CN108600137A - 一种基于反向传播神经网络的新型多载波识别方法 - Google Patents

一种基于反向传播神经网络的新型多载波识别方法 Download PDF

Info

Publication number
CN108600137A
CN108600137A CN201810403055.5A CN201810403055A CN108600137A CN 108600137 A CN108600137 A CN 108600137A CN 201810403055 A CN201810403055 A CN 201810403055A CN 108600137 A CN108600137 A CN 108600137A
Authority
CN
China
Prior art keywords
nerve network
reverse transmittance
transmittance nerve
output
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810403055.5A
Other languages
English (en)
Other versions
CN108600137B (zh
Inventor
余翔
陈侃
段思睿
程志安
董宸曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201810403055.5A priority Critical patent/CN108600137B/zh
Publication of CN108600137A publication Critical patent/CN108600137A/zh
Application granted granted Critical
Publication of CN108600137B publication Critical patent/CN108600137B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明涉及一种基于反向传播神经网络的新型多载波识别方法,属于移动通信技术领域。该方法,首先生成具有多种幅度的三种基带多载波信号,对多载波信号进行采样;对采样得到的信号序列先后进行功率归一化处理和线性归一化处理;构建并训练反向传播神经网络;将待识别信号做上述两步归一化处理并输入至网络,根据输出值判别多载波信号类型。通过该方法,能够以低复杂度、快速准确地实现对三种新型多载波信号的识别;并能实现在低信噪比下对非标准化幅度信号的归一化处理和正确识别,提高识别网络的泛化能力。

Description

一种基于反向传播神经网络的新型多载波识别方法
技术领域
本发明属于移动通信技术领域,涉及一种基于反向传播神经网络的新型多载波波形识别方法。
背景技术
在5G系统的需求中,提出了更加多样化的业务类型、更高的频谱效率和更多的连接数等要求。在5G无线技术架构白皮书中,提出了4类主要应用场景,其中低功耗大连接场景主要针对以传感及数据采集为目的的物联网应用,具有小数据包、低功耗、低成本、海量连接等特性。在上述复杂的应用场景下,OFDM较高的带外泄露、对时频同步偏差敏感以及全频带需统一配置参数等缺点,将成为5G系统性能提升的主要障碍。基于上述原因,各种新型非正交多载波技术的研究应运而生。目前备选的多载波波形有滤波器组多载波(Filterbank based Multicarrier,FBMC)、通用滤波器多载波技术(Universal FilteredMulticarrier,UFMC)、滤波器正交频分复用技术(Filter OFDM,F-OFDM)等。而单一波形很难满足所有的需求,多种波形技术将共存,在不同场景下发挥各自作用。
当多种波形技术共存时,多模终端需具备多种波形的接收能力。上述的多种备选多载波技术,在实现方式上与OFDM具有相似性,接收端可以采用同一基带电路解调不同的多载波波形,降低硬件成本及功耗。而接收多种波形的前提,就是具备对各种多载波波形进行识别的能力。
作为信号检测和信号解调中间的步骤,调制识别技术在国防、安全监测等领域应用广泛且不可或缺。目前,调制识别技术集中在单载波的类内识别以及单载波与多载波之间的识别,并没有提供新型多载波技术的类内识别技术。并且传统的调制识别技术主要包括:1.基于特征提取;2.基于最大似然比。而前者的识别效果依赖于人工对特征量的正确选择,后者的识别效果依赖于分析信号的统计特性并需要一些先验信息。在实际应用中上述两种技术的复杂度都很高并且对人工依赖性强。
专利文献“一种基于特征提取的通信信号调制方式进行识别的方法”(申请公布号:CN104022837A)中将接收信号的归一化功率谱中大于常数B时的谱峰个数、归一化零中心瞬时幅度谱密度的最大值以及圆环特征参数结合起来快速准确识别单载波信号。该专利中信号识别效果依赖于谱峰特征提取的好坏。专利文献“一种基于混合高斯模型的最大似然调制识别方法”(申请公布号:CN104158633A)中扩展了传统信号星座图,通过混合高斯模型来模拟真实环境下的信号处理机误差并提高了星座模型的稳健性。该专利中先验的信道信息的准确与否对识别效果有影响。
反向传播神经网络因其具有很强的非线性映射能力和柔性的网络结构而受到广泛应用,但是应用传统的反向传播神经网络归一化方法(线性归一化法、零均值归一化法、函数归一化法等)对具有多种增益的多载波信号数据进行预处理时会导致训练出来的网络泛化能力较弱,即当待识别信号不是标准化幅度信号时,识别率大大降低。
发明内容
有鉴于此,本发明的目的在于提供一种基于反向传播神经网络的新型多载波波形识别方法。通过该方法,能够以低复杂度、快速准确地实现对三种新型多载波信号(OFDM、UFMC、FBMC)的识别。并能实现在低信噪比下对非标准化幅度信号的归一化处理和正确识别,提高识别网络的泛化能力。
为达到上述目的,本发明提供如下技术方案:
一种基于反向传播神经网络的新型多载波识别方法,首先生成具有多种幅度的三种基带多载波信号,对多载波信号进行采样;对采样得到的信号序列先后进行功率归一化处理和线性归一化处理;构建并训练反向传播神经网络;将待识别信号做上述两步归一化处理并输入至网络,根据输出值判别多载波信号类型。该方法具体包括以下步骤:
S1:生成三种具有多种幅度增益的基带多载波信号;
S2:在接收端对上述基带多载波信号进行采样;
S3:以步骤S2所述的三种多载波信号的IFFT采样点数为单元对多载波信号的幅度进行功率归一化处理;
S4:构建初步的反向传播神经网络;
S5:将经过功率归一化处理后的数据单元作为反向传播神经网络的训练样本,并对这些样本进行线性归一化处理;
S6:训练反向传播神经网络;
S7:将待识别基带多载波信号按照步骤S3和S5所述方法进行归一化处理,并输入至上述反向传播神经网络,将大于0.5的输出节点值判定为1,小于0.5的输出节点值判定为0,根据输出向量值识别多载波信号。
进一步,所述的三种基带多载波信号分别为OFDM、UFMC和FBMC;所述的训练样本以及待识别输入集均为信号幅度序列。
进一步,所述步骤S3具体包括:IFFT采样点数为NFFT,一个IFFT采样周期内的信号幅度序列表示为:则功率归一化后的幅度序列为:
对每个信号幅度序列均做上式归一化处理。
进一步,所述步骤S5具体包括:将经过功率归一化处理后的数据作为反向传播神经网络的训练样本,样本数为Nsamples,其中一个输入节点的样本数据表示为:则一个输入节点样本数据经过线性归一化后的序列为:
对每个输入节点的样本数据都进行上述线性归一化处理。
进一步,所述步骤S6具体包括以下步骤:
S61:将所述经过两步归一化处理后的训练样本输入到所述初步建立的反向传播神经网络的输入层并进入隐藏层;
S62:所述反向传播神经网络的隐藏层根据初始连接权值和激活函数将所述输入样本转换成输出数据输入到输出层,输出层根据初始连接权值和激活函数将数据输出;
S63:当输出层输出的数据与期望输出值之间的误差大于期望精度时,进入误差的反向传播环节,采用量化共轭梯度算法调整网络隐藏层的各连接权值和阈值,并跳转至步骤S61;
S64:当输出层输出的数据与期望输出值的误差在期望精度内时,所述反向传播神经网络训练建立完成。
本发明的有益效果在于:1)本发明考虑了5G通信应用多波形共存场景下,多模终端需具备用同一基带电路对多种新型多载波波形进行识别的问题。2)利用反向传播神经网络对三种新型多载波波形进行了识别,克服了传统调制识别技术需要提取接收信号特征量和分析统计特性而导致复杂度高和人工依赖性强的缺点。3)在输入反向传播神经网络数据预处理步骤中加入了功率归一化处理,能够大大提升神经网络对非标准化幅度信号的识别率,增强了反向传播神经网络识别新型多载波波形的泛化能力;该处理方法也使得神经网络识别率在低信噪比下依然取得较高的识别率。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为本发明所述的新型多载波波形识别方法的整体流程图;
