CN108574464B - 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器 - Google Patents

一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器 Download PDF

Info

Publication number
CN108574464B
CN108574464B CN201810680044.1A CN201810680044A CN108574464B CN 108574464 B CN108574464 B CN 108574464B CN 201810680044 A CN201810680044 A CN 201810680044A CN 108574464 B CN108574464 B CN 108574464B
Authority
CN
China
Prior art keywords
microstrip line
low
linearity
network
bias
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810680044.1A
Other languages
English (en)
Other versions
CN108574464A (zh
Inventor
邬海峰
滑育楠
陈依军
胡柳林
吕继平
童伟
王测天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Ganide Technology Co ltd
Original Assignee
Chengdu Ganide Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Ganide Technology Co ltd filed Critical Chengdu Ganide Technology Co ltd
Priority to CN201810680044.1A priority Critical patent/CN108574464B/zh
Publication of CN108574464A publication Critical patent/CN108574464A/zh
Application granted granted Critical
Publication of CN108574464B publication Critical patent/CN108574464B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/294Indexing scheme relating to amplifiers the amplifier being a low noise amplifier [LNA]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器,包括二堆叠自偏低噪声放大网络、反馈双模高线性度放大网络以及偏置网络。本发明采用两个不同尺寸的晶体管实现串联堆叠结构,并结合了自偏置技术实现超宽带噪声匹配、阻抗匹配和低功耗;同时利用反馈双模切换结构,使得电路具有高线性度或者低功耗两种模式下的切换能力,满足用户的不同使用需求,并在整个工作频带内获得良好的宽带、增益、驻波特性。

Description

一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器
技术领域
本发明属于场效应晶体管射频低噪声放大器和集成电路技术领域,具体涉及一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器的设计。
背景技术
随着宽带通信、雷达等军用、民用市场的快速发展,射频前端接收器也向高性能、高集成、低功耗的方向发展,因此市场迫切的需求超宽带、高增益、高线性度、低功耗、低噪声的毫米波低噪声放大器芯片,并且电路支持具有高线性度或者低功耗两种模式下的切换能力。
然而,当传统毫米波低噪声放大器芯片设计中,一直存在一些设计难题,主要体现在低功耗、低噪声指标和高线性度指标相互制约指标相互制约:为了保证放大器的低噪声工作,晶体管的漏极电压要比正常工作电压稍低,使得晶体管工作在最优噪声工作点,但是漏极电压降低带来晶体管的电压摆幅降低从而大大限制了高线性度指标,这就导致了两者相互制约。
常见的低功耗、高线性度低噪声放大器的电路结构有很多,最典型的是电流复用式共源(或共射)放大器,但是,典型电流复用式共源(或共射)放大器,仍然存在一些设计不足,主要体现在:
(1)电流复用结构需要采用馈电电感和大电容实现两个共源(或共射)放大器的静态偏置复用,这种大电感和大电容馈电结构的自谐振频率点较低,在实现超宽带放大的时候,有可能自谐振频率点会落入放大频带内,从而恶化射频特性;同时大电感和电容往往占用较大的芯片面积,从而提高了芯片成本。
(2)电流复用结构往往采用固定的AB类偏置状态为了获得高增益和低噪声系数,仍无法很好地解决低功耗和高线性度指标相互制约的固有问题,也无法在低功耗与高线性度指标间相互切换。
发明内容
本发明的目的是提出一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器,利用自偏置晶体管堆叠技术以及反馈双模切换技术,实现超宽带下低功耗、高增益、高线性度、低噪声以及良好的输入输出匹配特性,并具有高线性度或者低功耗两种模式下的切换能力。
本发明的技术方案为:一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器,包括二堆叠自偏低噪声放大网络、反馈双模高线性度放大网络以及偏置网络;二堆叠自偏低噪声放大网络的输入端为整个低噪声放大器的输入端,其输出端与反馈双模高线性度放大网络的输入端连接;反馈双模高线性度放大网络的输出端为整个低噪声放大器的输出端;偏置网络分别与二堆叠自偏低噪声放大网络以及反馈双模高线性度放大网络连接;反馈双模高线性度放大网络还与地连接。
本发明的有益效果是:本发明采用二堆叠自偏低噪声放大网络的优势是低功耗、高增益,良好的输入输出匹配,同时不需要额外的栅极偏置电压;同时结合了反馈双模高线性度放大网络,利用反馈技术和自偏共源放大器设计第二级放大器,加入双模控制接口,使得放大器具有高线性度和低功耗两种模式下的切换能力。
进一步地,二堆叠自偏低噪声放大网络包括按照源极-漏极相连堆叠构成的顶层晶体管Md2和底层晶体管Md1;顶层晶体管Md2和底层晶体管Md1尺寸不同;底层晶体管Md1的源极通过微带线TL5与正电压自偏RC电路的一端连接,正电压自偏RC电路的另一端接地;底层晶体管Md1的栅极依次串联微带线TL4、微带线TL2以及隔直电容C1后作为二堆叠自偏低噪声放大网络的输入端,微带线TL2和隔直电容C1的连接节点上还连接有开路微带线TL1,微带线TL4和微带线TL2的连接节点还通过微带线TL3与第一零电压控制RC电路的一端连接,第一零电压控制RC电路的另一端接地;底层晶体管Md1的漏极通过微带线TL6与顶层晶体管Md2的源极连接;顶层晶体管Md2的栅极分别与偏置网络以及栅极补偿电路连接,其漏极连接微带线TL7的一端,微带线TL7的另一端为二堆叠自偏低噪声放大网络的输出端,二堆叠自偏低噪声放大网络的输出端还通过微带线TL8与偏置网络连接;正电压自偏RC电路包括并联的电阻R2和电容C3,第一零电压控制RC电路包括并联的电阻R1和电容C2,栅极补偿电路包括串联的栅极稳定电阻R3和补偿接地电容C4
上述进一步方案的有益效果是:本发明采用的二堆叠自偏低噪声放大网络采用两个不同尺寸的晶体管实现串联堆叠结构,并结合了自偏置技术实现超宽带噪声匹配、阻抗匹配和低功耗;此外,与常规二堆叠放大器网络相比,本发明采用的二堆叠自偏低噪声放大网络加入了自偏置结构,以及与自偏置结构所必须的RC输入偏置电路,形成并联到地的回路,可以获得低功耗、高增益,良好的输入输出匹配,同时不需要额外的栅极偏置电压,大大简化了外围栅极供电结构。
进一步地,反馈双模高线性度放大网络包括晶体管Md3,晶体管Md3的源极连接微带线TL11的一端,微带线TL11的另一端分别与电阻R9的一端以及接地电容C8连接,电阻R9的另一端作为反馈双模高线性度放大网络的HLI接口,并与电阻R10的一端连接,电阻R10的另一端作为反馈双模高线性度放大网络的LDC接口;HLI接口和LDC接口至少一个接地;晶体管Md3的栅极依次串联微带线TL10和电容C5后作为反馈双模高线性度放大网络的输入端,微带线TL10和电容C5的连接节点还分别与微带线TL9的一端以及微带线TL12的一端连接,微带线TL9的另一端与第二零电压控制RC电路的一端连接,第二零电压控制RC电路的另一端接地;晶体管Md3的栅极漏极依次串联微带线TL13、微带线TL15和电容C11后作为反馈双模高线性度放大网络的输出端,微带线TL13和微带线TL15的连接节点还分别与微带线TL14的一端以及电阻R8的一端连接,微带线TL14的另一端与偏置网络连接,电阻R8的另一端通过电容C7与微带线TL12的另一端连接;第二零电压控制RC电路包括并联的电阻R7和电容C6,反馈双模高线性度放大网络的输出端还连接有开路微带线TL16
上述进一步方案的有益效果是:现有的低功耗、高线性度低噪声放大器中,第二级放大器往往采用传统共源放大器来实现高线性度指标,或者采用电流复用结构来实现低功耗指标,本发明所提出的反馈双模高线性度放大网络架构使得电路可以具有高线性度和低功耗两种模式下的切换能力,同时兼顾两种电路功能,丰富了放大器的工作状态。
进一步地,偏置网络包括电阻R4、电阻R5和电阻R6,电阻R5的一端接地,其另一端分别与电阻R4的一端以及电阻R6的一端连接,电阻R6的另一端与顶层晶体管Md2的栅极连接,电阻R4的另一端分别与微带线TL8、微带线TL14、接地电容C9、接地电容C10以及高压偏置电源VDD连接。
上述进一步方案的有益效果是:本发明的偏置网络可以对二堆叠自偏低噪声放大网络中的顶层晶体管Md2起到栅极和漏极偏置作用,同时还可以对反馈双模高线性度放大网络中的晶体管Md3起到漏极偏置作用。
附图说明
图1所示为本发明实施例提供的一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器原理框图。
图2所示为本发明实施例提供的一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器电路图。
具体实施方式
现在将参考附图来详细描述本发明的示例性实施方式。应当理解,附图中示出和描述的实施方式仅仅是示例性的,意在阐释本发明的原理和精神,而并非限制本发明的范围。
本发明实施例提供了一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器,如图1所示,包括二堆叠自偏低噪声放大网络、反馈双模高线性度放大网络以及偏置网络;二堆叠自偏低噪声放大网络的输入端为整个低噪声放大器的输入端,其输出端与反馈双模高线性度放大网络的输入端连接;反馈双模高线性度放大网络的输出端为整个低噪声放大器的输出端;偏置网络分别与二堆叠自偏低噪声放大网络以及反馈双模高线性度放大网络连接;反馈双模高线性度放大网络还与地连接。
如图2所示,二堆叠自偏低噪声放大网络包括按照源极-漏极相连堆叠构成的顶层晶体管Md2和底层晶体管Md1;顶层晶体管Md2和底层晶体管Md1尺寸不同;底层晶体管Md1的源极通过微带线TL5与正电压自偏RC电路的一端连接,正电压自偏RC电路的另一端接地;底层晶体管Md1的栅极依次串联微带线TL4、微带线TL2以及隔直电容C1后作为二堆叠自偏低噪声放大网络的输入端,微带线TL2和隔直电容C1的连接节点上还连接有开路微带线TL1,微带线TL4和微带线TL2的连接节点还通过微带线TL3与第一零电压控制RC电路的一端连接,第一零电压控制RC电路的另一端接地;底层晶体管Md1的漏极通过微带线TL6与顶层晶体管Md2的源极连接;顶层晶体管Md2的栅极分别与偏置网络以及栅极补偿电路连接,其漏极连接微带线TL7的一端,微带线TL7的另一端为二堆叠自偏低噪声放大网络的输出端,二堆叠自偏低噪声放大网络的输出端还通过微带线TL8与偏置网络连接;正电压自偏RC电路包括并联的电阻R2和电容C3,第一零电压控制RC电路包括并联的电阻R1和电容C2,栅极补偿电路包括串联的栅极稳定电阻R3和补偿接地电容C4
反馈双模高线性度放大网络包括晶体管Md3,晶体管Md3的源极连接微带线TL11的一端,微带线TL11的另一端分别与电阻R9的一端以及接地电容C8连接,电阻R9的另一端作为反馈双模高线性度放大网络的HLI接口,并与电阻R10的一端连接,电阻R10的另一端作为反馈双模高线性度放大网络的LDC接口;HLI接口和LDC接口至少一个接地;晶体管Md3的栅极依次串联微带线TL10和电容C5后作为反馈双模高线性度放大网络的输入端,微带线TL10和电容C5的连接节点还分别与微带线TL9的一端以及微带线TL12的一端连接,微带线TL9的另一端与第二零电压控制RC电路的一端连接,第二零电压控制RC电路的另一端接地;晶体管Md3的栅极漏极依次串联微带线TL13、微带线TL15和电容C11后作为反馈双模高线性度放大网络的输出端,微带线TL13和微带线TL15的连接节点还分别与微带线TL14的一端以及电阻R8的一端连接,微带线TL14的另一端与偏置网络连接,电阻R8的另一端通过电容C7与微带线TL12的另一端连接;第二零电压控制RC电路包括并联的电阻R7和电容C6,反馈双模高线性度放大网络的输出端还连接有开路微带线TL16
偏置网络包括电阻R4、电阻R5和电阻R6,电阻R5的一端接地,其另一端分别与电阻R4的一端以及电阻R6的一端连接,电阻R6的另一端与顶层晶体管Md2的栅极连接,电阻R4的另一端分别与微带线TL8、微带线TL14、接地电容C9、接地电容C10以及高压偏置电源VDD连接。
下面结合图2对本发明的具体工作原理及过程进行介绍:
射频输入信号通过输入端IN进入低功耗高线性双模式毫米波宽带堆叠低噪声放大器,经二堆叠自偏低噪声放大网络和反馈双模高线性度放大网络进行两级放大后形成射频输出信号到达输出端OUT。
本发明采用二堆叠自偏低噪声放大网络作为第一级放大器的核心架构,通过采用两个不同尺寸的晶体管Md1和Md2实现串联堆叠结构,并结合了自偏置技术实现超宽带噪声匹配、阻抗匹配和低功耗,与常规二堆叠放大器网络相比,本发明实施例中采用并联的电阻R2和电容C3构成正电压自偏RC电路,R2作为自偏电阻控制底层晶体管Md1的源极为正电压,C3作为旁路电容遏制R2产生的噪声并改善宽带输入阻抗匹配;同时本发明采用并联的电阻R1和电容C2构成第一零电压控制RC电路,将底层晶体管Md1的栅极偏置到地,因此本发明提供的二堆叠自偏低噪声放大网络不需要额外的栅极偏置电压,大大简化了外围栅极供电结构。
本发明采用反馈双模高线性度放大网络作为第二级放大器的核心架构,利用反馈技术(通过电阻R8、电容C7与微带线TL12串联在晶体管Md3栅极和漏极之间构成RLC反馈回路)和自偏共源放大器(电阻R9或者R10任意一个连接到地时,与电容C8构成RC并联回路,实现自偏共源)设计第二级放大器,加入双模控制接口,当HLI接口单独接地时,放大器工作在高线性度模式,当LDC接口单独接地或两个接口共同接地时,放大器工作在低功耗模式,这样使得放大器具有高线性度和低功耗两种模式下的切换能力,同时兼顾两种电路功能,丰富了放大器的工作状态。同时本发明还采用并联的电阻R7和电容C6构成第二零电压控制RC电路,将晶体管Md3的栅极偏置到地。
偏置网络可以对二堆叠自偏低噪声放大网络中的顶层晶体管Md2起到栅极和漏极偏置作用,同时还可以对反馈双模高线性度放大网络中的晶体管Md3起到漏极偏置作用。
本发明实施例中,晶体管的尺寸和其他直流馈电电阻、补偿电容、反馈器件的大小是综合考虑整个电路的增益、带宽和输出功率等各项指标后决定的,通过后期的版图设计与合理布局,可以更好地实现所要求的各项指标,实现在超宽带条件下的低噪声、高增益、高线性度和良好的输入输出匹配特性,实现芯片面积小且成本低。
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。

Claims (3)

1.一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器,其特征在于,包括二堆叠自偏低噪声放大网络、反馈双模高线性度放大网络以及偏置网络;
所述二堆叠自偏低噪声放大网络的输入端为整个所述低噪声放大器的输入端,其输出端与反馈双模高线性度放大网络的输入端连接;
所述反馈双模高线性度放大网络的输出端为整个所述低噪声放大器的输出端;
所述偏置网络分别与二堆叠自偏低噪声放大网络以及反馈双模高线性度放大网络连接;
所述反馈双模高线性度放大网络还与地连接;
所述二堆叠自偏低噪声放大网络包括按照源极-漏极相连堆叠构成的顶层晶体管Md2和底层晶体管Md1;所述顶层晶体管Md2和底层晶体管Md1尺寸不同;
所述底层晶体管Md1的源极通过微带线TL5与正电压自偏RC电路的一端连接,所述正电压自偏RC电路的另一端接地;
所述底层晶体管Md1的栅极依次串联微带线TL4、微带线TL2以及隔直电容C1后作为二堆叠自偏低噪声放大网络的输入端,所述微带线TL2和隔直电容C1的连接节点上还连接有开路微带线TL1,所述微带线TL4和微带线TL2的连接节点还通过微带线TL3与第一零电压控制RC电路的一端连接,所述第一零电压控制RC电路的另一端接地;
所述底层晶体管Md1的漏极通过微带线TL6与顶层晶体管Md2的源极连接;
所述顶层晶体管Md2的栅极分别与偏置网络以及栅极补偿电路连接,其漏极连接微带线TL7的一端,所述微带线TL7的另一端为二堆叠自偏低噪声放大网络的输出端,所述二堆叠自偏低噪声放大网络的输出端还通过微带线TL8与偏置网络连接;
所述正电压自偏RC电路包括并联的电阻R2和电容C3,所述第一零电压控制RC电路包括并联的电阻R1和电容C2,所述栅极补偿电路包括串联的栅极稳定电阻R3和补偿接地电容C4
2.根据权利要求1所述的低功耗高线性双模式毫米波宽带堆叠低噪声放大器,其特征在于,所述反馈双模高线性度放大网络包括晶体管Md3,所述晶体管Md3的源极连接微带线TL11的一端,所述微带线TL11的另一端分别与电阻R9的一端以及接地电容C8连接,所述电阻R9的另一端作为反馈双模高线性度放大网络的HLI接口,并与电阻R10的一端连接,所述电阻R10的另一端作为反馈双模高线性度放大网络的LDC接口;所述HLI接口和LDC接口至少一个接地;
所述晶体管Md3的栅极依次串联微带线TL10和电容C5后作为反馈双模高线性度放大网络的输入端,所述微带线TL10和电容C5的连接节点还分别与微带线TL9的一端以及微带线TL12的一端连接,所述微带线TL9的另一端与第二零电压控制RC电路的一端连接,所述第二零电压控制RC电路的另一端接地;
所述晶体管Md3的栅极漏极依次串联微带线TL13、微带线TL15和电容C11后作为反馈双模高线性度放大网络的输出端,所述微带线TL13和微带线TL15的连接节点还分别与微带线TL14的一端以及电阻R8的一端连接,所述微带线TL14的另一端与偏置网络连接,所述电阻R8的另一端通过电容C7与微带线TL12的另一端连接;
所述第二零电压控制RC电路包括并联的电阻R7和电容C6,所述反馈双模高线性度放大网络的输出端还连接有开路微带线TL16
3.根据权利要求2所述的低功耗高线性双模式毫米波宽带堆叠低噪声放大器,其特征在于,所述偏置网络包括电阻R4、电阻R5和电阻R6,所述电阻R5的一端接地,其另一端分别与电阻R4的一端以及电阻R6的一端连接,所述电阻R6的另一端与顶层晶体管Md2的栅极连接,所述电阻R4的另一端分别与微带线TL8、微带线TL14、接地电容C9、接地电容C10以及高压偏置电源VDD连接。
CN201810680044.1A 2018-06-27 2018-06-27 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器 Active CN108574464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810680044.1A CN108574464B (zh) 2018-06-27 2018-06-27 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810680044.1A CN108574464B (zh) 2018-06-27 2018-06-27 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器

Publications (2)

Publication Number Publication Date
CN108574464A CN108574464A (zh) 2018-09-25
CN108574464B true CN108574464B (zh) 2023-10-27

Family

ID=63573806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810680044.1A Active CN108574464B (zh) 2018-06-27 2018-06-27 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器

Country Status (1)

Country Link
CN (1) CN108574464B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109600120B (zh) * 2018-11-22 2021-11-02 北京航空航天大学 一种采用混合频率补偿网络的超宽带低噪声放大器
CN111106804A (zh) * 2019-12-20 2020-05-05 成都嘉纳海威科技有限责任公司 一种毫米波超宽带高增益低功耗低噪放芯片电路
JP7444251B2 (ja) 2020-05-29 2024-03-06 日本電信電話株式会社 増幅回路
CN113098410A (zh) * 2021-04-08 2021-07-09 电子科技大学 一种基于介质集成悬置线的低噪声放大器
CN114567266B (zh) * 2022-04-28 2022-08-16 成都嘉纳海威科技有限责任公司 一种低功耗低噪声宽带放大器
CN115378372B (zh) * 2022-10-24 2023-04-07 成都嘉纳海威科技有限责任公司 一种低功耗线性化放大器
CN117792301A (zh) * 2024-02-28 2024-03-29 成都嘉纳海威科技有限责任公司 一种基于二极管反馈支路的微波宽带低噪声放大器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117711A (zh) * 2013-01-29 2013-05-22 天津大学 一种单片集成的射频高增益低噪声放大器
CN103746665A (zh) * 2013-10-17 2014-04-23 天津大学 一种0.1~3GHz CMOS增益可调驱动功率放大器
CN106505955A (zh) * 2016-10-26 2017-03-15 天津大学 一种基于CMOS工艺的Ku波段宽带低噪声放大器
CN107332517A (zh) * 2017-06-21 2017-11-07 成都嘉纳海威科技有限责任公司 一种基于增益补偿技术的高线性宽带堆叠低噪声放大器
CN107508562A (zh) * 2017-07-21 2017-12-22 天津大学 用于全球定位导航系统的l波段宽带低噪声放大器
CN107528555A (zh) * 2017-08-09 2017-12-29 四川九洲电器集团有限责任公司 一种分布式放大器
CN208353298U (zh) * 2018-06-27 2019-01-08 成都嘉纳海威科技有限责任公司 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004140518A (ja) * 2002-10-16 2004-05-13 Renesas Technology Corp 高周波電力増幅用電子部品および無線通信システム
US11190150B2 (en) * 2007-04-17 2021-11-30 HuWoMobility, Inc. CMOS triple-band RF VGA and power amplifier in linear transmitter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117711A (zh) * 2013-01-29 2013-05-22 天津大学 一种单片集成的射频高增益低噪声放大器
CN103746665A (zh) * 2013-10-17 2014-04-23 天津大学 一种0.1~3GHz CMOS增益可调驱动功率放大器
CN106505955A (zh) * 2016-10-26 2017-03-15 天津大学 一种基于CMOS工艺的Ku波段宽带低噪声放大器
CN107332517A (zh) * 2017-06-21 2017-11-07 成都嘉纳海威科技有限责任公司 一种基于增益补偿技术的高线性宽带堆叠低噪声放大器
CN107508562A (zh) * 2017-07-21 2017-12-22 天津大学 用于全球定位导航系统的l波段宽带低噪声放大器
CN107528555A (zh) * 2017-08-09 2017-12-29 四川九洲电器集团有限责任公司 一种分布式放大器
CN208353298U (zh) * 2018-06-27 2019-01-08 成都嘉纳海威科技有限责任公司 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器

Also Published As

Publication number Publication date
CN108574464A (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
CN108574464B (zh) 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器
CN107332517B (zh) 一种基于增益补偿技术的高线性宽带堆叠低噪声放大器
CN213027960U (zh) 一种5g通信线性宽带低噪声放大器
CN107733381B (zh) 一种高效率高增益Doherty堆叠功率放大器
CN103746665B (zh) 一种0.1~3GHz CMOS增益可调驱动功率放大器
CN108649911B (zh) 一种毫米波宽带高效率晶体管堆叠功率放大器
CN106411268B (zh) 一种考虑密勒效应的分布式二堆叠结构的功率放大器
CN107743021B (zh) 一种基于晶体管堆叠技术的强抗失配高效功率放大器
CN106487338B (zh) 一种考虑密勒效应的分布式三堆叠结构的功率放大器
CN206259910U (zh) 一种考虑密勒效应的分布式三堆叠结构的功率放大器
CN107248850B (zh) 一种无电感低功耗高增益高线性度宽带低噪声放大器
CN114567266B (zh) 一种低功耗低噪声宽带放大器
CN111682851B (zh) 一种5g通信抗失配宽带低噪声放大器
CN109245734A (zh) 一种Ka波段SiGe BiCMOS射频功率放大器
CN108664757B (zh) 精确谐波控制高增益高效率e3f2类堆叠功率放大器
CN213027963U (zh) 一种5g通信wifi平台抗失配低噪声放大器
CN112865717B (zh) 一种基于自适应线性化技术的高增益功率放大器
CN111934632B (zh) 一种超宽带高功率放大器
KR101590605B1 (ko) 무선 송수신기용 선형 전력증폭기
CN108599730B (zh) 一种基于紧凑型谐振器的高效率f类堆叠功率放大器
CN208353298U (zh) 一种低功耗高线性双模式毫米波宽带堆叠低噪声放大器
CN110995183A (zh) 一种自适应线性化异质结双极晶体管功率放大器
CN111740706B (zh) 一种5g系统的宽带高线性度驱动放大器
CN114172476B (zh) 一种宽带负反馈放大器
CN115208331A (zh) 一种衬底串电阻的低噪声双向放大器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant