CN108562637A - 一种基于毛细管电泳的极性物质电动提取方法 - Google Patents

一种基于毛细管电泳的极性物质电动提取方法 Download PDF

Info

Publication number
CN108562637A
CN108562637A CN201810346009.6A CN201810346009A CN108562637A CN 108562637 A CN108562637 A CN 108562637A CN 201810346009 A CN201810346009 A CN 201810346009A CN 108562637 A CN108562637 A CN 108562637A
Authority
CN
China
Prior art keywords
capillary
polar substances
extraction
extracting method
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810346009.6A
Other languages
English (en)
Inventor
何聿
郭文静
张勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201810346009.6A priority Critical patent/CN108562637A/zh
Publication of CN108562637A publication Critical patent/CN108562637A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明属于分析化学技术领域,具体涉及一种基于毛细管电泳的极性物质电动提取方法。通过在极酸性介质中,使复杂样品中的极性物质发生电离,并在外加电场的驱动下进入PEEK毛细管内,从而被分离提取。本发明操作过程简单快捷,为复杂样品中极性物质的分离分析提供了新的方法。

Description

一种基于毛细管电泳的极性物质电动提取方法
技术领域
本发明属于分析化学技术领域,具体涉及一种基于毛细管电泳的极性物质提取方法。
背景技术
毛细管区带电泳(capillary zone electrophoresis, CZE)是依靠带电离子的电荷密度(有效电荷与离子大小的比率)对其进行分离的。自由流电泳(Free FlowElectrophoresis, FFE)是一种无固体支持介质的制备型区带电泳模式。FFE是利用带电离子电泳淌度和等电点的不同对其进行分离,尤其适用于各类生物材料的分离和纯化。样品连续地注入由两片平板形成的分离腔后,随着单一或多种缓冲液形成的薄膜流经整个分离腔。在垂直于电解质和样品流动的方向上施加电压,可在溶液流动时施加电压,即连续自由流电泳;也可在溶液静止时施加电压,即间歇自由流电泳。外加的电压将使电泳淌度和等电点不同的各组分的运动方向发生不同角度的偏离,在分离室的末端从不同的出口流出。自由流电泳的特点在于可连续进样并能够大体积收集样品片段,可作为前处理与分离技术与其它色谱技术联用,或直接与检测仪器联用。文献曾报道,用FFE与超高分辨的ESI ICR-FT/MS离线联用对Suwannee River黄腐酸样品进行分离鉴定。毛细管等速电泳(CapillaryIsotachophoresis, cITP)也是利用分析物的有效淌度的不同进行分离的电泳技术。与CZE不同的是,cITP中使用两种电解质,而样品处于两种电解质之间:前导电解质(leadingelectrolyte)采用有效淌度比分析物的有效淌度大的缓冲液;尾随电解质(terminatingelectrolyte)采用有效淌度比分析物的有效淌度小的缓冲液。在外加电压的作用下,样品中速度最大的离子移动最快,但总落后于前导电解质;速度最小的离子移动最慢,但总领先于尾随电解质,因此样品离子便被压缩在前导电解质和尾随电解质之间进行分离,
本发明结合CZE、FFE与cITP的分离特点,建立一种新型毛细管电泳方法,用于提取复杂样品中的极性物质。在极酸性(pH=1.8)的介质中,只有能够电离的极性物质能够在外加电场的驱动下进入PEEK毛细管内,从而被分离提取。
发明内容
本发明目的在于建立一种新型毛细管电泳方法,用于提取复杂样品中的极性物质。该方法中,在极酸性(pH=1.8)的介质中,使复杂样品中的极性物质发生电离,并在外加电场的驱动下进入PEEK毛细管内,从而被分离提取。
为实现上述目的,本发明采用如下技术方案:
一种基于毛细管电泳的极性物质提取方法,其具体步骤为:
1) 运行液的配置:配置电动提取所需的运行液(pH 1.8);
2) 毛细管的预处理:PEEK毛细管长度为60 cm,所有提取过程中,PEEK毛细管保持25℃的工作温度,未使用过的毛细管需使用前需用去离子水和甲醇分别冲洗,每次提取前后,也需用去离子水和甲醇分别冲洗;
3) 极性物质的提取:先采用压力进样的方式,使毛细管充满运行液,再采用电动进样的方式,对极性物质进行提取,最后用压力将毛细管内的样品推进采集瓶;
4)极性物质的检测:将毛细管中的样品直接推入质谱检测器,对其进行检测。
具体的:步骤1)所述运行液的配置具体为含极性物质的溶液。
步骤2)所述毛细管的预处理的配置具体操作为,未使用过的PEEK毛细管使用前用去离子水和甲醇分别冲洗10 min,重复五次,以确保毛细管内壁的清洁。每次提取前及提取结束,依次以去离子水及甲醇冲洗毛细管10 min,重复2次。每提取5次,依次以去离子水及甲醇冲洗毛细管5 min,重复2次。
步骤3)所述极性物质的提取具体操作为,先采用30 mpa压力进样1 min,使毛细管充满运行液,再采用-10 kV的电压电动进样10 min,对极性物质进行提取。
步骤4)所述极性物质的检测具体操作为,采用100 mpa压力最后用30 mpa压力将毛细管内的样品全部推进质谱检测器。
本发明的显著优点在于:
本方法操作过程简单快捷,为复杂样品中极性物质的分离分析提供了新的方法。
附图说明
图1 不同极性化合物混合溶液经毛细管电动提取后的信号对比图(pH=1.8)。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例 1:不同极性化合物混合溶液的毛细管电动提取和检测。
以香兰素、苯甲酸、对苯二酸、1,2,3-苯三甲酸(极性:香兰素<苯甲酸<对苯二酸<1,2,3-苯三甲酸)为例,称取香兰素、苯甲酸、对苯二酸、1,2,3-苯三甲酸各1.0 mg,分别溶于1.0 mL水、1.0 mL乙醇、1.0 mL二甲基亚砜和1.0 mL水中,分别配置成香兰素(1.0 mg/mL)标准溶液、苯甲酸(1.0 mg/mL)标准溶液、对苯二酸(1.0 mg/mL)标准溶液、1,2,3-苯三甲酸(1.0 mg/mL)标准溶液。取香兰素(1.0 mg/mL)标准溶液、苯甲酸(1.0 mg/mL)标准溶液、对苯二酸(1.0 mg/mL)标准溶液、1,2,3-苯三甲酸(1.0 mg/mL)标准溶液各200 µL,加入200 µL水,得香兰素(0.2 mg/mL)、苯甲酸(0.2 mg/mL)、对苯二酸(0.2 mg/mL)、1,2,3-苯三甲酸(0.2 mg/mL)的混合标准溶液。按本发明方法对4种化合物的混合标准溶液进行毛细管电动提取后,进入质谱检测器进行定量检测。图1中比较可以看出,在极端酸性的条件下,本发明方法对不同极性物质的提取的量为:香兰素<苯甲酸<对苯二酸<1,2,3-苯三甲酸,与极性成正比,其中,极性最小的香兰素几乎没有被提取。

Claims (5)

1.一种基于毛细管电泳的极性物质电动提取方法,其特征在于:其具体步骤为:
1) 运行液的配置:配置电动提取所需的运行液;
2) 毛细管的预处理:PEEK毛细管长度为60 cm,所有提取过程中,PEEK毛细管保持25℃的工作温度,未使用过的毛细管需使用前需用去离子水和甲醇分别冲洗,每次提取前后,也需用去离子水和甲醇分别冲洗;
3) 极性物质的提取:先采用压力进样的方式,使毛细管充满运行液,再采用电动进样的方式,对极性物质进行提取,最后用压力将毛细管内的样品推进采集瓶;
4) 极性物质的检测:采用压力将毛细管中的样品直接泵入质谱检测器,对其进行检测。
2.根据权利要求1所述基于毛细管电泳的极性物质电动提取方法,其特征在于:步骤1)所述运行液具体为含极性物质的溶液。
3.根据权利要求1所述基于毛细管电泳的极性物质电动提取方法,其特征在于:步骤2)所述毛细管的预处理的配置具体操作为,未使用过的PEEK毛细管使用前用去离子水和甲醇分别冲洗10 min,重复五次,以确保毛细管内壁的清洁;每次提取前及提取结束,依次以去离子水及甲醇冲洗毛细管10 min,重复2次;每提取5次,依次以去离子水及甲醇冲洗毛细管5 min,重复2次。
4.根据权利要求1所述基于毛细管电泳的极性物质电动提取方法,其特征在于:步骤3)所述极性物质的提取具体操作为,先采用30 mpa压力进样1 min,使毛细管充满运行液,再采用-10 kV的电压电动进样10 min,对极性物质进行提取。
5.根据权利要求1所述基于毛细管电泳的极性物质电动提取方法,其特征在于:步骤4)所述极性物质的检测具体操作为,采用100 mpa压力最后用30 mpa压力将毛细管内的样品全部推进质谱检测器。
CN201810346009.6A 2018-04-18 2018-04-18 一种基于毛细管电泳的极性物质电动提取方法 Pending CN108562637A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810346009.6A CN108562637A (zh) 2018-04-18 2018-04-18 一种基于毛细管电泳的极性物质电动提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810346009.6A CN108562637A (zh) 2018-04-18 2018-04-18 一种基于毛细管电泳的极性物质电动提取方法

Publications (1)

Publication Number Publication Date
CN108562637A true CN108562637A (zh) 2018-09-21

Family

ID=63535326

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810346009.6A Pending CN108562637A (zh) 2018-04-18 2018-04-18 一种基于毛细管电泳的极性物质电动提取方法

Country Status (1)

Country Link
CN (1) CN108562637A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048673A2 (en) * 2000-11-17 2002-06-20 University Of Virginia Patent Foundation Method for orthogonal analyte stacking/injection systems in electrophoresis
CN102121919A (zh) * 2010-12-09 2011-07-13 江南大学 灵敏检测多种样品中三聚氰胺的毛细管电泳在线富集方法
CN102183599A (zh) * 2011-02-28 2011-09-14 周至譓 用毛细管电泳技术分析中药二甲基亚砜提取液的方法
CN102565170A (zh) * 2010-12-10 2012-07-11 江南大学 灵敏的检测配方奶粉中三聚氰胺的毛细管电泳方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048673A2 (en) * 2000-11-17 2002-06-20 University Of Virginia Patent Foundation Method for orthogonal analyte stacking/injection systems in electrophoresis
CN102121919A (zh) * 2010-12-09 2011-07-13 江南大学 灵敏检测多种样品中三聚氰胺的毛细管电泳在线富集方法
CN102565170A (zh) * 2010-12-10 2012-07-11 江南大学 灵敏的检测配方奶粉中三聚氰胺的毛细管电泳方法
CN102183599A (zh) * 2011-02-28 2011-09-14 周至譓 用毛细管电泳技术分析中药二甲基亚砜提取液的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
何聿: "新型毛细管电泳—高分辨质谱联用技术在复杂样品分析中的应用", 《中国博士学位论文全文数据库医药卫生科技辑》 *

Similar Documents

Publication Publication Date Title
Smith et al. Capillary electrophoresis/mass spectrometry
Moini Capillary electrophoresis mass spectrometry and its application to the analysis of biological mixtures
Lin et al. On‐line sample concentration techniques in capillary electrophoresis: Velocity gradient techniques and sample concentration techniques for biomolecules
Huang et al. Electromembrane extraction for pharmaceutical and biomedical analysis–Quo vadis
US7820023B2 (en) Preconcentration interface coupling liquid chromatography to capillary electrophoresis
Pedersen-Bjergaard et al. Electrical potential can drive liquid-liquid extraction for sample preparation in chromatography
Arnett et al. Investigation of the mechanism of pH‐mediated stacking of anions for the analysis of physiological samples by capillary electrophoresis
Van der Vlis et al. Combined liquid-liquid electroextraction and isotachophoresis as a fast on-line focusing step in capillary electrophoresis
He et al. Comparative study for the analysis of parabens by micellar electrokinetic capillary chromatography with and without large-volume sample stacking technique
Tachibana et al. Robust and simple interface for microchip electrophoresis–mass spectrometry
Kawai Recent Studies on Online Sample Preconcentration Methods inCapillary Electrophoresis Coupled with Mass Spectrometry
Sarver et al. Capillary electrophoresis coupled to negative mode electrospray ionization-mass spectrometry using an electrokinetically-pumped nanospray interface with primary amines grafted to the interior of a glass emitter
Soga Advances in capillary electrophoresis mass spectrometry for metabolomics
Tachibana et al. Effects of the length and modification of the separation channel on microchip electrophoresis–mass spectrometry for analysis of bioactive compounds
CN101893598A (zh) 一种集成高效富集二维毛细管电泳装置及富集分离方法
Sha et al. Capillary electrophoresis coupled with electrochemical detection using porous etched joint for determination of antioxidants
CN108562637A (zh) 一种基于毛细管电泳的极性物质电动提取方法
Cheng et al. Method for on-line derivatization and separation of aspartic acid enantiomer in pharmaceuticals application by the coupling of flow injection with micellar electrokinetic chromatography
CN109270153B (zh) 一种无两性电解质自由流等电聚焦电泳分离方法
Zhu et al. Large‐volume sample stacking for analysis of ethylenediaminetetraacetic acid by capillary electrophoresis
Priego‐Capote et al. Dual injection capillary electrophoresis: Foundations and applications
Hung et al. Chiral electrokinetic chromatography‐electrospray ionization‐mass spectrometry using a double junction interface
Zhang et al. Field amplified sample stacking coupled with chip-based capillary electrophoresis using negative pressure sample injection technique
CN1275035C (zh) 电泳分离装置及其使用方法
Chen et al. Combination of flow injection with electrophoresis using capillaries and chips

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180921

RJ01 Rejection of invention patent application after publication