图2为本发明中所述反向传播神经网络的结构示意图。
图3为本发明的实验结果仿真图。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
如图1所示,对本发明的具体步骤作进一步的描述。
S1:生成具有多种幅度的三种基带多载波信号。所述多载波信号包括OFDM(正交频分复用调制)、FBMC(滤波器组调制)和UFMC(通用滤波器组调制)。步骤S1具体包括以下步骤:
S11:生成随机比特流,并采用64QAM对比特流进行星座映射,得到复数序列。
S12:对复数序列分别进行OFDM、UFMC、FBMC调制。其中IFFT采样点数NFFT均为1024;UFMC调制中设置参数为:子带数为10,每个子带包含20个频点;采用长度为43,旁瓣衰减为40dB的切比雪夫滤波器;FBMC调制中设置参数为:采用PHYDYAS滤波器,重叠因子K=4;采用多相结构进行滤波。
S13:在每种调制波形的传输数据中分别随机设置四种范围在10-2到102的不同幅度增益的等量调制信号并将他们的顺序随机打乱。
S2:在接收端对上述基带多载波信号进行采样。
本发明中三种多载波信号通过信噪比为5dB的加性高斯白噪声信道,并在接收端按IFFT点数为周期进行采样,得到一系列以NFFT为长度的时域符号序列。
S3:以这三种多载波信号的IFFT采样点数为单元对多载波信号的幅度进行功率归一化处理。
取每个时域符号的幅度值,即复数的模值,得到信号幅度序列。一个长度为NFFT的信号幅度序列表示为:则功率归一化后的幅度序列为:
对每个信号幅度序列均做上式归一化处理。
S4:构建初步的反向传播神经网络。
本发明采用三层结构的反向传播神经网络,分别为输入层、隐藏层和输出层。输入节点数设置为NFFT;输出节点数设置为期望向量值的列维数Nout;隐藏层节点数Nhidden设置为
S5:将经过功率归一化处理后的数据单元作为反向传播神经网络的训练样本,并对这些样本进行线性归一化处理。
将经过功率归一化处理后的数据作为反向传播神经网络的训练样本,样本数为Nsamples,其中一个输入节点的样本数据表示为:则一个输入节点样本数据经过线性归一化后的序列为:
对每个输入节点的样本数据都进行上述线性归一化处理。
S6:训练反向传播神经网络。
如图2所示,xi表示输入层第i个节点的输入数据,i=1,2,3,...NFFT;wij表示为输入层第i个节点至隐藏层第j个节点的连接权值,j=1,2,...Nhidden;bj表示隐藏层第j个节点的阈值;f(·)为激活函数sigmoid;wjk为隐藏层第j个节点至输出层第k个节点的连接权值,k=1,2,3..N.out;αk表示为输出层第k个节点的阈值;ok表示第k个输出节点的输出值。
给神经网络中各连接权值分别赋予区间为(-1,1)内的随机数,设定总体误差函数其中Tk(m)为第m个样本数据在k个输出节点的期望输出值、期望精度ε、学习速率λ和最大学习次数M。本发明中,期望精度ε设定为10-7,学习速率λ设定为0.1,最大学习次数M设定为200次,期望输出向量值对应于OFDM、UFMC、FBMC分别为(0,1)、(1,0)、(1,1),则输出层节点数Nout为2,隐藏层节点数Nhidden为33。
S61:将所述经过两步归一化处理后的训练样本输入到所述初步建立的反向传播神经网络的输入层并进入隐藏层。
S62:所述反向传播神经网络的隐藏层根据初始连接权值将所述输入样本转换成输出数据输入到输出层,输出层根据初始连接权值和激活函数将数据输出。
上述步骤为输入样本前向传播过程,具体如下:
隐藏层第j个节点的输入netj为:
隐藏层第j个节点的输出ho(j)为:
ho(j)=f(netj) (4)
输出层第k个节点的输入yk为:
输出层第k个节点的输出yo(k)为:
yo(k)=f(yk) (6)
S63:当所述输出层输出的数据与所述期望输出值之间的误差大于期望精度时,进入误差的反向传播环节,采用量化共轭梯度算法调整网络隐藏层的各连接权值和阈值并跳转至步骤S61。
由于输入节点个数多,样本数大,故采用量化共轭梯度算法来调整各连接权值和阈值。量化共轭梯度算法实施过程如下:
利用总体误差函数e对各层连接权值和阈值求梯度 其中Δwij为输入层至隐藏层连接权值梯度,Δwjk为隐藏层至输出层连接权值梯度,Δbj为隐藏层阈值梯度,Δαk为输出层阈值梯度。
以Δwij搜索算法为例,其余三个参数的搜索算法与Δwij一致。第一步迭代的修正值则第t次迭代时权值wij的修正式为:
其中为第(t-1)次迭代后的梯度;β为共轭因子,保证共轭,通过计算得到第t步的共轭因子。
S64:当所述输出层输出的数据与所述期望输出值的误差在期望精度内时,所述反向传播神经网络训练建立完成。
S7:将待识别基带多载波信号按照步骤S3和S5所述方法进行归一化处理并输入至上述反向传播神经网络,将大于0.5的输出节点值判定为1,小于0.5的输出节点值判定为0,根据输出向量值识别多载波信号。
下面结合仿真实验对本发明的效果作进一步的描述:
本实验中训练样本数设定为18000个,每种波形的训练样本数设定为6000个,顺序随机打乱。通过1500个测试样例来对训练好的反向传播神经网络进行测试,每种波形信号使用500个测试样例,顺序随机打乱。仿真结果如图3显示,在信噪比范围为0dB到20dB时,使用传统不加功率归一化处理的神经网络进行识别,识别准确率均低于80%,而加入功率归一化处理后神经网络的平均识别准确率达到87.2%。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (5)

1.一种基于反向传播神经网络的新型多载波识别方法,其特征在于,该方法具体包括以下步骤:
S1:生成三种具有多种幅度增益的基带多载波信号;
S2:在接收端对上述基带多载波信号进行采样;
S3:以步骤S2所述的三种多载波信号的IFFT采样点数为单元对多载波信号的幅度进行功率归一化处理;
S4:构建初步的反向传播神经网络;
S5:将经过功率归一化处理后的数据单元作为反向传播神经网络的训练样本,并对这些样本进行线性归一化处理;
S6:训练反向传播神经网络;
S7:将待识别基带多载波信号按照步骤S3和S5所述方法进行归一化处理,并输入至上述反向传播神经网络,将大于0.5的输出节点值判定为1,小于0.5的输出节点值判定为0,根据输出向量值识别多载波信号。
2.根据权利要求1所述的一种基于反向传播神经网络的新型多载波识别方法,其特征在于,所述的三种基带多载波信号分别为OFDM、UFMC和FBMC;所述的训练样本以及待识别输入集均为信号幅度序列。
3.根据权利要求1所述的一种基于反向传播神经网络的新型多载波识别方法,其特征在于,所述步骤S3具体包括:IFFT采样点数为NFFT,一个IFFT采样周期内的信号幅度序列表示为:则功率归一化后的幅度序列为:
对每个信号幅度序列均做上式归一化处理。
4.根据权利要求1所述的一种基于反向传播神经网络的新型多载波识别方法,其特征在于,所述步骤S5具体包括:将经过功率归一化处理后的数据作为反向传播神经网络的训练样本,样本数为Nsamples,其中一个输入节点的样本数据表示为:则一个输入节点样本数据经过线性归一化后的序列为:
对每个输入节点的样本数据都进行上述线性归一化处理。
5.根据权利要求1所述的一种基于反向传播神经网络的新型多载波识别方法,其特征在于,所述步骤S6具体包括以下步骤:
S61:将所述经过两步归一化处理后的训练样本输入到所述初步建立的反向传播神经网络的输入层并进入隐藏层;
S62:所述反向传播神经网络的隐藏层根据初始连接权值和激活函数将所述输入样本转换成输出数据输入到输出层,输出层根据初始连接权值和激活函数将数据输出;
S63:当输出层输出的数据与期望输出值之间的误差大于期望精度时,进入误差的反向传播环节,采用量化共轭梯度算法调整网络隐藏层的各连接权值和阈值,并跳转至步骤S61;
S64:当输出层输出的数据与期望输出值的误差在期望精度内时,所述反向传播神经网络训练建立完成。
CN201810403055.5A 2018-04-28 2018-04-28 一种基于反向传播神经网络的新型多载波识别方法 Active CN108600137B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810403055.5A CN108600137B (zh) 2018-04-28 2018-04-28 一种基于反向传播神经网络的新型多载波识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810403055.5A CN108600137B (zh) 2018-04-28 2018-04-28 一种基于反向传播神经网络的新型多载波识别方法

Publications (2)

Publication Number Publication Date
CN108600137A true CN108600137A (zh) 2018-09-28
CN108600137B CN108600137B (zh) 2020-11-24

Family

ID=63619339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810403055.5A Active CN108600137B (zh) 2018-04-28 2018-04-28 一种基于反向传播神经网络的新型多载波识别方法

Country Status (1)

Country Link
CN (1) CN108600137B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787927A (zh) * 2019-01-03 2019-05-21 荆门博谦信息科技有限公司 基于深度学习的调制识别方法和装置
CN114679359A (zh) * 2022-04-08 2022-06-28 中山大学 一种基于卷积神经网络的多载波波形识别方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263716A (zh) * 2011-07-26 2011-11-30 苏州大学 一种调制类型识别方法及系统
US8401117B1 (en) * 2011-11-04 2013-03-19 The United States Of America, As Represented By The Secretary Of The Army Method of adaptive modulation for cognitive radios using a fast and simplified modulation recognition
CN103067325A (zh) * 2013-01-31 2013-04-24 南京邮电大学 基于多类特征参数和证据理论的协作调制识别方法
CN107124381A (zh) * 2017-03-27 2017-09-01 华南理工大学 一种数字通信信号调制方式自动识别方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263716A (zh) * 2011-07-26 2011-11-30 苏州大学 一种调制类型识别方法及系统
US8401117B1 (en) * 2011-11-04 2013-03-19 The United States Of America, As Represented By The Secretary Of The Army Method of adaptive modulation for cognitive radios using a fast and simplified modulation recognition
CN103067325A (zh) * 2013-01-31 2013-04-24 南京邮电大学 基于多类特征参数和证据理论的协作调制识别方法
CN107124381A (zh) * 2017-03-27 2017-09-01 华南理工大学 一种数字通信信号调制方式自动识别方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王柳: "宽带无线电通信信号中的调制识别", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109787927A (zh) * 2019-01-03 2019-05-21 荆门博谦信息科技有限公司 基于深度学习的调制识别方法和装置
CN114679359A (zh) * 2022-04-08 2022-06-28 中山大学 一种基于卷积神经网络的多载波波形识别方法
CN114679359B (zh) * 2022-04-08 2023-05-19 中山大学 一种基于卷积神经网络的多载波波形识别方法

Also Published As

Publication number Publication date
CN108600137B (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
CN107124381B (zh) 一种数字通信信号调制方式自动识别方法
CN108764077B (zh) 一种基于卷积神经网络的数字信号调制分类方法
CN106646410B (zh) 宽带认知被动雷达架构下的学习-感知-决策-响应方法
CN109379311B (zh) 基于卷积神经网络的超短波特定信号识别方法
CN107038421A (zh) 基于稀疏堆栈自编码的调制样式识别方法
CN107122738A (zh) 基于深度学习模型的无线电信号识别方法及其实现系统
CN108540419B (zh) 一种基于深度学习的抗子载波间干扰的ofdm检测方法
CN104601266B (zh) 一种广播信号在线监测和并行解调的系统
CN108512797A (zh) 一种基于正交频分复用的雷达通信一体化信号设计方法
CN112733811B (zh) 基于改进稠密神经网络的水声信号调制方式类间识别方法
CN113630130B (zh) 端到端数字通信解调方法
CN111510402A (zh) 基于深度学习的ofdm信道估计方法
CN101764786A (zh) 基于聚类算法的mqam信号识别方法
CN112069883A (zh) 一种融合一维二维卷积神经网络的深度学习信号分类方法
CN108600137A (zh) 一种基于反向传播神经网络的新型多载波识别方法
CN113225282A (zh) 一种基于bp神经网络的通信信号调制识别方法
Lin et al. A deep convolutional network demodulator for mixed signals with different modulation types
Dakic et al. LoRa signal demodulation using deep learning, a time-domain approach
CN113572708A (zh) 一种dft信道估计改进方法
CN109286457A (zh) 基于小波分析的twacs上行信号检测方法
CN114422311A (zh) 联合深度神经网络和专家先验特征的信号调制识别方法及系统
CN109347601B (zh) 基于卷积神经网络的抗音调干扰ldpc码的译码方法
Ya et al. Modulation recognition of digital signal based on deep auto-ancoder network
CN105721079B (zh) 一种基于认知无线技术的无线信道“指纹”特征使用方法
CN106027146B (zh) 一种dco-ofdm直流偏置和子载波功率的优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant