CN108588366A - 一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法 - Google Patents

一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法 Download PDF

Info

Publication number
CN108588366A
CN108588366A CN201711419314.5A CN201711419314A CN108588366A CN 108588366 A CN108588366 A CN 108588366A CN 201711419314 A CN201711419314 A CN 201711419314A CN 108588366 A CN108588366 A CN 108588366A
Authority
CN
China
Prior art keywords
06cr19ni10
austenitic stainless
stainless steels
heat treatment
selective laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711419314.5A
Other languages
English (en)
Other versions
CN108588366B (zh
Inventor
李护林
杨欢庆
雷玥
王琳
彭东剑
白静
宋梦华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aerospace Engine Co Ltd
Original Assignee
Xian Aerospace Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aerospace Engine Co Ltd filed Critical Xian Aerospace Engine Co Ltd
Priority to CN201711419314.5A priority Critical patent/CN108588366B/zh
Publication of CN108588366A publication Critical patent/CN108588366A/zh
Application granted granted Critical
Publication of CN108588366B publication Critical patent/CN108588366B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,属于金属增材制造技术领域。所述热处理方法包括:激光选区熔化成形06Cr19Ni10奥氏体不锈钢在压强不大于10‑3Pa、温度为800℃~950℃的条件下保温1h~4h,冷却后得到热处理后的06Cr19Ni10奥氏体不锈钢。本发明热处理后的06Cr19Ni10奥氏体不锈钢残余内应力得到消除;得到具有合适晶粒度的均匀组织;具有良好的耐蚀性,尤其是耐晶间腐蚀能力;室温时,Rm不低于520N/mm2,Rp0.2不低于205N/mm2,A不低于40%,KU2不低于100J。

Description

一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理 方法
技术领域
本发明涉及金属增材制造技术领域,尤其涉及一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢及其热处理方法。
背景技术
激光选区熔化(Selective Laser Melting,简称SLM)是目前技术成熟度较高、应用领域最为广泛的金属增材制造技术,具有制造精度高、适合材料范围广、构件性能好、机械加工余量小、制造周期短和自动化程度高等特点,能满足几乎任意复杂形状的精密金属构件制造要求,大幅度降低了研制周期和研制成本。
06Cr19Ni10(AISI304L)奥氏体不锈钢具有适宜的强度和良好的耐蚀性,尤其是耐晶间腐蚀能力,被广泛地应用于航空、航天、核工业、化工以及石化等行业中与腐蚀性介质接触的容器、管路等部件。其标准的热处理制度为1050℃~1100℃固溶处理,水冷后获得室温下稳定的奥氏体组织。
采用激光选区熔化工艺成形的06Cr19Ni10奥氏体不锈钢,由于成形过程具有粉末熔合-冷却速度快、逆生长方向的温度梯度和多层堆叠熔合的特点,在大冷速条件下,初始熔区得到的组织为细小晶粒奥氏体;合金导热系数高,在逆生长方向上温度梯度小,对于远离熔区的初始熔区组织,反复的熔化-冷却过程相当于进行重复固溶处理,存在晶粒长大倾向;在沿成长方向上,组织呈现出明显的枝晶和定向凝固特征。基于上述因素,成形构件内部组织不均匀且存在很大的残余应力,须通过后续热处理工艺消除内应力和改善组织。
发明内容
本发明提供一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,通过在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h消除了成形过程快速熔化-凝固带来的残余内应力,同时在保持激光选区熔化成形得到的细小晶粒基础上,通过再结晶获得合适晶粒度的均匀组织。
为实现上述发明目的,本发明提供如下技术方案:
一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,包括:
激光选区熔化成形06Cr19Ni10奥氏体不锈钢在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h,冷却后得到热处理后的06Cr19Ni10奥氏体不锈钢。
在一可选实施例中,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时激光功率为280W~360W、扫描速度为800mm/s~1200mm/s、扫描间距为0.08mm~0.13mm、分层厚度为0.04mm~0.08mm。
在一可选实施例中,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm。
在一可选实施例中,所述压强不大于10-3Pa、温度为800℃~950℃的条件,包括:
在压强不大于10-3Pa的条件下,以5℃/min~10℃/min的升温速率升温至800℃~950℃。
在一可选实施例中,所述冷却,包括:
回充惰性气体冷却,回充的惰性气体压强不小于2.02×105Pa。
在一可选实施例中,所述冷却后,还包括:采用喷砂方式清理不锈钢表面。
在一可选实施例中,采用粒度为40目~60目的刚玉砂进行喷砂,喷砂时间为6min~8min。
在一可选实施例中,所述热处理后的06Cr19Ni10奥氏体不锈钢,室温时,抗拉强度不低于520N/mm2,屈服强度不低于205N/mm2,延伸率不低于40%,冲击韧性不低于100J。
本发明的有益效果是:
(1)、本发明实施例提供的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,通过在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h消除了成形过程快速熔化-凝固带来的残余内应力;
(2)、同时在保持激光选区熔化成形得到的细小晶粒基础上,通过再结晶获得合适晶粒度的均匀组织;
(3)、采用较低的热处理温度控制Cr元素的扩散,抑制Cr的碳化物沿晶界析出,使其具有良好的耐蚀性,尤其是耐晶间腐蚀能力;
(4)、激光选区熔化成形06Cr19Ni10奥氏体不锈钢经过上述热处理后,室温抗拉强度不低于520N/mm2,屈服强度不低于205N/mm2,延伸率不低于40%,冲击韧性不低于100J。
附图说明
图1为本发明实施例1提供的热处理后的06Cr19Ni10奥氏体不锈钢产品放大100倍微观形貌图;
图2为本发明实施例2提供的热处理后的06Cr19Ni10奥氏体不锈钢产品放大100倍微观形貌图;
图3为本发明实施例3提供的热处理后的06Cr19Ni10奥氏体不锈钢产品放大100倍微观形貌图。
具体实施方式
以下结合具体实施例,对本发明的具体实施方式进行更加详细的说明,以便能够更好地理解本发明的方案以及其优点。然而,以下描述的具体实施方式和实施例仅是说明的目的,而不是对本发明的限制。
本发明实施例提供了一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,包括:
激光选区熔化成形06Cr19Ni10奥氏体不锈钢在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h,冷却后得到热处理后的06Cr19Ni10奥氏体不锈钢。
具体地,本发明实施例优选在真空热处理炉中进行热处理;所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢由06Cr19Ni10奥氏体不锈钢粉通过激光选区熔化成形方法制得;
本发明实施例提供的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,通过在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h消除了成形过程快速熔化-凝固带来的残余内应力;同时在保持激光选区熔化成形得到的细小晶粒基础上,通过再结晶获得合适晶粒度的均匀组织;采用较低的热处理温度控制Cr元素的扩散,抑制Cr的碳化物沿晶界析出,使其具有良好的耐蚀性,尤其是耐晶间腐蚀能力;激光选区熔化成形06Cr19Ni10奥氏体不锈钢经过上述热处理后,室温抗拉强度不低于520N/mm,屈服强度不低于205N/mm,延伸率不低于40%,冲击韧性不低于100J。
在一可选实施例中,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时激光功率为280W~360W、扫描速度为800mm/s~1200mm/s、扫描间距为0.08mm~0.13mm、分层厚度为0.04mm~0.08mm。在所述工艺参数窗口区间内,可以获得具有高致密度的成型构件和外延生长的具有细小亚结构的柱状晶,当在800℃~950℃的条件下进行热处理时,获得均匀细小的再结晶奥氏体组织,进一步确保构件具有较好的强塑性配合。
在一可选实施例中,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm。所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm时,在一定的激光能量输入下,可以更好地使粉末熔化,避免因粉末未充分熔合而带来的产品内部缺陷。
在一可选实施例中,所述压强不大于10-3Pa、温度为800℃~950℃的条件,包括:在压强不大于10-3Pa的条件下,以5℃/min~10℃/min的升温速率升温至800℃~950℃。该升温速率可以进一步确保产品均匀受热以便更好地释放内应力,从而减少热处理过程中可能产生的变形。
在一可选实施例中,所述冷却,包括:回充惰性气体冷却,回充的惰性气体压强不小于2.02×105Pa;具体地,所述惰性气体优选氩气;回充气体可以使材料获得足够的冷速,避免缓慢冷却可能带来的危害,譬如475℃脆性。
在一可选实施例中,所述冷却后,还包括:采用喷砂方式清理不锈钢表面。
具体地,采用粒度为40目~60目的刚玉砂进行喷砂,喷砂时间为6min~8min。
具体地,所述热处理后的06Cr19Ni10奥氏体不锈钢,室温时,室温抗拉强度(Rm)不低于520N/mm2,屈服强度(Rp0.2)不低于205N/mm2,延伸率(A)不低于40%,冲击韧性(KU2)不低于100J。
以下为本发明的具体实施例:
实施例1
以激光选区熔化成形某型号发动机涡轮泵排气管为例。
(1)成形所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm,组成成分(质量分数)为:C:0.028%,Cr:18.51%,Ni:9.72%,Si:0.59%,Mn:1.22%,S:0.014%,P:0.019%,其余为Fe;
(2)成形激光功率为:320W,扫描速度为1100mm/s,扫描间距为0.10mm,分层厚度为:0.04mm。
(3)热处理:分离基板后的排气管在真空热处理炉内进行热处理,真空室压强不大于10-3Pa。真空室压强满足要求后,以10℃/min的速率将真空热处理炉内温度升温至950℃保温2h。保温结束后,回充氩气冷却,回充氩气压强2bar(2.02×105Pa)。热处理后,采用40目~60目的刚玉砂喷砂6min清理表面,得到热处理后的06Cr19Ni10奥氏体不锈钢产品,该产品具有如图1所示的奥氏体再结晶组织,晶粒度4-6级,合适的晶粒尺度使材料具有良好的力学性能匹配。
(4)采用随炉试样测试的力学性能见表1;
表1排气管力学性能参数表:
实施例2
以激光选区熔化成形某型号发动机涡轮泵壳体为例。
(1)成形所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm,组成成分(质量分数)为:C:0.021%,Cr:19.09%,Ni:9.63%,Si:0.75%,Mn:0.98%,S:0.016%,P:0.017%,其余为Fe。
(2)成形激光功率为:320W,扫描速度为1000mm/s,扫描间距为0.12mm,分层厚度为:0.04mm。
(3)热处理:未分离基板的壳体在真空热处理炉内进行热处理,真空室压强不大于10-3Pa。真空室压强满足要求后,以5℃/min的速率将真空热处理炉内温度升温至850℃保温4h。保温结束后,回充氩气冷却,回充氩气压强2bar(2.02×105Pa)。热处理后,采用40目~60目的刚玉砂喷砂6min清理表面,得到热处理后的06Cr19Ni10奥氏体不锈钢产品,该产品具有如图2所示的奥氏体再结晶组织,晶粒度4-6级,合适的晶粒尺度使材料具有良好的力学性能匹配。
(4)采用随炉试样测试的力学性能见表2:
表2壳体力学性能参数表
实施例3
以激光选区熔化成形某型号发动机整流栅为例。
(1)成形所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm,组成成分(质量分数)为:C:0.021%,Cr:19.09%,Ni:9.63%,Si:0.75%,Mn:0.98%,S:0.016%,P:0.017%,其余为Fe。
(2)成形激光功率为:300W,扫描速度为1000mm/s,扫描间距为0.10mm,分层厚度为:0.04mm。
(3)热处理:未分离基板的壳体在真空热处理炉内进行热处理,真空室压强不大于10-3Pa。真空室压强满足要求后,以5℃/min的速率将真空热处理炉内温度升温至950℃保温2h。保温结束后,回充氩气冷却,回充氩气压强2bar(2.02×105Pa)。热处理后,采用40目~60目的刚玉砂喷砂6min清理表面,得到热处理后的06Cr19Ni10奥氏体不锈钢产品,该产品具有如图3所示的奥氏体再结晶组织,晶粒度4-6级,合适的晶粒尺度使材料具有良好的力学性能匹配。
(4)采用随炉试样测试的力学性能见表3;
表3整流栅力学性能参数表
本发明未详细说明部分属于本领域技术人员公知常识。所述的具体实施例仅是对本发明精神作举例说明。本发明所属技术领域的人员可以对所述的具体实施例做不同的修改或补充或采用类似的方式代替,但不偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (8)

1.一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,包括:
激光选区熔化成形06Cr19Ni10奥氏体不锈钢在压强不大于10-3Pa、温度为800℃~950℃的条件下保温1h~4h,冷却后得到热处理后的06Cr19Ni10奥氏体不锈钢。
2.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时激光功率为280W~360W、扫描速度为800mm/s~1200mm/s、扫描间距为0.08mm~0.13mm、分层厚度为0.04mm~0.08mm。
3.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢,成形时所用06Cr19Ni10奥氏体不锈钢粉末粒径为15-53μm。
4.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述压强不大于10-3Pa、温度为800℃~950℃的条件,包括:
在压强不大于10-3Pa的条件下,以5℃/min~10℃/min的升温速率升温至800℃~950℃。
5.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述冷却,包括:
回充惰性气体冷却,回充的惰性气体压强不小于2.02×105Pa。
6.如权利要求1或5所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述冷却后,还包括:采用喷砂方式清理不锈钢表面。
7.如权利要求6所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,采用粒度为40目~60目的刚玉砂进行喷砂,喷砂时间为6min~8min。
8.如权利要求1所述的激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法,其特征在于,所述热处理后的06Cr19Ni10奥氏体不锈钢,室温时,抗拉强度不低于520N/mm2,屈服强度不低于205N/mm2,延伸率不低于40%,冲击韧性不低于100J。
CN201711419314.5A 2017-12-25 2017-12-25 一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法 Active CN108588366B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711419314.5A CN108588366B (zh) 2017-12-25 2017-12-25 一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711419314.5A CN108588366B (zh) 2017-12-25 2017-12-25 一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法

Publications (2)

Publication Number Publication Date
CN108588366A true CN108588366A (zh) 2018-09-28
CN108588366B CN108588366B (zh) 2019-11-29

Family

ID=63633140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711419314.5A Active CN108588366B (zh) 2017-12-25 2017-12-25 一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法

Country Status (1)

Country Link
CN (1) CN108588366B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947972A (zh) * 2019-12-31 2020-04-03 广东省新材料研究所 一种随形水冷注塑模具钢件及其制备方法
CN113399779A (zh) * 2020-03-16 2021-09-17 中国航发商用航空发动机有限责任公司 用于奥氏体不锈钢增材制造的装置及方法
CN114486461A (zh) * 2022-02-09 2022-05-13 松山湖材料实验室 高铬钢的试样及其制备和其晶粒度的测定和晶界显示方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048158A (zh) * 2016-07-28 2016-10-26 北京动力机械研究所 0Cr17Ni4Cu4Nb不锈钢材料热处理工艺
CN106493365A (zh) * 2016-10-28 2017-03-15 南通金源智能技术有限公司 激光选区熔化成形技术制备316不锈钢复杂薄壁管路的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106048158A (zh) * 2016-07-28 2016-10-26 北京动力机械研究所 0Cr17Ni4Cu4Nb不锈钢材料热处理工艺
CN106493365A (zh) * 2016-10-28 2017-03-15 南通金源智能技术有限公司 激光选区熔化成形技术制备316不锈钢复杂薄壁管路的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丁利等: "热处理对激光选区熔化成形316 不锈钢组织与拉伸性能的影响", 《中国激光》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947972A (zh) * 2019-12-31 2020-04-03 广东省新材料研究所 一种随形水冷注塑模具钢件及其制备方法
CN110947972B (zh) * 2019-12-31 2022-04-15 广东省科学院新材料研究所 一种随形水冷注塑模具钢件及其制备方法
CN113399779A (zh) * 2020-03-16 2021-09-17 中国航发商用航空发动机有限责任公司 用于奥氏体不锈钢增材制造的装置及方法
CN113399779B (zh) * 2020-03-16 2023-09-22 中国航发商用航空发动机有限责任公司 用于奥氏体不锈钢增材制造的装置及方法
CN114486461A (zh) * 2022-02-09 2022-05-13 松山湖材料实验室 高铬钢的试样及其制备和其晶粒度的测定和晶界显示方法
CN114486461B (zh) * 2022-02-09 2023-11-21 松山湖材料实验室 高铬钢的试样及其制备和其晶粒度的测定和晶界显示方法

Also Published As

Publication number Publication date
CN108588366B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
CN108588582B (zh) 低温服役环境下3d打印用高强不锈钢粉末及制备工艺
CN105543747B (zh) 一种保留有Laves相的增材制造镍基高温合金的制备方法
EP2886225B1 (en) Gamma prime precipitation strengthened nickel-base superalloy for use in powder based additive manufacturing process
Wang et al. Microstructure and mechanical properties of high chromium nickel-based superalloy fabricated by laser metal deposition
Karmuhilan et al. A review on additive manufacturing processes of inconel 625
CN108588366B (zh) 一种激光选区熔化成形06Cr19Ni10奥氏体不锈钢的热处理方法
Chen et al. Microstructural evolution and mechanical properties of selective laser melted a nickel-based superalloy after post treatment
JP2015066599A (ja) レーザによる付加的な製造法によって金属製部品を製造する方法
RU2013138729A (ru) Способ изготовления трехмерного изделия
CN106513660A (zh) 用于基于粉末的制造方法的高温镍基高温合金
CN110280764A (zh) 一种基于slm成型件的马氏体时效钢及其制备方法
CN105925925B (zh) 抗熔盐腐蚀镍基高温合金焊接结构件的焊接后热处理方法
Gorunov et al. Study of the effect of heat treatment on the structure and properties of the specimens obtained by the method of direct metal deposition
CN110408850A (zh) 纳米金属间化合物析出强化的超级钢及其制备方法
NO315697B1 (no) Fremgangsmåte ved sammenföyning av ferritiske og austenitiske tofase rustfrie stål
CN102839336A (zh) 耐热合金部件及其制造方法、耐热合金部件的修补方法
CN110468305A (zh) 一种镍基高温合金及其制备方法
CN107470766B (zh) 一种通过晶界锯齿化处理改善铁镍基合金焊接性的方法
CN111230007A (zh) 一种1000Kg级高温合金的锻造方法
Zadi-Maad et al. The development of additive manufacturing technique for nickel-base alloys: a review
CN107267778B (zh) 一种炼镁还原罐及其制作方法
CN109609857A (zh) 一种复合热煨弯管及其制备方法
CN110964992B (zh) 一种低温环境工作的增材制造高温合金的热处理方法
CN107740002A (zh) 一种新型控氮奥氏体不锈钢及其制备方法
Groh et al. Review of laser deposited superalloys using powder as an additive

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant