CN108564575A - 一种基于三维点云数据的非接触式接触网参数检测方法 - Google Patents

一种基于三维点云数据的非接触式接触网参数检测方法 Download PDF

Info

Publication number
CN108564575A
CN108564575A CN201810320815.6A CN201810320815A CN108564575A CN 108564575 A CN108564575 A CN 108564575A CN 201810320815 A CN201810320815 A CN 201810320815A CN 108564575 A CN108564575 A CN 108564575A
Authority
CN
China
Prior art keywords
point cloud
catenary
dimensional point
contactless
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810320815.6A
Other languages
English (en)
Other versions
CN108564575B (zh
Inventor
韩志伟
周靖松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201810320815.6A priority Critical patent/CN108564575B/zh
Publication of CN108564575A publication Critical patent/CN108564575A/zh
Application granted granted Critical
Publication of CN108564575B publication Critical patent/CN108564575B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

本发明公开了一种基于三维点云数据的非接触式接触网参数检测方法,包括以下步骤:步骤1:采集接触网三维点云数据;步骤2:对步骤1采集的点云数据进行预处理,依次去除点云中的噪声点与背景点干扰;步骤3:检测并提取接触线点云数据;步骤4:将采集接触网三维点云数据所用坐标系转换为世界坐标系;步骤5:计算接触线的参数,完成参数的检测;本发明检测结果准确可靠,检测效率高;不受天气、背景和物体表面反射等情况的干扰,检测效果好。

Description

一种基于三维点云数据的非接触式接触网参数检测方法
技术领域
本发明涉及高速铁路接触网检测领域,具体涉及一种基于三维点云数据的非接触式接触网参数检测方法。
背景技术
当前铁路运输极端繁忙,列车运行速度日益提高;为保证受电弓与接触线的良好接触和可靠受流,延长受电弓的使用寿命,防止“刮弓”或“钻弓”等事故的发生,需定期对接触线的导高、拉出值进行检测,以排除隐患,使接触网悬挂处于良好的工作状态;目前,对于接触网参数检测主要分为接触式与非接触式两类;相比于接触式图像检测,非接触式图像检测以其行车干扰小、通用性好、便于安装使用等优点,在实际检测中获得了越来越广泛的应用。
目前国内外基于非接触式图像处理的接触网几何参数检测已有一些研究;例如占栋研究了一种双线阵摄像机与线结构光源结合的视觉传感器,基于双目线阵主动摄像测量技术,对接触网几何参数进行高速动态测量的方法;刘文强采用了遗传粒子的滤波算法与卡尔曼滤波器分别实现了检测点的跟踪定位与悬链线结合参数的检测值校正;以上这些机遇二维图像,通过在图像中进行目标提取和定位进行接触网参数检测,但是这类基于二维图像的检测方式,容易受到天气、二维图像曝光度、物体表面反射等情况的干扰,影响最终的检测效果;由于具有深度信息,三维点云数据可以较好克服以上问题;但是三维点云数据具有连续特性也可以避免由于振动等外部干扰引起的局部点坐标偏离,影响最终计算结果。
发明内容
本发明提供一种可准确可靠对接触线几何参数进行检测的基于三维点云数据的非接触式接触网参数检测方法;本发明中的参数指的是接触网的导高和拉出值。
本发明采用的技术方案是:一种基于三维点云数据的非接触式接触网参数检测方法,包括以下步骤:
步骤1:采集接触网三维点云数据;
步骤2:对步骤1采集的点云数据进行预处理,依次去除点云中的噪声点与背景点干扰;
步骤3:检测并提取接触线点云数据;
步骤4:将采集接触网三维点云数据所用坐标系转换为世界坐标系;
步骤5:计算接触线的参数,完成参数的检测。
进一步的,所述步骤1采集接触网三维点云数据过程如下:
设置有深度相机的检测装置沿铁路轨道运动,对接触网支撑及悬挂装置成像,采集接触网三维点云数据。
进一步的,所述步骤2中采用统计异常值滤波算法去除点云中的噪声点,具体过程如下:
计算距离某点处最近的k个点的平均距离为则该点为有效点,反之则为噪声点;遍历所有点,其中Td为设定距离阈值。
进一步的,所述步骤2中通过条件滤波器去除背景点。
进一步的,所述步骤3中检测并提取接触网点云数据过程如下:
S1:随机选择两个点A1和A2{A1(x1,y1,z1),A2(x2,y2,z2)},构成的直线l方程为:
S2:计算点云数据中任意点A(xa,ya,za)到直线l的距离d1
S3:遍历所有点,若di<ε则该点为目标点,统计点云数据中目标点个数,记为该直线的得分数s,ε为设定距离阈值;
S4:重复步骤S1~S3m次,得分最高的直线l′即为检测目标的接触线数据;
S5:提取直线l′的点云数据。
进一步的,所述步骤4过程如下:
通过深度相机空间旋转平移信息得到世界坐标系平移变换矩阵MTrans
式中:h为相机光心对地高度,d为相机中心点O在水平地面的投影O′到轨道一侧的距离;
旋转变换矩阵MRot(X,θ)为:
式中:θ为深度相机绕X轴旋转,与检测装置平面之间产生的夹角;
变换矩阵M为:
式中:l为钢轨之间的宽度;
通过变换矩阵M得到世界坐标系中点(XW,YW,ZW)与相机坐标系点(XC,YC,ZC)的对应关系:
进一步的,所述步骤5计算接触网参数过程如下:
将接触线上一点相机坐标系中坐标(Xc,Yc,Zc)带入式(6),得到该点在世界坐标系中的坐标;4
计算该点导高y和拉出值x:
y=Yw=Yc cosθ+Zc sinθ+h (7)
x=Xw=Xc+l/2-d (8)。
进一步的,所述步骤S4中迭代次数m计算过程如下:
式中:p为迭代次数m后得到最优模型的概率,n为构成估计模型所需点的数目,w为目标点数目与总的点数比值的估计值。
本发明的有益效果是:
(1)本发明通过三维图像处理方法对接触线进行几何参数检测,给出准确、可靠的检测结果,这种非接触式检测方法对接触网部件没有任何摩擦损耗;
(2)本发明通过三维点云数据对接触线进行几何参数检测,由于三维图像具有深度信息,不受天气、背景和物体表面反射等情况的干扰,检测效果好;
(3)本发明通过改进的随机抽样一致RANSAC直线检测方法可以有效提取接触线连续点云数据,避免二维图像参数检测手段中由于振动等外部干扰引起的局部点坐标偏离造成的检测误差,具有更高的检测效率。
附图说明
图1为本发明方法流程图。
图2为本发明采用的检测装置示意图。
图3为本发明检测装置参数示意图。
图4为本发明检测装置试验现场采集接触网三维点云数据。
图5为本发明点云数据预处理后效果图。
图6为本发明检测效果图。
图7为本发明接触线连续检测结果波形图。
具体实施方式
下面结合附图和具体实施例对本发明做进一步说明。
如图1所示,一种基于三维点云数据的非接触式接触网参数检测方法,包括以下步骤:
步骤1:采集接触网三维点云数据;
安装有深度相机的检测装置沿铁路轨道前行,对高速铁路接触网支撑及悬挂装置进行成像,采集接触网的三维点云数据;检测装置沿轨道前行过程中,直接获取目标三维坐标信息并将其保存为点云数据;本发明实施例中用到的设备单帧采集数据最多包含217088个深度点;现场采集点云数据与现场二维图像对比如图4所示,图中左侧为现场二维图像,右侧为现场采集的点云数据;图3为本发明参数示意图,便于本发明方法进行计算说明,建立相机坐标系和世界坐标系;图中θ为深度相机与检测装置平面之间的夹角;l为钢轨之间的宽度;h为相机光心对地高度;世界坐标系中OW为坐标系原点,位于两轨中间位置,ZW轴为检测装置沿轨道行进方向,YW轴垂直于轨道平面向上,XW轴与YWZW平面垂直,指向检测装置行进方向左侧;相机坐标系中,OC坐标系原点,ZC为摄像机主光轴方向,YC垂直于XCZC平面,而XCZC平面与XWZW平面相差角度为θ;O点为深度相机中心,O′为O点在水平地面的投影,O′到轨道一侧的距离为d;点P为深度相机采集的任意一个接触线点,在相机坐标系中,其坐标为(Xc,Yc,Zc)。
步骤2:对步骤1采集的点云数据进行预处理,依次去除点云中的噪声点与背景点干扰;如图5所示。
采用统计异常值(Statistical Outlier Removal)滤波算法,对接触网点云进行去噪处理;首先设定距离阈值Td和临近点数k;对每个点的领域进行统计分析,若距离某点处最近的k个点的平均距离为满足则该点为有效点,反之则为噪声点。
去除噪声点之后,再利用条件滤波器(Conditional Removal Filter)去除环境背景等无用信息的干扰;条件滤波器以深度相机镜头中心为坐标原点,根据接触线与深度相机大致空间关系,设置保留点云坐标范围{(x,y,z)|xmin≤x≤xmax,ymin≤y≤ymax,zmin≤z≤zmax},去除部分背景点云干扰。
步骤3:检测并提取接触线点云数据;
通过改进的Random Sample Consensus(RANSAC)直线检测算法实现空间连续直线检测及接触线点云数据提取;接触线检测效果图如图6所示,图6中a、b左图为采集的接触网原始点云数据,中间图灰色部分为检测到的接触线,右图为从原始点云中提取出的接触线数据。
具体提取和检测过程如下:
S1:在预处理过的点云数据中,随机选择两个点A1和A2{A1(x1,y1,z1),A2(x2,y2,z2)},构成的直线l方程为:
S2:计算点云数据中任意点A(xa,ya,za)到直线l的距离d1
S3:遍历所有点,若di<ε则该点为目标点,统计点云数据中目标点个数,记为该直线的得分数s,ε为设定距离阈值;
S4:重复步骤S1~S3m次,得分最高的直线l′即为检测目标的接触线数据;
迭代次数m由下式决定:
式中:p为迭代次数m后得到最优模型的概率,本发明中设置为0.99;n为构成估计模型所需点的数目,w为目标点数目与总的点数比值的估计值;通过实验统计,本发明中ε取值为0.02,w取值为0.16,得到的接触线检测效果较好。
S5:提取直线l′的点云数据。
步骤4:将采集接触网三维点云数据所用坐标系转换为世界坐标系;
通过深度相机空间旋转平移信息得到世界坐标系平移变换矩阵MTrans
式中:h为相机光心对地高度,d为相机中心点O在水平地面的投影O′到轨道一侧的距离;
旋转变换矩阵MRot(X,θ)为:
式中:θ为深度相机绕X轴旋转,与检测装置平面之间产生的夹角;
变换矩阵M为:
式中:l为钢轨之间的宽度;
通过变换矩阵M得到世界坐标系中点(XW,YW,ZW)与相机坐标系点(XC,YC,ZC)的对应关系:
步骤5:计算接触线的参数,完成参数的检测。
将接触线上一点相机坐标系中坐标(Xc,Yc,Zc)式(6)中可得该点在世界坐标系中的坐标,据此可得出计算该点导高y、拉出值x的表达式;
y=Yw=Yc cosθ+Zc sinθ+h (7)
x=Xw=Xc+l/2-d (8)。
为了形象准确地体现该检测方法的有效性,本发明选取深度相机采集的六个局部位置的点云数据,经过图像预处理,接触线提取,相机坐标系—>世界坐标系转换,以及导高、拉出值计算等步骤后,分别计算得出接触线在该处的导线高度和拉出值,检测结果如图7所示;图7的6个波形图中,虚线部分表示6个局部位置的导高计算值,实线部分为拉出值检测结果;在每个局部位置中定位一个参考点,使用光学仪器进行手动测量,并将计算值与手动测量值进行对比,得到该发明中检测方法的检测精度;与光学仪器检测值对比结果如表1,本发明方法计算得出的导高和光学仪器静态测量值之差小于4mm,拉出值之差小于9mm,符合实际检测需求。
表1接触网导高、拉出值检测结果与光学仪器手动测量值对比数据
本发明通过三维图像处理方法对接触线进行几何参数检测,给出准确、可靠的检测结果;这种非接触式检测方法对接触网部件没有任何摩擦损耗,对高铁接触网几何参数检测提供了一种较好的思路;通过三维点云数据对接触线进行几何参数检测,三维图像由于具有深度信息,不易受到天气、背景、物体表面反射等情况的干扰,检测效果更好;通过基于接触线三维点云连续线体特征改进的RANSAC直线检测方法可有效提取接触线连续点云数据;这种检测方法可避免二维图像参数检测手段中,由于振动等外部干扰引起的局部点坐标偏离造成的检测误差;此外相较于其它单点激光定位进行接触线结合参数检测的方法,具有更高的检测效率;本发明方法能够有效对接触线的导高、拉出值进行实时检测,具有良好的检测精度;使用三维点云图像处理技术,为接触线几何参数检测提供了一种新的解决方案,具有良好的使用前景。

Claims (8)

1.一种基于三维点云数据的非接触式接触网参数检测方法,其特征在于,包括以下步骤:
步骤1:采集接触网三维点云数据;
步骤2:对步骤1采集的点云数据进行预处理,依次去除点云中的噪声点与背景点干扰;
步骤3:检测并提取接触线点云数据;
步骤4:将采集接触网三维点云数据所用坐标系转换为世界坐标系;
步骤5:计算接触线的参数,完成参数的检测。
2.根据权利要求1所述的一种基于三维点云数据的非接触式接触网参数检测方法,其特征在于,所述步骤1采集接触网三维点云数据过程如下:
设置有深度相机的检测装置沿铁路轨道运动,对接触网支撑及悬挂装置成像,采集接触网三维点云数据。
3.根据权利要求1所述的一种基于三维点云数据的非接触式接触网参数检测方法,其特征在于,所述步骤2中采用统计异常值滤波算法去除点云中的噪声点,具体过程如下:
计算距离某点处最近的k个点的平均距离为则该点为有效点,反之则为噪声点;遍历所有点,其中Td为设定距离阈值。
4.根据权利要求1所述的一种基于三维点云数据的非接触式接触网参数检测方法,其特征在于,所述步骤2中通过条件滤波器去除背景点。
5.根据权利要求1所述的一种基于三维点云数据的非接触式接触网参数的检测方法,其特征在于,所述步骤3中检测并提取接触网点云数据过程如下:
S1:随机选择两个点A1和A2{A1(x1,y1,z1),A2(x2,y2,z2)},构成的直线l方程为:
S2:计算点云数据中任意点A(xa,ya,za)到直线l的距离d1
S3:遍历所有点,若di<ε则该点为目标点,统计点云数据中目标点个数,记为该直线的得分数s,ε为设定距离阈值;
S4:重复步骤S1~S3m次,得分最高的直线l′即为检测目标的接触线数据;
S5:提取直线l′的点云数据。
6.根据权利要求2所述的一种基于三维点云数据的非接触式接触网参数检测方法,其特征在于,所述步骤4过程如下:
通过深度相机空间旋转平移信息得到空间坐标系平移变换矩阵MTrans
式中:h为相机光心对地高度,d为相机中心点O在水平地面的投影O′到轨道一侧的距离;
旋转变换矩阵MRot(X,θ)为:
式中:θ为深度相机绕X轴旋转,与检测装置平面之间的夹角;
变换矩阵M为:
式中:l为钢轨之间的宽度;
通过变换矩阵M得到世界坐标系中点(XW,YW,ZW)与相机坐标系点(XC,YC,ZC)的对应关系:
7.根据权利要求6所述的一种基于三维点云数据的非接触式接触网参数检测方法,其特征在于,所述步骤5计算接触网参数过程如下:
将接触线上一点相机坐标系中坐标(Xc,Yc,Zc)带入式(6),得到该点在空间坐标系中的坐标;
计算该点导高y和拉出值x:
y=Yw=Yc cosθ+Zc sinθ+h (7)
x=Xw=Xc+l/2-d (8)。
8.根据权利要求5所述的一种基于三维点云数据的非接触式接触网参数检测方法,其特征在于,所述步骤S4中迭代次数m计算过程如下:
式中:p为迭代次数m后得到最优模型的概率,n为构成估计模型所需点的数目,w为目标点数目与总的点数比值的估计值。
CN201810320815.6A 2018-04-11 2018-04-11 一种基于三维点云数据的非接触式接触网参数检测方法 Expired - Fee Related CN108564575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810320815.6A CN108564575B (zh) 2018-04-11 2018-04-11 一种基于三维点云数据的非接触式接触网参数检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810320815.6A CN108564575B (zh) 2018-04-11 2018-04-11 一种基于三维点云数据的非接触式接触网参数检测方法

Publications (2)

Publication Number Publication Date
CN108564575A true CN108564575A (zh) 2018-09-21
CN108564575B CN108564575B (zh) 2022-03-15

Family

ID=63534478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810320815.6A Expired - Fee Related CN108564575B (zh) 2018-04-11 2018-04-11 一种基于三维点云数据的非接触式接触网参数检测方法

Country Status (1)

Country Link
CN (1) CN108564575B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816682A (zh) * 2019-01-22 2019-05-28 西南交通大学 一种基于凹凸性的腕臂系统分割与参数检测方法
CN110473223A (zh) * 2019-08-15 2019-11-19 西南交通大学 基于接触网腕臂系统三维点云的二维图像辅助分割方法
CN112325781A (zh) * 2020-10-16 2021-02-05 易思维(杭州)科技有限公司 轨道交通接触线磨耗检测装置及方法
CN112363178A (zh) * 2020-11-02 2021-02-12 广东中科如铁技术有限公司 一种接触网隧道吊柱的动态测量方法
CN112529044A (zh) * 2020-11-20 2021-03-19 西南交通大学 基于车载LiDAR的铁路接触网提取分类的方法
CN112907505A (zh) * 2021-01-11 2021-06-04 南京工程学院 一种水下机器人电缆三维形状估计方法
CN113291207A (zh) * 2020-12-22 2021-08-24 广东中科如铁技术有限公司 一种地铁刚性接触网的动态测量方法
CN113310450A (zh) * 2020-03-12 2021-08-27 广东中科如铁技术有限公司 一种基于点云训练模型的接触网吊弦检测的方法
CN113311441A (zh) * 2020-12-22 2021-08-27 广东中科如铁技术有限公司 一种接触网定位器定位点的动态测量方法
CN113418467A (zh) * 2021-06-16 2021-09-21 厦门硅谷动能信息技术有限公司 基于ToF点云数据检测一般及黑色行李尺寸的方法
WO2023019709A1 (zh) * 2021-08-19 2023-02-23 中国铁路设计集团有限公司 基于车载移动激光点云的接触网导高与拉出值自动检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103557788A (zh) * 2013-10-15 2014-02-05 西南交通大学 一种高铁接触网接几何参数检测非接触式补偿及卡尔曼滤波修正方法
US20140177928A1 (en) * 2011-05-16 2014-06-26 Ergon Energy Corporation Limited Method and system for processing image data
CN204240947U (zh) * 2014-12-15 2015-04-01 济南蓝动激光技术有限公司 基于视觉测量技术的接触网几何参数测量仪器
CN106157361A (zh) * 2016-05-31 2016-11-23 中国科学院遥感与数字地球研究所 一种基于LiDAR点云的多分裂导线全自动三维重建方法
EP3138754A1 (en) * 2015-09-03 2017-03-08 Rail Vision Europe Ltd Rail track asset survey system
CN107123161A (zh) * 2017-06-14 2017-09-01 西南交通大学 一种基于narf和fpfh的接触网零全网三维重建方法
CN107564056A (zh) * 2017-07-26 2018-01-09 西南交通大学 一种接触网支撑装置三维点云数据最优数据帧选取方法
CN107578400A (zh) * 2017-07-26 2018-01-12 西南交通大学 一种bim和三维点云融合的接触网装置参数检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140177928A1 (en) * 2011-05-16 2014-06-26 Ergon Energy Corporation Limited Method and system for processing image data
CN103557788A (zh) * 2013-10-15 2014-02-05 西南交通大学 一种高铁接触网接几何参数检测非接触式补偿及卡尔曼滤波修正方法
CN204240947U (zh) * 2014-12-15 2015-04-01 济南蓝动激光技术有限公司 基于视觉测量技术的接触网几何参数测量仪器
EP3138754A1 (en) * 2015-09-03 2017-03-08 Rail Vision Europe Ltd Rail track asset survey system
CN106157361A (zh) * 2016-05-31 2016-11-23 中国科学院遥感与数字地球研究所 一种基于LiDAR点云的多分裂导线全自动三维重建方法
CN107123161A (zh) * 2017-06-14 2017-09-01 西南交通大学 一种基于narf和fpfh的接触网零全网三维重建方法
CN107564056A (zh) * 2017-07-26 2018-01-09 西南交通大学 一种接触网支撑装置三维点云数据最优数据帧选取方法
CN107578400A (zh) * 2017-07-26 2018-01-12 西南交通大学 一种bim和三维点云融合的接触网装置参数检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ZHIGANG LIU等: "A High-Precision Detection Approach for Catenary Geometry Parameters of Electrical Railway", 《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》 *
周靖松: "基于三维点云数据的接触网参数检测研究", 《中国优秀硕士学位论文全文数据库 (工程科技Ⅱ辑)》 *
周靖松等: "基于三维点云的接触网几何参数检测方法", 《仪器仪表学报》 *
张东等: "基于激光扫描的接触网几何参数检测方法研究", 《计算机测量与控制》 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109816682A (zh) * 2019-01-22 2019-05-28 西南交通大学 一种基于凹凸性的腕臂系统分割与参数检测方法
CN109816682B (zh) * 2019-01-22 2022-12-06 西南交通大学 一种基于凹凸性的腕臂系统分割与参数检测方法
CN110473223A (zh) * 2019-08-15 2019-11-19 西南交通大学 基于接触网腕臂系统三维点云的二维图像辅助分割方法
CN110473223B (zh) * 2019-08-15 2023-05-05 西南交通大学 基于接触网腕臂系统三维点云的二维图像辅助分割方法
CN113310450A (zh) * 2020-03-12 2021-08-27 广东中科如铁技术有限公司 一种基于点云训练模型的接触网吊弦检测的方法
CN112325781B (zh) * 2020-10-16 2022-05-17 易思维(杭州)科技有限公司 轨道交通接触线磨耗检测装置及方法
CN112325781A (zh) * 2020-10-16 2021-02-05 易思维(杭州)科技有限公司 轨道交通接触线磨耗检测装置及方法
CN112363178A (zh) * 2020-11-02 2021-02-12 广东中科如铁技术有限公司 一种接触网隧道吊柱的动态测量方法
CN112363178B (zh) * 2020-11-02 2024-03-01 广东中科如铁技术有限公司 一种接触网隧道吊柱的动态测量方法
CN112529044A (zh) * 2020-11-20 2021-03-19 西南交通大学 基于车载LiDAR的铁路接触网提取分类的方法
CN112529044B (zh) * 2020-11-20 2022-06-28 西南交通大学 基于车载LiDAR的铁路接触网提取分类的方法
CN113311441A (zh) * 2020-12-22 2021-08-27 广东中科如铁技术有限公司 一种接触网定位器定位点的动态测量方法
CN113291207B (zh) * 2020-12-22 2023-02-14 广东中科如铁技术有限公司 一种地铁刚性接触网的动态测量方法
CN113291207A (zh) * 2020-12-22 2021-08-24 广东中科如铁技术有限公司 一种地铁刚性接触网的动态测量方法
CN113311441B (zh) * 2020-12-22 2024-03-19 广东中科如铁技术有限公司 一种接触网定位器定位点的动态测量方法
CN112907505A (zh) * 2021-01-11 2021-06-04 南京工程学院 一种水下机器人电缆三维形状估计方法
CN112907505B (zh) * 2021-01-11 2024-03-26 南京工程学院 一种水下机器人电缆三维形状估计方法
CN113418467A (zh) * 2021-06-16 2021-09-21 厦门硅谷动能信息技术有限公司 基于ToF点云数据检测一般及黑色行李尺寸的方法
WO2023019709A1 (zh) * 2021-08-19 2023-02-23 中国铁路设计集团有限公司 基于车载移动激光点云的接触网导高与拉出值自动检测方法

Also Published As

Publication number Publication date
CN108564575B (zh) 2022-03-15

Similar Documents

Publication Publication Date Title
CN108564575A (zh) 一种基于三维点云数据的非接触式接触网参数检测方法
CN106871805B (zh) 车载钢轨轨距测量系统及测量方法
CN113870123B (zh) 基于车载移动激光点云的接触网导高与拉出值自动检测方法
CN106997049B (zh) 一种基于激光点云数据的检测障碍物的方法和装置
Liu et al. Simple and fast rail wear measurement method based on structured light
CN108132025A (zh) 一种车辆三维轮廓扫描构建方法
CN106643545A (zh) 激光位移技术测量钢轨轮廓的校准方法
CN109060821A (zh) 基于激光检测的隧道病害检测方法及隧道病害检测装置
CN107792115A (zh) 一种利用三维激光点云自动提取既有线轨顶高程方法
CN108921164A (zh) 一种基于三维点云分割的接触网定位器坡度检测方法
CN102914290A (zh) 地铁限界检测系统及其检测方法
CN114577131B (zh) 一种基于3d结构光相机的车身间隙检测方法及系统
CN108535789A (zh) 一种基于机场跑道的异物识别系统
CN104239904A (zh) 轨道车辆外部轮廓非接触式检测方法
CN114719884A (zh) 一种惯导系统姿态测量精度评估方法及应用
CN106813569A (zh) 一种基于线结构光的汽车轮胎三维定位方法
CN112288802A (zh) 一种起重机轨道激光测量光斑中心定位方法
CN112964195B (zh) 基于激光三角法的供电轨几何参数综合检测方法及系统
CN111308495A (zh) 一种雷达测距生成室内户型3d数据的方法
CN109238149B (zh) 车体姿态检测装置和接触线动态偏移量检测系统
Wang et al. Dynamic inspection of rail wear via a three-step method: Auxiliary plane establishment, self-calibration, and projecting
CN109815966A (zh) 一种基于改进sift算法的移动机器人视觉里程计实现方法
CN115205397A (zh) 一种基于计算机视觉和位姿估计的车辆时空信息识别方法
CN114935308A (zh) 一种基于曲线配准算法的列车受电弓磨耗检测方法
CN113963053A (zh) 一种接触网高度的检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220315