description

终端、无线通信方法、基站以及系统
技术领域
本发明涉及下一代移动通信系统中的终端、无线通信方法、基站以及系统。
背景技术
在UMTS(通用移动通信系统(Universal Mobile Telecommunication System))网络中,以进一步的高速数据速率、低延迟等为目的,长期演进(LTE:Long Term Evolution)被规范化(非专利文献1)。此外,以从LTE(也称为LTE Rel.8)的进一步的宽带化和高速化为目的,LTE Advanced(也称为LTE Rel.10、11或者12)被规范化,还研究了后续系统(LTERel.13之后)。
在LTE Rel.10/11中,为了实现宽带化,引入了统一多个分量载波(CC:ComponentCarrier)的载波聚合(CA:Carrier Aggregation)。各CC以LTE Rel.8的系统带域为一个单位而构成。此外,在CA中,对用户终端(UE:User Equipment)设定同一个无线基站(eNB:eNodeB)的多个CC。
另一方面,在LTE Rel.12中,还引入对用户终端设定了不同的无线基站的多个小区组(CG:Cell Group)的双重连接(DC:Dual Connectivity)。各小区组至少由一个小区(CC)构成。在DC中,由于不同的无线基站的多个CC被整合,所以DC也被称为Inter-eNB CA等。
此外,在现有系统(LTE Rel.8-12)中,引入在不同频带中进行下行(下行链路(DL:Downlink))发送和上行(上行链路(UL:Uplink))发送的频分复用(FDD:FrequencyDivision Duplex)与在相同频带中在时间上切换而进行DL发送和UL发送的时分复用(TDD:Time Division Duplex)。例如,在TDD中,基于UL/DL结构(UL/DL设定(UL/DLconfiguration))而严密地决定将各子帧用于上行链路(UL:Uplink)还是用于下行链路(DL:Downlink)。
在如上所述的现有系统中,应用于无线基站和用户终端间的DL发送以及UL发送的发送时间间隔(TTI:Transmission Time Interval)被控制设定为1ms。发送时间间隔也被称为传输时间间隔,LTE系统(Rel.8-12)中的TTI也被称为子帧长度。
现有技术文献
非专利文献
非专利文献1:3GPP TS 36.300“Evolved Universal Terrestrial Radio Access(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN);Overall description;Stage 2”
发明内容
发明要解决的课题
在LTE Rel.13之后的无线通信系统(例如,5G)中,设想进行在数十GHz等高频带中的通信或IoT(物联网(Internet of Things))、MTC(机器类型通信(Machine TypeCommunication))、M2M(机器对机器(Machine To Machine))等相对数据量小的通信。此外,对于要求低延迟通信的D2D(设备对设备(Device To Device))或V2V(车辆对车辆(Vehicular To Vehicular))通信的需求也越来越高。
为了在这种未来的无线通信系统中提供充足的通信服务,正研究通信延迟的降低(latency reduction)。例如,正研究利用将作为调度的最小时间单位的发送时间间隔(TTI:Transmission Time Interval)相比现有的LTE系统(LTE Rel.8-12)的1ms缩短了的TTI(例如,也可以称为缩短TTI)来进行通信。
但是,在现有的LTE系统中,以子帧(1ms)单位进行通信的定时控制,但尚未规定在引入缩短TTI而进行通信的情况下如何控制信号的发送接收。因此,需要即使在引入缩短TTI而进行通信的情况下,也能够适当地进行通信的控制方法。
本发明是鉴于这样的情况而完成的,其目的之一在于,提供即使在应用缩短TTI的情况下,也能够适当地进行通信的用户终端、无线基站以及无线通信方法。
用于解决课题的手段
本发明的用户终端的一方式是利用第一发送时间间隔(TTI:Transmission TimeInterval)和与所述第一TTI相比TTI长度更短的第二TTI来进行通信的用户终端,其特征在于,具有:接收单元,接收从无线基站发送的L1/L2控制信道;以及控制单元,控制按每个所述第一TTI发送的第一L1/L2控制信道以及在所述第二TTI中发送的第二L1/L2控制信道的接收。
发明效果
根据本发明,即使在应用缩短TTI的情况下,也能够适当地进行通信。
附图说明
图1是表示现有的LTE系统(Rel.8-12)中的发送时间间隔(TTI)的一例的图。
图2是说明通常TTI和缩短TTI的图。
图3A以及图3B是表示缩短TTI的结构例的图。
图4A-图4C是表示通常TTI和缩短TTI的设定例的图。
图5是表示现有系统的PCFICH的映射的一例的图。
图6A以及图6B是表示现有系统的PHICH,PDCCH的映射的一例的图。
图7是表示现有系统的EPDCCH的映射的一例的图。
图8A-图8C是表示本实施方式中的缩短TTI用的DL信道的发送方法的一例的图。
图9A以及图9B是表示本实施方式中的缩短TTI用的DL信道的发送方法的另一个例子的图。
图10A以及图10B是表示本实施方式中的缩短TTI用的DL信道的发送方法的另一个例子的图。
图11A以及图11B是表示本实施方式中的缩短TTI用的DL信道的发送方法的另一个例子的图。
图12A以及图12B是表示本实施方式中的缩短TTI用的DL信道的发送方法的另一个例子的图。
图13A以及图13B是表示本实施方式中的缩短TTI用的DL信道的发送方法的另一个例子的图。
图14A以及图14B是表示本实施方式中的缩短TTI用的DL信道的发送方法的另一个例子的图。
图15A以及图15B是表示本实施方式中的缩短TTI用的DL信道的发送方法的另一个例子的图。
图16是表示本实施方式所涉及的无线通信系统的概略结构的一例的概略结构图。
图17是表示本实施方式所涉及的无线基站的整体结构的一例的图。
图18是表示本实施方式所涉及的无线基站的功能结构的一例的图。
图19是表示本实施方式所涉及的用户终端的整体结构的一例的图。
图20是表示本实施方式所涉及的用户终端的功能结构的一例的图。
图21是表示本发明的一实施方式所涉及的无线基站以及用户终端的硬件结构的一例的图。
具体实施方式
图1是现有系统(LTE Rel.8-12)中的发送时间间隔(TTI)的一例的说明图。如图1所示,LTE Rel.8-12中的TTI(以下,“通常TTI”)具有1ms的时长。通常TTI也被称为子帧,由2个时隙构成。TTI是被信道编码的一个数据分组(传输块)的发送时间单位,并成为调度、链路适配(Link Adaptation)等的处理单位。
如图1所示,在下行链路(DL)中,在通常循环前缀(CP)的情况下,通常TTI包含14OFDM(正交频分复用(Orthogonal Frequency Division Multiplexing))码元(每时隙7OFDM码元)而构成。各OFDM码元具有66.7μs的时长(码元长度),并且被附加4.76μs的通常CP。由于码元长度和子载波间隔相互为倒数的关系,所以在码元长度66.7μs的情况下,子载波间隔为15kHz。
此外,在上行链路(UL)中,在通常循环前缀(CP)的情况下,通常TTI包含14SC-FDMA(单载波频分多址(Single Carrier Frequency Division Multiple Access))码元(每时隙7SC-FDMA码元)而构成。各SC-FDMA码元具有66.7μs的时长(码元长度),并被附加4.76μs的通常CP。由于码元长度和子载波间隔相互为倒数的关系,所以在码元长度66.7μs的情况下,子载波间隔为15kHz。
另外,在扩展CP的情况下,通常TTI也可以包含12OFDM码元(或者12SC-FDMA码元)而构成。在该情况下,各OFDM码元(或者各SC-FDMA码元)具有66.7μs的时长,并被附加16.67μs的扩展CP。
另一方面,在Rel.13以后的LTE或5G等未来的无线通信系统中,期望适用于几十GHz等高频带的无线接口,或面向IoT(物联网(Internet of Things))、MTC(机器类型通信(Machine Type Communication))、M2M(机器对机器(Machine To Machine))、D2D(设备对设备(Device To Device))、V2V(车辆对车辆(Vehicular To Vehicular))服务,将延迟最小化的无线接口。
因此,在未来的通信系统中,考虑利用将TTI与1ms相比进一步缩短的缩短TTI来进行通信(参照图2)。在图2中,表示了利用通常TTI(1ms)的小区(CC#1)和利用缩短TTI的小区(CC#2)。此外,在利用缩短TTI的情况下,考虑将子载波间隔从通常TTI的子载波进行变更(例如,扩大子载波间隔)。
在使用比通常TTI短的时长的TTI(以下,缩短TTI)的情况下,由于增加了对于用户终端或无线基站中的处理(例如,编码、解码等)的时间余量,所以能够降低处理延迟。此外,在使用缩短TTI的情况下,能够增加每单位时间(例如,1ms)能够容纳的用户终端数。以下,说明缩短TTI的结构等。
(缩短TTI的结构例)
参照图3A及图3B说明缩短TTI的结构例。如图3A以及图3B所示,缩短TTI具有比1ms小的时长(TTI长度)。缩短TTI例如也可以是0.5ms、0.25ms、0.2ms、0.1ms等倍数成为1ms的TTI长度的一个或者多个。或者,由于在通常CP的情况下,通常TTI包含14码元,所以也可以是7/14ms、4/14ms、3/14ms、1/14ms等成为1/14ms的整数倍的TTI长度的一个或者多个。此外,由于在扩展CP的情况下,通常TTI包含12码元,所以也可以是6/12ms、4/12ms、3/12ms、1/12ms等成为1/12ms的整数倍的TTI长度的一个或者多个。另外,在缩短TTI中,也与以前的LTE同样地,能够通过广播信息或RRC信令等高层信令来设定(Configure)是通常CP还是扩展CP。由此,能够保持与1ms的通常TTI的兼容性(同步),并且引入缩短TTI。
另外,在图3A以及图3B中,将通常CP的情况作为一例进行了说明,但并非限定于此。缩短TTI只要是比通常TTI短的时长即可,缩短TTI内的码元数、码元长度、CP长度等的结构可以是任意的。此外,在以下中,说明对DL使用OFDM码元、对UL使用SC-FDMA码元的例子,但并非限定于此。
图3A表示是缩短TTI的第一结构例的图。如图3A所示,在第一结构例中,缩短TTI由于通常TTI相同数量的14OFDM码元(或者SC-FDMA码元)构成,各OFDM码元(各SC-FDMA码元)具有比通常TTI的码元长度(=66.7μs)短的码元长度。
如图3A所示,在维持通常TTI的码元数而缩短码元长度的情况下,能够挪用通常TTI的物理层信号结构(RE配置等)。此外,在维持通常TTI的码元数的情况下,即使在缩短TTI中也能够包含与通常TTI相同的信息量(比特量)。另一方面,由于码元时长与通常TTI的码元不同,难以将图3A所示的缩短TTI的信号和通常TTI的信号频率复用到同一系统带域(或者小区、CC)内。
此外,由于码元长度和子载波间隔相互为倒数的关系,在如图3A所示的缩短码元长度的情况下,子载波间隔比通常TTI的15kHz扩大。若子载波间隔扩大,则能够有效地防止用户终端的移动时的多普勒频移引起的信道间干扰或用户终端的接收机的相位噪声引起的传输质量劣化。特别地,在几十GHz等高频带中,通过扩大子载波间隔,能够有效地防止传输质量的劣化。
图3B是表示缩短TTI的第二结构例的图。如图3B所示,在第二结构例中,缩短TTI由比通常TTI数量少的OFDM码元(或者SC-FDMA码元)构成,且各OFDM码元(各SC-FDMA码元)具有与通常TTI相同的码元长度(=66.7μs)。在该情况下,缩短TTI能够由通常TTI中的码元单位构成。例如,能够利用1子帧中包含的14码元中的一部分码元来构成缩短TTI。在图3B中,缩短TTI由通常TTI的一半的7OFDM码元(SC-FDMA码元)构成。
如图3B所示,在维持码元长度而削减码元数的情况下,能够与通常TTI相比将缩短TTI中包含的信息量(比特量)削减。因此,用户终端能够在比通常TTI短的时间内,进行缩短TTI中包含的信息的接收处理(例如,解调、解码等),并能够缩短处理延迟。此外,能够将图3B所示的缩短TTI的信号和通常TTI的信号在同一系统带域(或者小区、CC)内频率复用,并能够维持和通常TTI的兼容性。
(缩短TTI的设定例)
说明缩短TTI的设定例。在应用缩短TTI的情况下,也能够设为在用户终端中设定通常TTI以及缩短TTI两者的结构,使得具有和现有系统(LTE Rel.8-12)的兼容性。图4A-图4C是通常TTI以及缩短TTI的设定例的图。另外,图4A-图4C仅为例示,并非限定于此。
图4A是表示缩短TTI的第一设定例的图。如图4A所示,通常TTI和缩短TTI也可以在相同的分量载波(CC)(频域)内在时间上混合。具体而言,缩短TTI也可以被设定于相同的CC的特定的子帧(或者,特定的无线帧)中。例如,在图4A中,在相同的CC内的连续的5子帧中设定缩短TTI,在其他的子帧中设定通常TTI。例如,作为特定的子帧,也可以是可设定MBSFN子帧的子帧、或包含(或者不包含)MIB或同步信道等特定的信号的子帧。另外,设定缩短TTI的子帧的数量或位置并不限于图4A所示。
图4B是表示缩短TTI的第二设定例的图。如图4B所示,也可以统一通常TTI的CC和缩短TTI的CC,而进行载波聚合(CA)或者双重连接(DC)。具体而言,缩短TTI也可以被设定在特定的CC中(更具体而言,特定的CC的DL和/或UL中)。例如,在图4B中,在特定的CC的DL中设定缩短TTI,在其他CC的DL以及UL中设定通常TTI。另外,设定缩短TTI的CC的数量或位置并不限于图4B所示。
此外,在CA的情况下,缩短TTI也可以在相同的无线基站的特定的CC(主(P)小区或/和副(S)小区)中被设定。另一方面,在DC的情况下,缩短TTI也可以在由第一无线基站形成的主小区组(MCG)内的特定的CC(P小区或/和S小区)中被设定,也可以在由第二无线基站形成的副小区组(SCG)内的特定的CC(主副(PS)小区或/和S小区)中被设定。
图4C是表示缩短TTI的第三设定例的图。如图4C所示,缩短TTI能够在DL或者UL的任一个中被设定。例如,在图4C中,表示了在TDD系统中,在UL中设定通常TTI,并在DL中设定缩短TTI的情况。
此外,DL或者UL的特定的信道或信号也可以被分配(被设定)给缩短TTI。例如,也可以上行控制信道(上行链路控制信道(PUCCH:Physical Uplink Control Channel,物理上行链路控制信道))被分配给通常TTI,上行共享信道(上行链路共享信道(PUSCH:Physical Uplink Shared Channel,物理上行链路共享信道))被分配给缩短TTI。例如在该情况下,用户终端在通常TTI中进行PUCCH的发送,并在缩短TTI中进行PUSCH的发送。
此外,与作为LTE Rel.8-12的多址(multiple-access)方式的OFDM(或者SC-FDMA)不同的多址方式也可以被分配(被设定)给缩短TTI。
(缩短TTI的通知例)
如上所示,在对用户终端设定利用缩短TTI的小区的情况下,用户终端能够基于来自无线基站的隐式的(implicit)或者显式的(explicit)通知,设定(或/和检测)缩短TTI。以下,关于在本实施方式中能够应用的缩短TTI的通知例,说明(1)隐式的通知的情况,或者通过(2)广播信息或者RRC(无线资源控制(Radio Resource Control))信令、(3)MAC(媒体访问控制(Medium Access Control))信令、(4)PHY(物理(Physical))信令的至少一个进行的显式的通知的情况。
在(1)隐式的通知的情况下,用户终端也可以基于频带(例如,面向5G的带域、非授权带域等)、系统带宽(例如,100MHz等)、是否应用LAA(授权辅助接入(License AssistedAccess))中的LBT(对话前监听(Listen Before Talk))、所发送的数据的种类(例如,控制数据、声音等)、逻辑信道、传输块、RLC(无线链路控制Radio Link Control)模式、C-RNTI(小区无线网络临时标识符(Cell-Radio.Network Temporary Identifier))等,设定(例如,判断进行通信的小区、信道、信号等为缩短TTI)缩短TTI。
此外,也可以是在被映射到通常TTI的开头1、2、3、或者4码元的PDCCH和/或1ms的EPDCCH中检测到发往本终端的控制信息(DCI)的情况下,将包含该PDCCH/EPDCCH的1ms判断为通常TTI,并在采用这之外的结构的PDCCH/EPDCCH(例如被映射到通常TTI的开头1~4码元之外的PDCCH和/或小于1ms的EPDCCH)上检测到发往本终端的控制信息(DCI)的情况下,将包含该PDCCH/EPDCCH的小于1ms的规定的时间区间判断为缩短TTI。这里,发往本终端的控制信息(DCI)的检测能够基于对于盲解码后的DCI的CRC的校验结果而进行。
在(2)广播信息或者RRC信令的情况下,也可以基于通过广播信息或者RRC信令从无线基站(例如,第一小区)向用户终端通知的设定信息,设定缩短TTI。该设定信息例如表示有关利用缩短TTI的CC或/和子帧的信息、有关利用缩短TTI的信道或/和信号的信息、有关缩短TTI的TTI长度的信息等。用户终端基于来自无线基站的设定信息,半静态(semi-static)地设定缩短TTI。另外,缩短TTI和通常TTI的模式切换也可以通过RRC重构(RRCReconfiguration,RRC重新设定)过程来进行,并且,在P小区中,也可以通过小区内(Intra-cell)切换(HO)来进行,在S小区中,也可以通过CC(S小区)的移除/添加(removal/addition)过程来进行。
在(3)MAC信令的情况下,基于由RRC信令通知的设定信息而设定的缩短TTI也可以通过MAC信令而进行激活或者去激活(activate或者de-activate)。具体而言,用户终端基于来自无线基站的MAC控制元素,将缩短TTI进行激活或者去激活。用户终端也可以通过RRC等高层信令预先设定表示缩短TTI的激活期间的定时器,在通过L2控制信号激活了缩短TTI之后规定的期间没有分配缩短TTI的UL/DL的情况下,将缩短TTI去激活。这种缩短TTI去激活定时器,可以设为以通常TTI(1ms)为单位而进行计数,也可以设为以缩短TTI(例如0.25ms)为单位进行计数。
另外,在S小区中切换缩短TTI和通常TTI的模式的情况下,S小区也可以设为暂时被去激活(de-activate),也可以被视为TA(定时提前(Timing Advance))定时器已期满。由此,能够设置模式切换时的通信停止期间。
在(4)PHY信令的情况下,基于由RRC信令通知的设定信息而设定的缩短TTI也可以通过PHY信令而被调度。具体而言,用户终端基于接收以及检测到的下行控制信道(物理下行链路控制信道(PDCCH:Physical Downlink Control Channel)或者增强物理下行链路控制信道(EPDCCH:Enhanced Physical Downlink Control Channel),以下,PDCCH/EPDCCH)中包含的信息,检测缩短TTI。
例如,设分配在通常TTI和缩短TTI中的发送或者接收的控制信息(DCI)包含不同的信息元素,(4-1)在检测到包含分配在缩短TTI中的发送接收的信息元素的控制信息(DCI)的情况下,用户终端也可以将包含检测到该PDCCH/EPDCCH的定时的规定的时间区间识别为缩短TTI。用户终端能够在PDCCH/EPDCCH中对分配通常TTI和缩短TTI两者的发送或者接收的控制信息(DCI)进行盲解码。或者,(4-2)在检测到包含分配在缩短TTI中的发送接收的信息元素的控制信息(DCI)的情况下,用户终端也可以将包含发送/接收通过该PDCCH/EPDCCH(而被传输的下行控制信息(下行链路控制信息(DCI:Downlink ControlInformation)))调度的PDSCH或者PUSCH的定时的规定的时间区间识别为缩短TTI。或者,(4-3)在检测到包含分配在缩短TTI中的发送接收的信息元素的(DCI)的情况下,用户终端也可以将包含发送或者接收对于通过该PDCCH/EPDCCH(所传输的DCI)所调度的PDSCH或者PUSCH的重发控制信息(也称为HARQ-ACK(混合自动重复请求-肯定应答(Hybrid AutomaticRepeat reQuest-Acknowledgement))、ACK/NACK、A/N等)的定时的规定的时间区间识别为缩短TTI。
在基于下行控制信道中包含的信息而检测缩短TTI的情况下,也可以设为在进行缩短TTI的发送接收的一定时间之前发送接收用于指示在缩短TTI中的发送接收的控制信息(DCI)。即,无线基站在规定的定时发送指示在缩短TTI中的发送接收的控制信息(DCI),并且如果用户终端接收到该控制信息(DCI),则在规定时间后(例如TTI长度的整数倍时间后或者子帧长度的整数时间后),进行缩短TTI的发送接收。在缩短TTI和通常TTI中,所适合的信号处理算法(例如信道估计或纠错解码)可能不同。由此,通过在实际上进行在缩短TTI中的发送接收的规定时间之前发送接收用于指示在缩短TTI中的发送接收的控制信息(DCI),用户终端能够保证变更所述信号处理算法的时间。
在预先通过RRC等高层信令设定缩短TTI,并进行了在下行控制信道中被发送接收的控制信息(DCI)的指示的情况下,也可以应用切换为在通常TTI中的发送接收的方法。一般地,要求在低延迟中的信号处理的缩短TTI需要比通常TTI高的用户处理能力。因此,通过将动态的切换限定为从缩短TTI到通常TTI,与允许从通常TTI到缩短TTI的动态的切换的情况相比,能够缓和伴随着TTI长度变更的用户终端的信号处理负担。
此外,用户终端也可以基于用户终端的状态(例如,空闲(Idle)状态或者连接(Connected)状态),检测缩短TTI。例如,用户终端在为空闲状态的情况下,也可以设为将全部TTI识别为通常TTI,仅对1ms的通常TTI的开头1~4码元中包含的PDCCH进行盲解码。此外,用户终端在为连接状态的情况下,也可以基于上述通知例(1)-(4)中的至少一个,设定(或/和检测)缩短TTI。
如上所述,在未来的无线通信中,设想将与通常TTI相比缩短了发送时间间隔的缩短TTI应用于UL发送和/或DL发送来进行通信。另一方面,在现有的LTE系统中,以子帧(1ms)单位进行通信的定时控制或分配控制。以下,说明现有系统中的L1/L2控制信号的分配方法。
作为现有系统的L1/L2控制信道(L1/L2控制信号),规定了控制格式通知信道(物理控制格式指示信道(PCFICH:Physical Control Format Indicator Channel))、HARQ通知信道(物理混合自动重复请求指示信道(PHICH:Physical Hybrid-ARQ IndicatorChannel))、以及下行控制信道(物理下行链路控制信道(PDCCH:Physical DownlinkControl Channel)、增强物理下行链路控制信道(EPDCCH:Enhanced Physical DownlinkControl Channel))。
在现有系统中,PCFICH被利用于用于PDCCH的OFDM码元数(或者PDSCH的开头码元)的通知,并且仅被映射到子帧的开头OFDM码元(参照图5)。PCFICH使用4REG(资源元素组(Resource Element Group))而被配置在系统带域中。无线基站使用子帧开头的OFDM码元来将各子帧中分配PDCCH的OFDM码元数(控制格式指示符(控制格式指示符(CFI:ControlFormat Indicator))作为2比特的信息而通知给用户终端。
在现有系统中,PHICH被利用于对于UL发送(例如,PUSCH)的送达确认信息(ACK/NACK)的通知,并且仅被映射到子帧的开头OFDM码元或者1~3OFDM码元(参照图6A)。通过广播信道向用户终端通知PHICH的无线资源量。具体而言,与复用了PHICH的码元数有关的信息用1比特的信息(PHICH持续时间(PHICH duration))而通知给用户终端。此外,与PHICH的组数有关的信息用2比特的信息(PHICH无线资源(PHICH radio resource))通知给用户终端。另外,在图6B中,表示了PHICH组数为2的情况。
在现有系统中,下行控制信道(PDCCH)被利用于DL或UL的调度等的通知中,并被映射到子帧的开头1~3(或者1~4)码元之中没有分配PCFICH/PHICH的资源(参照图6A、图6B)。无线基站基于按每个用户终端而在PDCCH中设定的搜索空间来将下行控制信息配置于该搜索空间中而发送。
在现有系统中,扩展下行控制信道(EPDCCH)被利用于DL或UL的调度等的通知,并和下行共享信道(PDSCH)区域被频分复用(参照图7)。此外,在分配了EPDCCH的资源区域(例如,规定PRB)中,能够支持解调用参考信号(DM-RS:Demodulation Reference Signal),并对EPDCCH应用用户特定的波束成形。
另外,在PCFICH、PHICH、PDCCH的接收中,用户终端使用小区特定参考信号(CRS:Cell-specific Reference Signal)来进行信道估计或解调。此外,在使用多个天线端口的情况下,对PCFICH、PHICH、PDCCH应用基于空频块编码(SFBC:Space-Frequency BlockCode)的发送分集。在对EPDCCH使用多个天线端口的情况下,应用基于解调用参考信号(DM-RS)的非码本预编码(Non-codebook pre-coding)。
由此,在利用了现有系统的通常TTI的通信中,按每个通常TTI(1子帧)基于规定规则而控制L1/L2控制信道的分配。另一方面,在引入缩短TTI而进行通信的情况下,还没有规定如何控制缩短TTI用的信号(例如,L1/L2控制信道)的发送接收或分配。
例如,考虑如下方式:在TTI长度不同的多个TTI中分别被发送的信号分配到相同的频域中而进行控制的方式。作为一例,考虑分配按每个通常TTI发送的DL信号的频域与分配在缩短TTI中发送的DL信号的频域发生重叠的情况。在这种情况下,如何控制各TTI的DL信号(例如,L1/L2控制信道)的分配或用户终端等之中的发送接收成为问题。
因此,作为本实施方式的一方式,本发明人等想到了不同于通常TTI用的DL信道而设定缩短TTI用的DL信道。例如,考虑通常TTI用的DL信道的分配位置等而控制缩短TTI用的DL信道的分配。
设定了缩短TTI的用户终端能够设为如下结构:按每个缩短TTI接收L1/L2控制信道而控制DL接收和/或UL发送。在该情况下,该用户终端接收按每个通常TTI发送的L1/L2控制信号(例如,现有系统的L1/L2控制信号)和在缩短TTI中发送的L1/L2控制信号。另一方面,没有设定缩短TTI的用户终端能够设为如下结构:接收按每个通常TTI发送的L1/L2控制信号,并且不进行在缩短TTI中发送的L1/L2控制信号的接收。
以下详细地说明本实施方式。另外,在L1/L2控制信号之中,本实施方式可以应用于PCFICH、PHICH、PDCCH以及EPDCCH的全部,也可以应用于一部分。在以下的说明中,将TTI长度比1ms短的TTI称为缩短TTI,但也可以称为短(short)TTI、缩短子帧、或者短(short)子帧。此外,将成为1ms的TTI称为通常TTI,但也可以称为正常(normal)TTI、长(long)TTI、通常子帧、正常(normal)子帧、或者长(long)子帧。此外,对于本实施方式的缩短TTI能够应用由上述图1-图4A-图4C所示的结构。
此外,在本实施方式中,将仅被设定了缩短TTI的用户终端监测(monitor)的L1/L2控制信号称为缩短TTI用的L1/L2控制信号。此外,将在现有系统中被规定的(或者,被现有系统的用户终端监测的)L1/L2控制信号称为现有的L1/L2控制信号。此外,本实施方式的应用不仅限于L1/L2控制信号,对于其他DL信道也能够适当应用。
此外,在以下的说明中列举LTE系统为例,但本实施方式并非限定于此,只要是利用缩短TTI的系统都能够应用。此外,在以下中说明的多个方式可以分别单独地实施,也能够适当组合来实施。
(第一方式)
在第一方式中,说明缩短TTI用的DL信道(例如,L1/L2控制信道)的发送接收方法的一例。另外,作为缩短TTI用的L1/L2控制信道,能够设为PCFICH、PHICH、PDCCH以及EPDCCH中的至少一个。
图8A-图8C表示了L1/L2控制信道的分配方法的一例。图8A表示了TTI为1子帧的情况(现有系统)下的L1/L2控制信道的分配方法。图8B、8C表示了在应用了缩短TTI的情况下的L1/L2控制信道的分配方法的一例。另外,图8B表示了缩短TTI为0.5ms的情况,图8C表示了缩短TTI为0.25ms的情况,但缩短TTI的TTI长度并非限定于此。
设定了缩短TTI的用户终端按每个缩短TTI而接收L1/L2控制信道(全部PCFICH、PHICH、PDCCH,EPDCCH或者一部分)(参照图8B、8C)。该用户终端对按每个通常TTI(1子帧)发送的现有的L1/L2控制信息也进行接收处理(解调、解码等)。
即,应用了缩短TTI的用户终端能够接收按每1子帧发送的现有的L1/L2控制信道和在缩短TTI中发送的缩短TTI用的L1/L2控制信道。在该情况下,在包含通常TTI的开头码元的缩短TTI中,能够设为如下结构:不发送缩短TTI用的L1/L2控制信道,而是发送现有的L1/L2控制信道。当然并非限定于此,在包含通常TTI的开头码元的缩短TTI中,也可以设为如下结构:除了现有的L1/L2控制信道,也分配缩短TTI用的L1/L2控制信道。
不进行利用了缩短TTI的通信的用户终端(例如,传统(legacy)终端)能够设为如下结构:仅接收现有的L1/L2控制信道,不接收缩短TTI用的L1/L2控制信道。
与现有的L1/L2控制信道(例如,下行控制信道)同样地,进行缩短TTI用的L1/L2控制信道的分配的时域(例如,码元数)也可以设定为可变的(例如,1~3或者1~4码元),也可以固定地设定。此外,也可以将对于规定期间中包含的缩短TTI分配L1/L2控制信道的时域和/或频域设为固定。作为规定期间,能够设为通常TTI(1子帧)、1无线帧。
此外,能够将利用于缩短TTI的L1/L2控制信道的发送的带宽设为与系统带宽(例如,利用于现有的L1/L2控制信道的发送的带宽)不同的带宽。例如,将分配缩短TTI的L1/L2控制信道的带宽(频域)设定得比系统带宽窄。作为一例,能够将分配缩短TTI的L1/L2控制信道的带宽限定为系统带域的一部分。此外,分配缩短TTI的L1/L2控制信道的带宽也可以设为按每个缩短TTI不同的结构。
关于进行缩短TTI控制的用户终端选择性地接收的每个缩短TTI的L1/L2控制信道的带宽,能够利用高层信令等而对用户终端进行设定。或者,也可以设为使用现有的L1/L2控制信息来向用户终端通知的结构。
图9A及图9B表示了将分配缩短TTI用的L1/L2控制信道的带宽设定得比系统带宽窄,并且按每个规定期间变更该L1/L2控制信道的分配位置或带宽的情况。图9A表示了缩短TTI为0.5ms的情况,图9B表示了缩短TTI为0.25ms的情况。
在图9A中,表示了变更缩短TTI用的L1/L2控制信道的分配位置的情况。此外,表示了按每个规定期间(这里是子帧)将缩短TTI用的L1/L2控制信道的分配位置沿频率方向进行跳频(hopping)的情况。另外,不限于跳频,也可以设为将缩短TTI用的L1/L2控制信道在频率方向上偏移(例如,利用规定偏移量)的结构。
由此,通过至少在某个缩短TTI中将缩短TTI用的DL信道限定于一部分频域地设定,能够将通常TTI的下行数据(例如,PDSCH)和缩短TTI的L1/L2控制信道进行频分复用(FDM)。由此,即使在分配现有的DL信道和缩短TTI用的DL信道的情况下,也能够提高频率利用效率。
在图9B中,表示了变更缩短TTI用的L1/L2控制信道的分配位置和带宽的情况。此外,表示了如下情况:规定期间(这里是,子帧)中包含的多个缩短TTI用的L1/L2控制信道在相同位置以及带宽中分配,在相邻的子帧间在不同的位置以及带宽中分配。
由此,在规定期间(例如,子帧)内,通过将在缩短TTI之间能够调度L1/L2控制信道的频域设为固定,能够将通常TTI的下行数据(例如,PDSCH)和缩短TTI的L1/L2控制信道进行频分复用(FDM)。由此,即使在分配现有的DL信道和缩短TTI用的DL信道的情况下,也能够提高频率利用效率。
另一方面,在子帧之间,通过设为能够变更在缩短TTI之间能够调度L1/L2控制信号的频域的结构,能够对缩短TTI的DL信道进行灵活的频率调度。进一步,对于不进行利用了与缩短TTI的DL信道进行了FDM的缩短TTI的通信的用户终端(例如,传统终端)的PDSCH也能够进行灵活的频率调度。
此外,在将缩短TTI用的L1/L2控制信道的带宽设定得比系统带宽窄的情况下,如何控制利用缩短TTI来发送接收的下行数据和/或上行数据的带宽成为问题。例如,能够设为如下结构:关于利用缩短TTI来发送接收的下行数据和/或上行数据的带宽,也在该缩短TTI用的L1/L2控制信道的带宽的范围内控制分配。
或者,也可以设为如下结构:不依赖(限定)于该缩短TTI用的L1/L2控制信道的带宽地设定利用缩短TTI来发送接收的下行数据和/或上行数据的带宽(参照图10A及图10B)。图10A及图10B表示了对某个用户终端,与设定缩短TTI用的L1/L2控制信道的带宽无关地分配下行数据(例如,PDSCH)的情况的一例。另外,图10A表示了缩短TTI为0.5ms的情况,图10B表示了缩短TTI为0.25ms的情况。
如图10A及图10B所示,通过与设定缩短TTI用的L1/L2控制信道的带宽无关地进行下行数据和/或上行数据的分配,能够进行与用户终端的信道质量等相应的分配,并且能够有效率地利用无线资源。
(第二方式)
在第二方式中,说明缩短TTI用的L1/L2控制信道的资源的指定方法。
如第一方式所示,分配缩短TTI用的L1/L2控制信道的频率和/或时间资源能够设定为与现有系统的L1/L2控制信道不同。在这种情况下,用户终端能够基于规定信息而决定缩短TTI用的L1/L2控制信道的频率和/或时间资源。作为规定信息,例如能够利用现有的L1/L2控制信道。
在该情况下,用户终端基于被映射到子帧(通常TTI)的开头区域(1~3或者4码元)的现有的L1/L2控制信道,控制缩短TTI用的L1/L2控制信道的接收(参照图11A及图11B)。另外,图11A表示了缩短TTI为0.5ms的情况,图11B表示了缩短TTI为0.25ms的情况。
如图11A、图11B所示,能够将与各缩短TTI的频率和/或时间资源有关的信息包含在通过包含该缩短TTI的子帧所发送的现有的L1/L2控制信道中。在1子帧中包含多个缩短TTI用的L1/L2控制信道的情况下,用户终端能够基于现有的L1/L2控制信道中包含的信息而判断各缩短TTI的资源(参照图11B)。在多个缩短TTI用的L1/L2控制信道被设定在相同资源中的情况下,用户终端能够设想为将通过现有的L1/L2控制信道所通知的一个资源信息应用于多个缩短TTI,从而进行接收处理。
作为通知缩短TTI用的L1/L2控制信道的资源的现有的L1/L2控制信道,例如能够利用PCFICH和/或PDCCH。或者也能够将这些DL信道和高层信令的通知组合地利用。
<PCFICH>
无线基站能够利用被映射到现有的L1/L2控制信道区域的PCFICH来向用户终端通知与缩短TTI用的L1/L2控制信道的频率和/或时间资源有关的信息(参照图11A、11B)。用户终端检测现有的L1/L2控制信道区域的PCFICH,并基于该PCFICH的值而判断映射缩短TTI用的L1/L2控制信道的资源(例如,频率和/或时间资源)。然后,基于从PCFICH获取到的信息,用户终端进行缩短TTI用的L1/L2控制信道的接收处理(解调、解码等)。
也可以预先准备定义了PCFICH的值(例如,2比特)、与对应于各值的资源区域的对应关系的表格,并利用。例如,也可以设为如下结构:使用PCFICH来向用户终端通知映射缩短TTI用的L1/L2控制信道(例如,PDCCH)的码元数(时间资源)。
PCFICH的各值也可以设为如下结构:将通常TTI用的PDCCH码元数和映射缩短TTI用的L1/L2控制信道的资源(例如频率和/或时间资源)一并通知给用户终端。在该情况下,用户终端根据PCFICH的各值掌握被映射到子帧开头的PDCCH的时间资源,并且识别映射缩短TTI用的L1/L2控制信道的资源(例如频率和/或时间资源),基于该指定而进行L1/L2控制信道的盲解码。
此外,无线基站也可以使用PCFICH来向用户终端通知缩短TTI用的L1/L2控制信道的时间资源(例如,码元数),并且使用高层信令来通知频率资源(例如,带宽和/或频率的分配位置)。或者,无线基站也可以设为如下结构:使用高层信令来通知多个缩短TTI用的L1/L2控制信道的频率和/或时间资源候选,并使用PCFICH来按每个规定定时(例如,子帧)向用户终端通知特定的资源候选。
此外,无线基站也可以通过PCFICH的某个值来通知没有在该子帧中的缩短TTI用的L1/L2控制信道的资源(码元数为0)。例如,当被映射到该子帧的开头的PDCCH的码元数为3或者4时,PCFICH通知没有在该子帧中的缩短TTI用的L1/L2控制信道的资源(码元数为0)。在该情况下,如果用户终端通过PCFICH判断为被映射到该子帧的开头的PDCCH的码元数为3或者4,则能够跳过缩短TTI用的L1/L2控制信道的盲解码,所以能够减轻处理负担。关于通过PCFICH的哪一个值来通知没有在该子帧中的缩短TTI用的L1/L2控制信道的资源(码元数为0),可以预先规定,也可以设为能够通过高层信令设定(Configure)为任意值。
<PDCCH>
无线基站能够利用被映射到现有的L1/L2控制信道区域的PDCCH来向用户终端通知与缩短TTI用的L1/L2控制信道的频率和/或时间资源有关的信息(参照图11A、11B)。用户终端检测现有的L1/L2控制信道区域的PDCCH,并基于该PDCCH判断映射缩短TTI用的L2/L2控制信道的频率和/或时间资源。然后,基于从PDCCH获取到的信息,用户终端进行缩短TTI用的L1/L2控制信道的接收处理(解调、解码等)。
向用户终端通知与缩短TTI用的L1/L2控制信道的频率和/或时间资源有关的信息的PDCCH的CRC能够设为如下结构:被对该用户终端设定的C-RNTI屏蔽,并被映射到PDCCH的用户专用搜索空间。或者,该PDCCH的CRC也可以设为如下结构:被在多个用户终端中被共通地设定的另一个RNTI屏蔽,并被映射到PDCCH的共通搜索空间。通过将RNTI设为用户终端共通,并映射到PDCCH的共通搜索空间,由于不需要用户专用地控制,从而能够建议信令的开销。
也可以预先准备定义了表示PDCCH中包含的资源的值、与对应于各值的资源区域的对应关系的表格,并利用。例如,能够设为如下结构:使用PDCCH来向用户终端通知映射缩短TTI用的L1/L2控制信道(例如,PDCCH)的码元数(时间资源)。
此外,无线基站也可以使用PDCCH来向用户终端通知缩短TTI用的L1/L2控制信道的时间资源(例如,码元数),并使用高层信令来通知频率资源(例如,带宽和/或频率的分配位置)。或者,无线基站也可以设为如下结构:使用高层信令来通知多个缩短TTI用的L1/L2控制信道的频率和/或时间资源候选,并使用PDCCH按每个规定定时(例如,子帧)向用户终端通知特定的资源候选。
此外,无线基站也可以额外对用户终端设定(Configure)应用于指定缩短TTI用的L1/L2控制信道的资源的下行控制信道(PDCCH)的识别信息(无线网络临时标识符(RNTI:Radio Network Temporary Identifier))、发送周期、发送定时等。例如,无线基站通过高层信令向用户终端通知包含PDCCH的RNTI、发送周期以及发送定时中的任一个的信息。用户终端能够基于从无线基站接收到的信息而进行规定的PDCCH的接收处理。
此外,无线基站也可以不使用PDCCH而使用EPDCCH,或者除了PDCCH还使用EPDCCH来向用户终端通知与缩短TTI用的L1/L2控制信道的频率和/或时间资源有关的信息。
另外,在上述图11A及图11B中,表示了使用各子帧的现有的L1/L2控制信道来向用户终端通知缩短TTI用的L1/L2控制信道的资源的情况,但本实施方式并非限定于此。
无线基站也可以以多个子帧一次的比例来向用户终端通知用于指定缩短TTI用的L1/L2控制信道的频率和/或时间资源的规定的DL信道(例如,现有的L1/L2控制信道)(参照图12A及图12B)。另外,图12A表示了缩短TTI为0.5ms的情况,图12B表示了缩短TTI为0.25ms的情况。
此外,在图12A、图12B中,表示了利用现有的L1/L2控制信道以2子帧一次的比例向用户终端通知缩短TTI用的L1/L2控制信道的资源的情况。在该情况下,用户终端能够设想经过2子帧缩短TTI用的L1/L2控制信道资源相同而进行接收处理。另外,能够不限定于2子帧而适当地设定指定缩短TTI用的L1/L2控制信道资源的规定的DL信道的发送周期。例如,也可以以按每个无线帧一次的比例向用户终端通知规定的DL信道。
或者,也可以设为如下结构:按每个子帧发送指定缩短TTI用的L1/L2控制信道资源的规定的DL信道,并按每多个子帧变更内容(参照图13A及图13B)。图13A表示了缩短TTI为0.5ms的情况、图13B表示了缩短TTI为0.25ms的情况。
在图13A、图13B中,表示了将按每个子帧发送的规定的DL信道表示的资源的内容按每2子帧变更的情况。由此,通过发送经过多个子帧表示相同资源内容的DL信道,从而成为用户终端只要能够正确地接收在多个子帧中被反复发送的该控制信号中的一个,就能够掌握缩短TTI的L1/L2控制信道的资源,能够实现可靠性更高的控制。
(第三方式)
在第三方式中,说明设定多个缩短TTI用的L1/L2控制信道的频率/时间资源(资源候选、或者搜索空间)的情况。
图14A及图14B表示了设定多个缩短TTI用的L1/L2控制信道的频率/时间资源(资源候选,或者搜索空间),并按每个TTI使用规定的资源候选来进行缩短TTI用的L1/L2控制信道的发送的情况。另外,图14A表示了缩短TTI为0.5ms的情况,图14B表示了缩短TTI为0.25ms的情况。另外,这里表示了设定2个资源候选(第一资源候选和第二资源候选)的情况,但资源候选的数量并非限定于此,也可以设定3个以上。
用户终端能够在各缩短TTI中,对被设定的多个资源候选分别进行接收处理(例如,盲解码)。能够使用高层信令等从无线基站对用户终端通知与多个资源候选有关的信息。用户终端预先通过高层信令等获取与第一资源候选和第二资源候选有关的信息,并在缩短TTI中对第一资源候选以及第二资源候选进行接收处理。
无线基站能够在被映射到不同的资源的资源候选的任一个中调度(或者,映射)缩短TTI用的L1/L2控制信道。由此,在各缩短TTI中不利用的资源候选的区域能够利用于通常TTI用的DL信道(例如,PDSCH)的分配。其结果,能够根据通信环境等,将通常TTI的PDSCH和缩短TTI用的L1/L2控制信道灵活地进行频分复用(FDM)。
此外,在子帧(通常TTI)内存在多个缩短TTI用的L1/L2控制信道,并且多个缩短TTI用的L1/L2控制信道以分别不同的缩短TTI而被发送的情况下,无线基站能够利用相同资源候选(参照图14B)。
用户终端能够假设在相同子帧中的不同的缩短TTI之间,在被分配给相同资源候选的缩短TTI用的L1/L2控制信道中发送至自身终端的控制信号(DCI而进行接收操作(例如,盲解码)。换言之,用户终端能够假设在子帧内的不同的缩短TTI中,在对不同的频率资源(资源候选)设定的缩短TTI用的L1/L2控制信道中没有检测到至自身终端的控制信号。
在该情况下,如果在子帧内的某缩短TTI的L1/L2控制信道中检测到至自身终端的控制信号(DCI),则由于在同一子帧内,在以后的缩短TTI的L1/L2控制信道中仅需要对于任意一个资源候选的盲解码,所以能够减轻用户终端的处理负担。
如图14B所示,在同一子帧内设定多个缩短TTI用的L1/L2控制信道的情况下,通过在缩短TTI之间对相同资源候选映射L1/L2控制信道,能够将通常TTI的PDSCH和缩短TTI用的L1/L2控制信道有效地进行频分复用(FDM)。
(变形例)
在现有的L1/L2控制信道的资源映射方法中,缩短TTI用的L1/L2控制信道中的资源映射能够将系统带宽的函数部分置换为被指定的频率资源的函数而应用。例如,对于PCFIC、PHICH、PDCCH以及EPDCCH中的任意一个,能够将现有的映射方法中的系统带宽的函数置换为在缩短TTI中被指定的频率资源的函数而应用。
作为缩短TTI用的L1/L2控制信道,能够设为如下结构:不将PCFICH、PHICH、PDCCH、EPDCCH全部,而仅将它们的一个或者一部分映射到缩短TTI。例如,在图15A及图15B中表示将缩短TTI用的L1/L2控制信道作为EPDCCH的情况。另外,图15A表示了缩短TTI为0.5ms的情况、图15B表示了缩短TTI为0.25ms的情况。当然,也可以将EPDCCH和其他DL信道(例如,PDCCH)组合,也可以将其他DL信道们组合而利用。
用户终端能够使用基于小区特定参考信号(CRS)而得到的信道估计信息来对缩短TTI用的L1/L2控制信道进行接收处理(例如,解调等)。或者,用户终端也可以使用基于解调用参考信号(DM-RS)而得到的信道估计信息来对缩短TTI用的L1/L2控制信道进行接收处理。或者,也可以设为如下结构:用户终端使用高层信令来从无线基站对用户终端设定利用于缩短TTI用的L1/L2控制信道的接收处理的参考信号。
或者,也可以设为如下结构:用户终端额外规定利用于缩短TTI用的L1/L2控制信道的接收处理的参考信号,并使用基于新规定的参考信号而得到的信道估计信息来进行接收处理。
(无线通信系统)
以下,说明本发明的一实施方式的无线通信系统的结构。在该无线通信系统中,应用上述各方式的无线通信方法。另外,可以分别单独地应用上述各实施方式的无线通信方法,也可以组合应用。
图16是表示本发明的一实施方式的无线通信系统的概略结构的一例的图。在无线通信系统1中,能够应用将以LTE系统的系统带宽(例如,20MHz)为1个单位的多个基本频率块(分量载波)作为一体的载波聚合(CA)和/或双重连接(DC)。另外,无线通信系统1也可以被称为超3G、LTE-A(LTE-Advanced)、IMT-Advanced、4G、5G、FRA(未来无线接入(FutureRadio Access))等
图16所示的无线通信系统1包括形成宏小区C1的无线基站11和在宏小区C1内配置且形成比宏小区C1窄的小型小区C2的无线基站12a-12c。此外,在宏小区C1以及各小型小区C2中,配置有用户终端20。也可以设为在小区之间应用不同的参数集的结构。另外,参数集是指某RAT中的信号的设计,或表征了RAT的设计的通信参数的集合。
用户终端20能够连接到无线基站11以及无线基站12双方。设想用户终端20通过CA或者DC同时使用使用不同频率的宏小区C1以及小型小区C2。此外,用户终端20也可以使用多个小区(CC)(例如,6个以上的CC)而应用CA或者DC。此外,用户终端能够利用授权带域CC和非授权带域CC作为多个小区。另外,能够设为在多个小区中的任一个中包含应用了缩短TTI的TDD载波的结构。
用户终端20和无线基站11之间,能够在相对低的频带(例如,2GHz)中使用带宽窄的载波(被称为现有载波、传统载波(Legacy carrier)等)进行通信。另一方面,用户终端20和无线基站12之间,可以在相对高的频带(例如,3.5GHz、5GHz等)中使用带宽较宽的载波,也可以使用和与无线基站11之间相同的载波。另外,各无线基站利用的频带的结构并不限定于此。
无线基站11和无线基站12之间(或者,2个无线基站12间),能够设为有线连接(例如,基于CPRI(通用公共无线接口(Common Public Radio Interface))的光纤、X2接口等)或者无线连接的结构。
无线基站11以及各无线基站12分别连接到上位站装置30,经由上位站装置30连接到核心网络40。另外,上位站装置30中,例如包含接入网关装置、无线网络控制器(RNC)、移动性管理实体(MME)等,但并不限定于此。此外,各无线基站12也可以经由无线基站11连接到上位站装置30。
另外,无线基站11是具有相对宽的覆盖范围的无线基站,也可以被称为宏基站、汇聚节点、eNB(eNodeB)、发送接收点等。此外,无线基站12是具有局部的覆盖范围的无线基站,也可以被称为小型基站、微型基站、微微基站、毫微微基站、HeNB(家庭eNodeB(HomeeNodeB))、RRH(远程无线头(Remote Radio Head))、发送接收点等。以下,在不区分无线基站11以及12的情况下,总称为无线基站10。
各用户终端20是支持LTE、LTE-A等各种通信方式的终端,可以不仅包含移动通信终端,还包含固定通信终端。
在无线通信系统1中,作为无线接入方式,对下行链路应用OFDMA(正交频分多址),对上行链路应用SC-FDMA(单载波频分多址)。OFDMA是将频带分割为多个窄的频带(子载波),对各子载波映射数据而进行通信的多载波传输方式。SC-FDMA是将系统带宽对每个终端分割为由一个或连续的资源块组成的带域,通过多个终端使用相互不同的带域,从而降低终端间的干扰的单载波传输方式。另外,上行以及下行的无线接入方式并不限定于这些组合,在上行链路中也可以使用OFDMA。
在无线通信系统1中,作为下行链路的信道,使用在各用户终端20中共享的下行共享信道(物理下行链路共享信道(PDSCH:Physical Downlink Shared Channel))、广播信道(物理广播信道(PBCH:Physical Broadcast Channel))、下行L1/L2控制信道等。通过PDSCH传输用户数据或高层控制信息、SIB(系统信息块(System Information Block))等。此外,通过PBCH传输MIB(主信息块(Master Information Block))。
下行L1/L2控制信道包括下行控制信道(PDCCH(物理下行链路控制信道(PhysicalDownlink Control Channel)))、EPDCCH(增强物理下行链路控制信道(Enhanced PhysicalDownlink Control Channel))、PCFICH(物理控制格式指示信道(Physical ControlFormat Indicator Channel))、PHICH(物理混合ARQ指示信道(Physical Hybrid-ARQIndicator Channel))等。通过PDCCH传输包含PDSCH以及PUSCH的调度信息的下行控制信息(下行链路控制信息(DCI:Downlink Control Information))等。通过PCFICH传输用于PDCCH的OFDM码元数。通过PHICH传输对于PUSCH的HARQ的送达确认信息(ACK/NACK)。EPDCCH与PDSCH(下行共享数据信道)进行频分复用,与PDCCH同样地用于传输DCI等。
在无线通信系统1中,作为上行链路的信道,使用在各用户终端20中共享的上行共享信道(物理上行链路共享信道(PUSCH:Physical Uplink Shared Channel))、上行控制信道(物理上行链路控制信道(PUCCH:Physical Uplink Control Channel))、随机接入信道(物理随机接入信道(PRACH:Physical Random Access Channel))等。通过PUSCH传输用户数据、高层控制信息。此外,通过PUSCH或者PUCCH传输至少包含送达确认信息(ACK/NACK)或无线质量信息(CQI)等中的一个的上行控制信息(上行链路控制信息(UCI:Uplink ControlInformation))。通过PRACH传输用于建立与小区的连接的随机接入前导码。
<无线基站>
图17是表示本发明的一实施方式的无线基站的整体结构的一例的图。无线基站10包括多个发送接收天线101、放大器单元102、发送接收单元103、基带信号处理单元104、呼叫处理单元105、以及传输路径接口106。另外,发送接收单元103由发送单元以及接收单元构成。
通过下行链路从无线基站10发送给用户终端20的用户数据,从上位站装置30经由传输路径接口106输入到基带信号处理单元104。
在基带信号处理单元104中,对用户数据进行PDCP(分组数据汇聚协议(PacketData Convergence Protocol))层的处理、用户数据的分割/结合、RLC(无线链路控制(Radio Link Control))重发控制等RLC层的发送处理、MAC(媒体访问控制(Medium AccessControl))重发控制(例如,HARQ的发送处理)、调度、传输格式选择、信道编码、快速傅里叶逆变换(IFFT:Inverse Fast Fourier Transform)处理、预编码处理等发送处理,并转发给发送接收单元103。此外,对下行控制信号也进行信道编码或快速傅里叶逆变换等发送处理,并转发给发送接收单元103。
发送接收单元103将从基带信号处理单元104按每个天线预编码而被输出的基带信号变换为无线频带并发送。在发送接收单元103中进行了频率变换的无线频率信号通过放大器单元102进行放大,并从发送接收天线101发送。
发送接收单元(发送单元)103对用户终端发送L1/L2控制信道(PCFICH、PHICH、PDCCH以及EPDCCH中的至少一个)。此外,发送接收单元(发送单元)103能够发送现有系统的L1/L2控制信道和缩短TTI用的L1/L2控制信道。发送接收单元103能够由基于本发明的技术领域中的共同认识而说明的发射器/接收器、发送接收电路或者发送接收装置构成。另外,发送接收单元103可以作为一体的发送接收单元来构成,也可以由发送单元以及接收单元构成。
另一方面,关于上行信号,在发送接收天线101中接收到的无线频率信号在放大器单元102中进行放大。发送接收单元103接收在放大器单元102中进行了放大的上行信号。发送接收单元103将接收信号频率变换为基带信号,并输出到基带信号处理单元104。
在基带信号处理单元104中,对输入的上行信号中所包含的用户数据进行快速傅里叶变换(FFT:Fast Fourier Transform)处理、离散傅里叶逆变换(IDFT:InverseDiscrete Fourier Transform)处理、纠错解码、MAC重发控制的接收处理、RLC层以及PDCP层的接收处理,经由传输路径接口106转发给上位站装置30。呼叫处理单元105进行通信信道的设定或释放等呼叫处理、或无线基站10的状态管理、或无线资源的管理。
传输路径接口106经由规定的接口与上位站装置30发送接收信号。此外,传输路径接口106可以经由基站间接口(例如,基于CPRI(通用公共无线接口(Common Public RadioInterface))的光纤、X2接口)与其他的无线基站10发送接收信号(回程信令)。
图18是表示本发明的一实施方式的无线基站的功能结构的一例的图。另外,在图18中,主要表示本实施方式中的特征部分的功能块,设无线基站10还具有无线通信所需的其他的功能块。如图18所示,基带信号处理单元104包括控制单元(调度器)301、发送信号生成单元(生成单元)302、映射单元303、接收信号处理单元304。
控制单元(调度器)301对在PDSCH中发送的下行数据信号、在PDCCH和/或EPDCCH中传输的下行控制信号的调度(例如,资源分配)进行控制。此外,进行系统信息、同步信号、寻呼信息、CRS(小区特定参考信号(Cell-specific Reference Signal))、CSI-RS(信道状态信息参考信号(Channel State Information Reference Signal))等的调度的控制。此外,对上行参考信号、在PUSCH中发送的上行数据信号、在PUCCH和/或PUSCH发送的上行控制信号等的调度进行控制。
控制单元301能够控制发送接收单元(发送单元)103的发送接收。例如,控制单元301能够进行控制使得按每个第一TTI(例如,通常TTI)发送第一L1/L2控制信道(例如,现有的L1/L2控制信道),并以第二TTI(例如,缩短TTI)发送第二L1/L2控制信道(例如,缩短TTI用的L1/L2控制信道)。控制单元301能够由基于本发明的技术领域中的共同认识而说明的控制器、控制电路或者控制装置构成。
发送信号生成单元302基于来自控制单元301的指示,生成DL信号(包含下行数据信号、下行控制信号),并输出到映射单元303。具体而言,发送信号生成单元302生成包含用户数据的下行数据信号(PDSCH),并输出到映射单元303。此外,发送信号生成单元302生成包含DCI(UL许可)的下行控制信号(PDCCH/EPDCCH),并输出到映射单元303。此外,发送信号生成单元302生成CRS、CSI-RS等下行参考信号,并输出到映射单元303。
映射单元303基于来自控制单元301的指示,将发送信号生成单元302中生成的DL信号映射到规定的无线资源,并输出到发送接收单元103。映射单元303能够由基于本发明的技术领域中的共同认识而说明的映射器、映射电路或者映射装置构成。
接收信号处理单元304对从用户终端20发送的UL信号(HARQ-ACK、PUSCH等)进行接收处理(例如,解映射、解调、解码等)。处理结果被输出到控制单元301。接收信号处理单元304能够由基于本发明的技术领域中的共同认识而说明的信号处理器、信号处理电路或者信号处理装置、以及测量器、测量电路或者测量装置构成。
<用户终端>
图19是表示本发明的一实施方式的用户终端的整体结构的一例的图。用户终端20包括用于MIMO传输的多个发送接收天线201、放大器单元202、发送接收单元203、基带信号处理单元204以及应用单元205。另外,发送接收单元203由发送单元以及接收单元构成。
在多个发送接收天线201中接收到的无线频率信号分别在放大器单元202中放大。发送接收单元203接收在放大器单元202中放大了的下行信号。发送接收单元203将接收信号频率变换为基带信号,并输出到基带信号处理单元204。
发送接收单元(接收单元)203接收从无线基站发送的DL信号(例如,L1/L2控制信道等)。例如,发送接收单元(接收单元)203接收按每个第一TTI(例如,通常TTI)而被发送的第一L1/L2控制信道(例如,现有的L1/L2控制信道)和以第二TTI(例如,缩短TTI)而被发送的第二L1/L2控制信道(例如,缩短TTI用的L1/L2控制信道)(参照图8A-图8C)。
此外,发送接收单元(接收单元)203能够以比被分配给第一L1/L2控制信道的带宽窄的带宽接收第二L1/L2控制信道(参照图9A及图9B)。此外,以第二TTI而被发送的第二L1/L2控制信道按每个规定期间(例如,第一TTI长度和/或无线帧)被分配给不同的位置和/或不同的带宽。发送接收单元203能够由基于本发明的技术领域中的共同认识而说明的发射器/接收器、发送接收电路或者发送接收装置构成。
基带信号处理单元204对被输入的基带信号进行FFT处理、或纠错解码、重发控制的接收处理等。下行链路的用户数据被转发给应用单元205。应用单元205进行与比物理层或MAC层更高的层有关的处理等。此外,在下行链路的数据中,广播信息也被转发给应用单元205。
另一方面,上行链路的用户数据从应用单元205被输入到基带信号处理单元204。在基带信号处理单元204中,进行重发控制的发送处理(例如,HARQ的发送处理)、或信道编码、预编码、离散傅里叶变换(DFT:Discrete Fourier Transform)处理、IFFT处理等并转发给发送接收单元203。发送接收单元203将从基带信号处理单元204输出的基带信号变换为无线频带并发送。在发送接收单元203中进行了频率变换的无线频率信号被放大器单元202放大并从发送接收天线201发送。
图20是表示本发明的一实施方式的用户终端的功能结构的一例的图。另外,在图20中,主要表示本实施方式中的特征部分的功能块,设用户终端20还具有无线通信所需的其他功能块。如图20所示,用户终端20具有的基带信号处理单元204,包括控制单元401、发送信号生成单元402、映射单元403、接收信号处理单元404、以及判定单元405。
控制单元401从接收信号处理单元404获取从无线基站10发送的下行控制信号(在PDCCH/EPDCCH中被发送的信号)以及下行数据信号(在PDSCH中被发送的信号)。控制单元401基于下行控制信号、或判定了是否需要对于下行数据信号的重发控制的结果等,对上行控制信号(例如,送达确认信息(HARQ-ACK)等)或上行数据信号的生成进行控制。具体而言,控制单元401能够进行发送信号生成单元402、映射单元403以及接收信号处理单元404的控制。
控制单元401能够基于第二L1/L2控制信道而控制下行数据接收和/或上行数据发送,并与第二L1/L2控制信道的分配带宽无关地决定下行数据和/或上行数据的分配带宽(参照图10A及图10B)。此外,控制单元401能够基于第一L1/L2控制信道中包含的控制格式通知信道(PCFICH)和/或下行控制信道(PDCCH和/或EPDCCH)而决定第二L1/L2控制信道的分配位置(参照图11A及图11B)。
在设定多个成为第二L1/L2控制信道中包含的下行控制信道的分配候选的频域或者搜索空间的情况下,控制单元401能够对于各频域控制第二L1/L2控制信道中包含的下行控制信道的接收(参照图14A)。或者,在经过不同的第二TTI而设定多个成为第二L1/L2控制信道(例如,下行控制信道)的分配候选的频域或者搜索空间,并且在第一TTI中包含多个第二L1/L2控制信道的情况下,控制单元401能够设想将多个第二L1/L2控制信道分配给相同的频域而进行接收(参照图14B)。
控制单元401能够由基于本发明的技术领域中的共同认识而说明的控制器、控制电路或者控制装置构成。
发送信号生成单元402基于来自控制单元401的指示,生成UL信号,并输出到映射单元403。例如,发送信号生成单元402基于来自控制单元401的指示,生成送达确认信号(HARQ-ACK)或信道状态信息(CSI)等上行控制信号。
此外,发送信号生成单元402基于来自控制单元401的指示生成上行数据信号。例如,在从无线基站10通知的下行控制信号中包含UL许可的情况下,发送信号生成单元402从控制单元401指示上行数据信号的生成。发送信号生成单元402能够由基于本发明的技术领域中的共同认识而说明的信号生成器、信号生成电路或者信号生成装置构成。
映射单元403基于来自控制单元401的指示,将在发送信号生成单元402中生成的上行信号(上行控制信号和/或上行数据)映射到无线资源,并输出到发送接收单元203。映射单元403能够由基于本发明的技术领域中的共同认识而说明的映射器、映射电路或者映射装置构成。
接收信号处理单元404对于DL信号(例如,从无线基站发送的下行控制信号、在PDSCH中发送的下行数据信号等)进行接收处理(例如,解映射、解调、解码等)。接收信号处理单元404将从无线基站10接收到的信息输出到控制单元401、判定单元405。接收信号处理单元404例如将广播信息、系统信息、RRC信令、DCI等输出到控制单元401。
接收信号处理单元404能够由基于本发明的技术领域中的共同认识而说明的信号处理器、信号处理电路或者信号处理装置、以及测量器、测量电路或者测量装置构成。此外,接收信号处理单元404能够构成本发明所涉及的接收单元。
判定单元405基于接收信号处理单元404的解码结果,进行重发控制判定(ACK/NACK),并将判定结果输出到控制单元401。在从多个CC(例如,6个以上的CC)发送下行信号(PDSCH)的情况下,能够对各CC分别进行重发控制判定(ACK/NACK)并输出到控制单元401。判定单元405能够由基于本发明的技术领域中的共同认识而说明的判定电路或者判定装置构成。
(硬件结构)
另外,上述实施方式的说明中使用的框图表示功能单位的块。这些功能块(结构单元)通过硬件和/或软件的任意的组合而实现。此外,对各功能块的实现手段并不特别限定。即,各功能块可以通过物理地结合的1个装置而实现,也可以将物理地分开的2个以上的装置由有线或无线连接,通过这些多个装置而实现。
例如,在本发明的一实施方式中的无线基站、用户终端等,可以作为进行本发明的无线通信方法的处理的计算机来发挥功能。图21是表示本发明的一实施方式的无线基站以及用户终端的硬件结构的一例的图。上述无线基站10以及用户终端20在物理上可以由包括处理器1001、存储器1002、储存器1003、通信装置1004、输入装置1005、输出装置1006、以及总线1007等的计算机装置构成。
另外,在以下的说明中,“装置”这个词,能够更换为电路、设备、单元等。无线基站10以及用户终端20的硬件结构可以包含一个或者多个图示的各装置而构成,也可以不包含一部分装置而构成。
无线基站10以及用户终端20中的各功能,通过在处理器1001、存储器1002等硬件上读入规定的软件(程序),通过处理器1001进行运算,并控制通信装置1004的通信或存储器1002以及储存器1003中的数据的读取和/或写入来实现。
处理器1001例如使操作系统进行操作从而控制计算机整体。处理器1001可以由包括与外围装置的接口、控制装置、运算装置、寄存器等的中央处理装置(中央处理单元(CPU:Central Processing Unit))构成。例如,上述基带信号处理单元104(204)、呼叫处理单元105等,也可以在处理器1001中实现。
此外,处理器1001将程序(程序代码)、软件模块或数据从储存器1003和/或通信装置1004中读取到存储器1002,基于它们执行各种处理。作为程序,使用使计算机执行在上述实施方式中说明的操作中的至少一部分的程序。例如,用户终端20的控制单元401可以通过在存储器1002中存储且在处理器1001中操作的控制程序来实现,关于其他的功能块也可以同样地实现。
存储器1002是计算机可读取的记录介质,例如可以由ROM(只读存储器(Read OnlyMemory))、EPROM(可擦除可编程ROM(Erasable Programmable ROM))、RAM(随机存取存储器(Random Access Memory))等中的至少一个构成。存储器1002也可以被称为寄存器、高速缓存、主存储器(主储存器)等。存储器1002能够保存用于实施本发明的一实施方式的无线通信方法的可执行的程序(程序代码)、软件模块等。
储存器1003是计算机可读取的记录介质,例如可以由CD-ROM(光盘ROM(CompactDisc ROM))等光盘、硬盘驱动器、软盘、光磁盘、闪存等中的至少一个构成。储存器1003也可以被称为辅助储存器。
通信装置1004是用于经由有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也被称为网络设备、网络控制器、网卡、通信模块等。例如,上述的发送接收天线101(201)、放大器单元102(202)、发送接收单元103(203)以及传输路径接口106等,也可以在通信装置1004中实现。
输入装置1005是受理来自外部的输入的输入设备(例如,键盘、鼠标等)。输出装置1006是实施对外部的输出的输出设备(例如,显示器、扬声器等)。另外,输入装置1005以及输出装置1006也可以是一体构成的(例如,触摸面板)。
此外,处理器1001或存储器1002等各装置,在用于进行信息通信的总线1007上连接。总线1007可以由一个总线构成,也可以由装置间不同的总线构成。
此外,无线基站10以及用户终端20可以包括微处理器、数字信号处理器(DSP:Digital Signal Processor)、ASIC(专用集成电路(Application Specific IntegratedCircuit))、PLD(可编程逻辑器件(Programmable Logic Device))以及FPGA(现场可编程门阵列(Field Programmable Gate Array))等硬件而构成,也可以通过该硬件实现各功能块的一部分或全部。例如,处理器1001可以由这些硬件中的至少一个来安装。
另外,关于在本说明书中说明的术语和/或本说明书的理解所需的术语,可以置换为具有相同或者类似的含义的术语。例如,信道和/或码元也可以是信号(信令)。此外,信号也可以是消息。此外,分量载波(CC:Component Carrier)也可以被称为小区、频率载波、载波频率等。
此外,无线帧也可以在时域中由一个或者多个期间(帧)构成。构成无线帧的该一个或者多个各期间(帧)也可以被称为子帧。进一步,子帧也可以在时域中由一个或者多个时隙。进一步,时隙也可以在时域中由一个或者多个码元(OFDM码元、SC-FDMA码元等)构成。
无线帧、子帧、时隙以及码元全都表示传输信号时的时间单位。也可以使用分别对应于无线帧、子帧、时隙以及码元的其他称呼。例如,1子帧也可以被称为发送时间间隔(TTI:Transmission Time Interval),多个连续的子帧也可以被称为TTI,1时隙也可以被称为TTI。即,子帧或TTI可以是现有的LTE中的子帧(1ms),也可以是比1ms短的期间(例如,1-13码元),也可以是比1ms长的期间。
这里,TTI例如是指无线通信中的调度的最小时间单位。例如,在LTE系统中,无线基站对于各用户终端,对无线资源(在各用户终端中能够使用的频率带宽或发送功率等)进行以TTI为单位分配的调度。另外,TTI的定义不限于此。
资源块(RB:Resource Block)是时域以及频域的资源分配单位,在频域中,也可以包含一个或者多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包含一个或者多个码元,也可以是1时隙、1子帧或者1TTI的长度。1TTI、1子帧也可以分别由一个或者多个资源块构成。另外,RB也可以被称为物理资源块(PRB:Physical RB)、PRB对、RB对等。
此外,资源块也可以由一个或者多个资源元素(RE:Resource Element)构成。例如,1RE也可以是1子载波以及1码元的无线资源区域。
另外,上述无线帧、子帧、时隙以及码元等的结构仅为例示。例如,无线帧中包含的子帧的数量、子帧中包含的时隙的数量、时隙中包含的码元以及RB的数量、RB中包含的子载波的数量、还有TTI内的码元数、码元长度、循环前缀(CP:Cyclic Prefix)长度等结构,能够进行各种变更。
此外,在本说明书说明的信息、参数等,可以由绝对值来表示,也可以由相对于规定的值的相对值来表示,也可以由对应的其他信息来表示。例如,无线资源也可以是通过规定的索引来指示的。
在本说明书中说明的信息、信号等可以使用各种不同的技术中的任意一种来表示。例如,在上述的整个说明中可提及的数据、命令、指令、信息、信号、比特、码元以及码片等也可以由电压、电流、电磁波、磁场或者磁性粒子、光场或者光子、或者它们的任意的组合来表示。
此外,软件、命令、信息等可以经由传输介质来发送接收。例如,在软件使用有线技术(同轴电缆、光缆、双绞线以及数字用户线(DSL)等)和/或无线技术(红外线、微波等)而从网站、服务器或者其他远程源被发送的情况下,这些有线技术和/或无线技术包含在传输介质的定义中。
此外,本说明书中的无线基站也可以更换为用户终端。例如,对于将无线基站以及用户终端间的通信置换为多个用户终端间(设备对设备(D2D:Device-to-Device))的通信,也可以应用本发明的各方式/实施方式。在该情况下,用户终端20可以设为具有上述无线基站10具有的功能的结构。此外,“上行”或“下行”等词,也可以更换为“侧”。例如,上行信道也可以更换为侧信道。
同样地,本说明书中的用户终端也可以更换为无线基站。在该情况下,无线基站10可以设为具有上述用户终端20具有的功能的结构。
在本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,也可以伴随着执行而切换使用。此外,规定的信息的通知(例如,“是X”的通知)并不限定于显式地进行,也可以隐式地(例如,通过不进行该规定的信息的通知而)进行。
信息的通知并不限定于在本说明书中说明的方式/实施方式,也可以通过其他的方法来进行。例如,信息的通知可以通过物理层信令(例如,DCI(下行链路控制信息(Downlink Control Information))、UCI(上行链路控制信息(Uplink ControlInformation)))、高层信令(例如,RRC(无线资源控制(Radio Resource Control))信令、广播信息(MIB(主信息块(Master Information Block))、SIB(系统信息块(SystemInformation Block)))、MAC(媒体访问控制(Medium Access Control))信令)、其他的信号或者它们的组合来实施。此外,RRC信令也可以被称为RRC消息,例如,也可以是RRC连接设置(RRCConnectionSetup)消息、RRC连接重构(RRCConnectionReconfiguration)消息等。此外,MAC信令例如也可以通过MAC控制元素(MAC CE(Control Element))而被通知。
在本说明书中说明的各方式/实施方式可以应用于LTE(长期演进(Long TermEvolution))、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、超3G、IMT-Advanced、4G(第4代移动通信系统(4th generation mobile communication system))、5G(第5代移动通信系统(5th generation mobile communication system))、FRA(未来无线接入(Future RadioAccess))、New-RAT(无线接入技术(Radio Access Technology))、CDMA2000、UMB(超移动宽带(Ultra Mobile Broadband))、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、UWB(超宽带(Ultra-WideBand))、Bluetooth(注册商标)以及利用其他恰当的系统的系统和/或基于它们而被扩展的下一代系统。
在本说明书中说明的各方式/实施方式的处理过程、时序、流程图等,只要不矛盾,则可以调换顺序。例如,关于在本说明书中说明的方法,按照例示的顺序提示各种步骤的元素,并不限定于提示的特定的顺序。
以上,详细说明了本发明,但对于本领域技术人员而言,本发明显然并不限定于在本说明书中说明的实施方式。例如,上述的各实施方式可以单独使用,也可以组合使用。本发明能够作为修正以及变更方式来实施,而不脱离由权利要求书的记载所确定的本发明的宗旨以及范围。因此,本说明书的记载以例示说明为目的,对本发明不具有任何限制性的含义。
本申请基于2016年1月29日申请的特愿2016-016194。其内容全部包含于此。

Claims (5)

1.一种终端,具有:
接收单元,对14码元内的第一期间内的第一物理下行控制信道即第一PDCCH和所述14码元内的第二期间内的第二PDCCH进行监视,所述第二期间位于所述第一期间之后;以及
控制单元,基于所述第一PDCCH对第一物理下行共享信道即第一PDSCH进行解码,基于所述第二PDCCH对第二PDSCH进行解码,所述第一PDSCH位于所述第一期间内且位于所述第一PDCCH之后,所述第二PDSCH位于所述第二期间内且位于所述第二PDCCH之后,
所述第一PDCCH、所述第二PDCCH、所述第一PDSCH以及所述第二PDSCH在相同频带内,
所述频带是被设定于某小区的频带的一部分,
所述接收单元在通过高层信令被设定的多个资源中监视所述第二PDCCH,
所述第一期间的长度及所述第二期间的长度基于子载波间隔的设定而被决定,
所述接收单元接收与频率资源的候选有关的信息,所述频率资源包含所述第二期间中的带宽的分配位置,
所述控制单元从所述候选判断特定定时的1个带宽。
2.如权利要求1所述的终端,其中,
所述第二PDSCH被映射到使用所述第二期间的带宽的函数的频率资源。
3.一种无线通信方法,其是终端的无线通信方法,包括:
对14码元内的第一期间内的第一物理下行控制信道即第一PDCCH和所述14码元内的第二期间内的第二PDCCH进行监视的步骤,所述第二期间位于所述第一期间之后;以及
基于所述第一PDCCH对第一物理下行共享信道即第一PDSCH进行解码,基于所述第二PDCCH对第二PDSCH进行解码的步骤,所述第一PDSCH位于所述第一期间内且位于所述第一PDCCH之后,所述第二PDSCH位于所述第二期间内且位于所述第二PDCCH之后,
所述第一PDCCH、所述第二PDCCH、所述第一PDSCH以及所述第二PDSCH在相同频带内,
所述频带是被设定于某小区的频带的一部分,
所述终端在通过高层信令被设定的多个资源中监视所述第二PDCCH,
所述第一期间的长度及所述第二期间的长度基于子载波间隔的设定而被决定,
在所述终端中,接收与频率资源的候选有关的信息,所述频率资源包含所述第二期间中的带宽的分配位置,
在所述终端中,从所述候选判断特定定时的1个带宽。
4.一种基站,具有:
控制单元,在14码元内的第一期间内对第一物理下行控制信道即第一PDCCH及第一物理下行共享信道即第一PDSCH进行匹配,在所述14码元内的第二期间内对第二PDCCH及第二PDSCH进行匹配,所述第二期间位于所述第一期间之后,所述第一PDSCH位于所述第一PDCCH之后,所述第二PDSCH位于所述第二PDCCH之后;以及
发送单元,发送第一PDCCH、所述第一PDSCH、所述第二PDCCH以及所述第二PDSCH,所述第一PDCCH调度所述第一PDSCH,所述第二PDCCH调度所述第二PDSCH,
所述第一PDCCH、所述第二PDCCH、所述第一PDSCH以及所述第二PDSCH在相同频带内,
所述频带是被设定于某小区的频带的一部分,
所述发送单元在通过高层信令被设定的多个资源中发送所述第二PDCCH,
所述第一期间的长度及所述第二期间的长度基于子载波间隔的设定而被决定,
所述发送单元发送与频率资源的候选有关的信息,所述频率资源包含所述第二期间中的带宽的分配位置,
所述控制单元从所述候选指示特定定时的1个带宽。
5.一种具有基站和终端的系统,
所述基站具有:
第一控制单元,在14码元内的第一期间内对第一物理下行控制信道即第一PDCCH及第一物理下行共享信道即第一PDSCH进行匹配,在所述14码元内的第二期间内对第二PDCCH及第二PDSCH进行匹配,所述第二期间位于所述第一期间之后,所述第一PDSCH位于所述第一PDCCH之后,所述第二PDSCH位于所述第二PDCCH之后;以及
发送单元,发送第一PDCCH、所述第一PDSCH、所述第二PDCCH以及所述第二PDSCH,所述第一PDCCH调度所述第一PDSCH,所述第二PDCCH调度所述第二PDSCH,
所述终端具有:
接收单元,对所述第一PDCCH及所述第二PDCCH进行监视;以及
第二控制单元,基于所述第一PDCCH对所述第一PDSCH进行解码,基于所述第二PDCCH对第二PDSCH进行解码,
所述第一PDCCH、所述第二PDCCH、所述第一PDSCH以及所述第二PDSCH在相同频带内,
所述频带是被设定于某小区的频带的一部分,
所述接收单元在通过高层信令被设定的多个资源中监视所述第二PDCCH,
所述第一期间的长度及所述第二期间的长度基于子载波间隔的设定而被决定,
所述接收单元接收与频率资源的候选有关的信息,所述频率资源包含所述第二期间中的带宽的分配位置,
所述第二控制单元从所述候选判断特定定时的1个带宽。
CN201780008904.0A 2016-01-29 2017-01-25 终端、无线通信方法、基站以及系统 Active CN108605327B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-016194 2016-01-29
JP2016016194 2016-01-29
PCT/JP2017/002423 WO2017130990A1 (ja) 2016-01-29 2017-01-25 ユーザ端末、無線基地局及び無線通信方法

Publications (2)

Publication Number Publication Date
CN108605327A CN108605327A (zh) 2018-09-28
CN108605327B true CN108605327B (zh) 2023-06-20

Family

ID=59398462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780008904.0A Active CN108605327B (zh) 2016-01-29 2017-01-25 终端、无线通信方法、基站以及系统

Country Status (5)

Country Link
US (1) US11329856B2 (zh)
EP (1) EP3410797B1 (zh)
JP (2) JPWO2017130990A1 (zh)
CN (1) CN108605327B (zh)
WO (1) WO2017130990A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11102675B2 (en) * 2016-02-03 2021-08-24 Sony Corporation Wireless communication apparatus, communication method, computer program, and wireless communication system
CA3004858A1 (en) * 2016-03-31 2017-10-05 Sony Corporation Terminal device, base station device, and communication method
KR102501724B1 (ko) 2016-04-12 2023-02-21 모토로라 모빌리티 엘엘씨 전송 시간 구간의 스케줄링
JP7043395B2 (ja) * 2016-05-10 2022-03-29 株式会社Nttドコモ 端末、無線通信方法及びシステム
EP3455964B1 (en) * 2016-05-12 2022-01-19 Panasonic Intellectual Property Corporation of America User equipment for detecting dci types within a subframe
CN107371256B (zh) 2016-05-12 2020-05-22 华硕电脑股份有限公司 无线通信系统中具有不同传输时间间隔的控制信道的检测的方法、移动装置、存储介质
EP3252981A3 (en) 2016-05-12 2018-04-18 ASUSTek Computer Inc. Method and apparatus for improving control channel structure in shortened transmission time intervals in a wireless communication system
US10966186B2 (en) * 2016-08-12 2021-03-30 Qualcomm Incorporated Downlink control channel structure for low latency applications
US10602498B2 (en) * 2016-11-04 2020-03-24 Asustek Computer Inc. Method and apparatus for signaling different short TTI (transmission time interval) band in shortened TTI in a wireless communication system
US10368365B2 (en) * 2017-02-02 2019-07-30 Qualcomm Incorporated Time mask techniques for shortened transmission time intervals
EP3577835B1 (en) * 2017-02-06 2022-11-30 Motorola Mobility LLC Method and apparatus for short pdcch operation
CN112806094B (zh) * 2018-10-10 2024-03-22 株式会社Ntt都科摩 终端、无线通信系统以及无线通信方法
US11483814B2 (en) 2019-01-04 2022-10-25 Qualcomm Incorporated Control channel design for shared wireless communications
EP3866497A1 (en) * 2020-02-11 2021-08-18 Volkswagen Ag Vehicle, network entity, apparatuses, methods, and computer programs for communicating messages with other vehicles and for adapting a physical layer configuration

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480098A (zh) * 2006-05-01 2009-07-08 株式会社Ntt都科摩 基于可变传输时间间隔长度控制的无线通信方法及无线基站装置
CN102523078A (zh) * 2007-01-09 2012-06-27 株式会社Ntt都科摩 基站、发送方法及通信系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5069147B2 (ja) * 2008-02-29 2012-11-07 株式会社エヌ・ティ・ティ・ドコモ 移動通信システム、基地局装置、ユーザ装置及び方法
US8923223B2 (en) * 2010-08-16 2014-12-30 Qualcomm Incorporated Physical uplink control channel resource allocation for multiple component carriers
WO2013015632A2 (ko) * 2011-07-26 2013-01-31 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
WO2013041138A1 (en) * 2011-09-21 2013-03-28 Nokia Siemens Networks Oy Apparatus and method for communication
WO2013066100A1 (ko) * 2011-11-03 2013-05-10 엘지전자 주식회사 무선 접속 시스템에서 하향링크 제어 정보 송수신 방법 및 이를 위한 장치
JP5487229B2 (ja) * 2011-11-07 2014-05-07 株式会社Nttドコモ 無線基地局装置、ユーザ端末、無線通信システム及び無線通信方法
US9313782B2 (en) * 2013-05-08 2016-04-12 Qualcomm Incorporated Enhanced PDSCH operation
JP6298263B2 (ja) * 2013-09-26 2018-03-20 株式会社Nttドコモ 無線基地局、ユーザ端末及び無線通信方法
US10200137B2 (en) * 2013-12-27 2019-02-05 Huawei Technologies Co., Ltd. System and method for adaptive TTI coexistence with LTE
US9907071B2 (en) * 2014-07-18 2018-02-27 Qualcomm Incorporated Resource management for UEs under coverage enhancement
EP3840264A1 (en) * 2014-09-08 2021-06-23 Interdigital Patent Holdings, Inc. Controlling the operation of dci based reception
US9955462B2 (en) * 2014-09-26 2018-04-24 Qualcomm Incorporated Ultra-low latency LTE control data communication
US10560245B2 (en) * 2014-10-21 2020-02-11 Lg Electronics Inc. Data transmission/reception method in wireless communication system that supports low latency, and apparatus therefor
US10455503B2 (en) * 2014-10-21 2019-10-22 Lg Electronics Inc. Method for monitoring downlink control channel in wireless communication system and apparatus for the same
US10070429B2 (en) * 2014-11-14 2018-09-04 Electronics And Telecommunications Research Institute Method and apparatus for transmitting information in low latency mobile communication system
WO2016208897A1 (ko) * 2015-06-22 2016-12-29 엘지전자 주식회사 상향링크 채널을 전송하는 방법 및 nb-iot 기기
WO2017074520A1 (en) * 2015-10-30 2017-05-04 Intel IP Corporation Detecting puncturing of first pdsch with second pdsch having shorter tti
EP3742644A1 (en) * 2016-01-06 2020-11-25 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting information and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101480098A (zh) * 2006-05-01 2009-07-08 株式会社Ntt都科摩 基于可变传输时间间隔长度控制的无线通信方法及无线基站装置
CN102523078A (zh) * 2007-01-09 2012-06-27 株式会社Ntt都科摩 基站、发送方法及通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Control signaling enhancements for short TTI;Huawei等;《3GPP TSG RAN WG1 Meeting #83 R1-156461》;20151107;第2节 *

Also Published As

Publication number Publication date
EP3410797B1 (en) 2023-06-07
CN108605327A (zh) 2018-09-28
JPWO2017130990A1 (ja) 2018-11-22
EP3410797A4 (en) 2019-09-04
EP3410797A1 (en) 2018-12-05
WO2017130990A1 (ja) 2017-08-03
US11329856B2 (en) 2022-05-10
US20190036758A1 (en) 2019-01-31
JP2022009197A (ja) 2022-01-14
JP7197660B2 (ja) 2022-12-27

Similar Documents

Publication Publication Date Title
CN108605327B (zh) 终端、无线通信方法、基站以及系统
CN107852720B (zh) 用户终端、无线基站以及无线通信方法
CN108432316B (zh) 用户终端、无线基站以及无线通信方法
CN108464045B (zh) 用户终端、无线基站及无线通信方法
JP7047037B2 (ja) 端末、無線通信方法、基地局及びシステム
CN109155987B (zh) 用户终端以及无线通信方法
CN107852640B (zh) 用户装置、无线基站以及无线通信方法
JP6938390B2 (ja) 端末、無線通信方法、基地局及びシステム
CN108496386B (zh) 用户终端、无线基站及无线通信方法
US10820317B2 (en) User terminal, radio base station and radio communication method
CN108702755B (zh) 终端、基站、系统以及无线通信方法
CN108886706B (zh) 用户终端、无线基站及无线通信方法
WO2017142031A1 (ja) ユーザ端末、無線基地局及び無線通信方法
WO2018128183A1 (ja) ユーザ端末及び無線通信方法
CN108886775B (zh) 用户终端、无线基站及无线通信方法
CN111052694A (zh) 用户终端以及无线通信方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant