CN108559958A - 圆滑过渡边界气膜孔的涂层热部件及其制备方法 - Google Patents

圆滑过渡边界气膜孔的涂层热部件及其制备方法 Download PDF

Info

Publication number
CN108559958A
CN108559958A CN201810457168.3A CN201810457168A CN108559958A CN 108559958 A CN108559958 A CN 108559958A CN 201810457168 A CN201810457168 A CN 201810457168A CN 108559958 A CN108559958 A CN 108559958A
Authority
CN
China
Prior art keywords
air film
film hole
coating
gas
thermal part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810457168.3A
Other languages
English (en)
Inventor
杨冠军
刘梅军
鲁延红
章梦
李广荣
李成新
李长久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201810457168.3A priority Critical patent/CN108559958A/zh
Publication of CN108559958A publication Critical patent/CN108559958A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0688Cermets, e.g. mixtures of metal and one or more of carbides, nitrides, oxides or borides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明公开一种圆滑过渡边界气膜孔的涂层热部件及其制备方法,涂层热部件的表面气膜孔周围涂层在气膜孔流道外边缘特定方向具有沿气膜孔流道外边缘至涂层厚度稳定区域的圆滑过渡边界,所述特定方向为气膜孔流道外法线在涂层热部件表面投影方向±90°范围,涂层圆滑过渡边界半径为涂层厚度的0.5~3.5倍。本发明解决了在已有气膜冷却孔的热部件上直接制备具有圆滑过渡边界的热障涂层所面临的难题。

Description

圆滑过渡边界气膜孔的涂层热部件及其制备方法
技术领域
本发明属于涂层制备领域,特别涉及一种圆滑过渡边界气膜孔的涂层热部件及其制备方法。
背景技术
随着航空发动机向高推重比方向发展,涡轮进口温度不断提高。目前,涡轮进口温度已经提升到超过高温合金使用极限的水平,为满足高温环境工作要求,需要联合使用如气膜冷却、表面制备热障涂层等多种降温隔热手段改善高温合金的服役条件。
热端部件气膜孔与热障涂层的质量直接关系到涡轮热端部件的安全可靠性,目前主要有两种加工方法:一是先制备热障涂层,再用激光加工制孔,但是激光可能会引起热障涂层的剥离,造成损伤缺陷;另一种方法是先制孔,然后再制备热障涂层,但是在制备热障涂层过程中会导致严重的堵塞气膜孔。因此,发动机叶片及燃烧室无论是否带有热障涂层,其气膜孔加工一直以来都是加工难点,而在带有气膜孔的涡轮热端部件高温合金上制备热障涂层更是加工难点。另外,影响气膜冷却的因素有很多,如吹风比、气膜冷却表面曲率、气膜孔复合角和气膜孔集合结构等,其中气膜孔出口形状对冷却效率的影响最为显著,气膜孔出口边缘形状影响冷却气体是否能有效贴近热端部件表面,而只有在冷却气体贴近部件表面形成完整连续的冷却气膜之后才能实现有效的隔热效果,因此,改善气膜孔出口外边缘涂层形状是实现冷却气体良好贴壁性的重要手段。
常规改善气膜孔出口外边缘涂层形状的方式主要为:先加工气膜冷却孔,然后涂覆热障涂层,最后用微型钻头在相应孔位处去除并修整热障涂层。其工序复杂、效率低、质量不易控制。因此,如何在已有气膜冷却孔的热部件上直接制备具有圆滑过渡边界的热障涂层是现在面临的难题。
发明内容
本发明的目的在于提供一种圆滑过渡边界气膜孔的涂层热部件及其制备方法,以解决上述技术问题。
气膜孔周边热障涂层几何形状影响从气膜孔流出的冷却气体能否有效贴近热端部件表面,保障隔热效果。为解决涡轮热端部件气膜孔周边热障涂层圆滑过渡问题,本发明提供了一种圆滑过渡边界气膜孔的涂层热部件及其制备方法,具体技术方案如下:
圆滑过渡边界气膜孔的涂层热部件,涂层热部件的表面气膜孔周围涂层在气膜孔流道外边缘特定方向具有沿气膜孔流道外边缘至涂层厚度稳定区域的圆滑过渡边界,所述特定方向为气膜孔流道外法线在涂层热部件表面投影方向±90°范围,涂层圆滑过渡边界半径为涂层厚度的0.5~3.5倍。
进一步的,圆滑过渡边界为沉积涂层时直接制备得到;在气膜孔流道外法线在涂层热部件表面投影的反方向±90°范围内涂层具有圆润过渡特性。
进一步的,气膜孔内流出气体在特定方向范围内具有贴壁性。
圆滑过渡边界气膜孔的涂层热部件的制备方法,包括以下步骤:
(1)利用高能等离子气体加热蒸发涂层材料粉末形成气相/纳米粒子流,粒子流与高能等离子气体构成混合高速流;
(2)混合高速流与热部件相互作用后的速度水平分量以平行热部件表面某一特定方向角度施加于内部具有流道、表面具有气膜孔的热部件表面,进行扫描和/或定点沉积,所述特定方向角度范围为沿气膜孔流道外法线在热部件表面投影方向±60°;
(3)沉积过程中,热部件内部通入气体,由气膜孔流出,控制气膜孔内部压力使其较外部高1~1000Pa,控制气膜孔流出的气体流速使其与高速流相互作用,在气膜孔周围形成微粒子浓度梯度区,基于材料量的差别得到气膜孔周围具有圆滑过渡边界的涂层热部件。
进一步的,高能等离子气体采用如下气体中的一种:
单一气体氦气;
单一气体氩气;
氦气和氩气的混合气体;
氦气、氩气和氢气的混合气体,混合气体中氦气、氩气和氢气的体积百分比分别为A、B、C,其中,0<A<100%;0<B<100%;0<C≤30%;
氩气和氢气的混合气体,混合气体中氦气和氢气的体积百分比分别为D、E,其中,70%≤D<100%;0<E≤30%。
进一步的,涂层材料粉末为氧化锆、氧化钇稳定的氧化锆、锆酸镧、NiCrAlY中的一种或两种。
进一步的,气相/纳米粒子流中的涂层材料粒子为气相材料粒子和/或纳米级材料粒子;气相/纳米粒子流中的涂层材料粒子为气相材料粒子和纳米级材料粒子时,气相材料粒子体积百分比为G,纳米级材料粒子的体积百分比为H,50%≤G<100%;0<H≤50%。
进一步的,热部件在沉积涂层前预热至600~1250℃。
进一步的,混合高速流施加到具有气膜孔的热部件表面的角度为0~90°。
进一步的,涂层制备在10-5000Pa的低工作腔室压力下进行。
进一步的,热部件内部通入的气体为单一气体氩气、氦气,或上述气体的混合气体,混合比例为任意比例。
进一步的,气膜孔流出的气体流速为10~700m/s。
相对于现有技术,本发明具有以下有益效果:涂层热部件气膜孔周围圆滑过渡边界是由涂层制备时直接得到,涂层制备时,热部件内部通入惰性气体由气膜孔流出,气膜孔流出的惰性气体与高速束流相互作用,能够模拟真实服役条件下冷却气体的贴壁行为,在气膜孔周围制备的涂层所具有的圆滑过渡边界是依据流场结构自发沉积形成,因此,在实际服役过程中能够保证冷却气体的良好贴壁性,从而实现更好的隔热效果。另外,无需后期修孔,有效防止了修孔时涂层缺陷的形成,避免了涂层热部件在服役过程中由于气膜孔周围涂层缺陷造成的涂层破坏。
附图说明
图1为喷涂前热部件气膜孔部位的剖视图;
图2为喷涂前热部件气膜孔部位的俯视图;
图3为喷涂后涂层热部件气膜孔部位的剖视图。
具体实施方式
请参阅图1至图3所示,本发明提供一种圆滑过渡边界气膜孔的涂层热部件,其基体2的表面气膜孔2周围涂层在气膜孔流道外边缘特定方向具有沿气膜孔流道外边缘至涂层厚度稳定区域的圆滑过渡边界,所述特定方向为气膜孔流道外法线在涂层热部件表面投影方向±90°范围,涂层圆滑过渡边界半径为涂层厚度的0.5~3.5倍;圆滑过渡边界为沉积涂层时直接制备得到;在气膜孔流道外法线在涂层热部件表面投影的反方向±90°范围内涂层具有圆润过渡特性;气膜孔内流出气体在特定方向范围内具有贴壁性。
实施例1
将带有气膜孔的高温合金叶片进行表面去油、喷砂处理,之后放置在真空腔室内,利用多级真空泵系统控制腔室压力为200Pa,在叶片内部持续通入氩气,控制气膜孔内部压力较外部高1Pa,气膜孔流出的气体流速为10m/s;利用不含涂层材料的等离子束流对叶片进行预热至600℃,以氦气/氩气/氢气比例为6:3.5:1作为等离子气体加热百分之七氧化钇稳定的氧化锆涂层材料粉末,形成由气相/纳米粒子流(气相材料粒子体积占90%,纳米级材料粒子体积占10%)与高能等离子气体组成的混合高速流;混合高速流施加到叶片表面的角度为30°,与热部件相互作用后的速度水平分量与气膜孔流道外法线于部件表面投影方向成60°,进行扫描沉积。最后得到气膜孔边缘具有圆滑过渡边界的涂层,在气膜孔流道外法线在部件表面投影的反方向±90°范围内涂层具有圆润过渡特性,涂层在气膜孔流道外法线于部件表面投影方向的圆滑过渡边界半径为涂层厚度的0.5倍。
实施例2
将带有气膜孔的高温合金叶片进行表面去油、喷砂处理,之后放置在真空腔室内,利用多级真空泵系统控制腔室压力为200Pa,在叶片内部持续通入氩气,控制气膜孔内部压力较外部高800Pa,气膜孔流出的气体流速为700m/s;利用不含涂层材料的等离子束流对叶片进行预热至1100℃,以氦气/氩气比例为6:3.5作为等离子气体加热百分之七氧化钇稳定的氧化锆涂层材料粉末,形成由气相/纳米粒子流(气相材料粒子体积占100%,纳米级材料粒子体积占0%)与高能等离子气体组成的混合高速流;混合高速流施加到叶片表面的角度为60°,与热部件相互作用后的速度水平分量与气膜孔流道外法线于部件表面投影方向成0°,进行扫描沉积。最后得到气膜孔边缘具有圆滑过渡边界的涂层,在气膜孔流道外法线在部件表面投影的反方向±90°范围内涂层具有圆润过渡特性,涂层在气膜孔流道外法线于部件表面投影方向的圆滑过渡边界半径为涂层厚度的3.5倍。
实施例3
将带有气膜孔的高温合金叶片进行表面去油、喷砂处理,之后放置在真空腔室内,利用多级真空泵系统控制腔室压力为5000Pa,在叶片内部持续通入氩气,控制气膜孔内部压力较外部高1000Pa,气膜孔流出的气体流速为680m/s;利用不含涂层材料的等离子束流对叶片进行预热至1250℃,以氩气作为等离子气体加热百分之七氧化钇稳定的氧化锆涂层材料粉末,形成由气相/纳米粒子流(气相材料粒子体积占50%,纳米级材料粒子体积占50%)与高能等离子气体组成的混合高速流;混合高速流施加到叶片表面的角度为90°,与热部件相互作用后的速度水平分量与气膜孔流道外法线于部件表面投影方向成30°,进行定点沉积。最后得到气膜孔边缘具有圆滑过渡边界的涂层,在气膜孔流道外法线在部件表面投影的反方向±90°范围内涂层具有圆润过渡特性,涂层在气膜孔流道外法线于部件表面投影方向的圆滑过渡边界半径为涂层厚度的1.8倍。
实施例4
将带有气膜孔的高温合金叶片进行表面去油、喷砂处理,之后放置在真空腔室内,利用多级真空泵系统控制腔室压力为100Pa,在叶片内部持续通入氩气,控制气膜孔内部压力较外部高400Pa,气膜孔流出的气体流速为530m/s;利用不含涂层材料的等离子束流对叶片进行预热至800℃,以氩气/氢气比例为5:1作为等离子气体加热百分之七氧化钇稳定的氧化锆涂层材料粉末,形成由气相/纳米粒子流(气相材料粒子体积占85%,纳米级材料粒子体积占15%)与高能等离子气体组成的混合高速流;混合高速流施加到叶片表面的角度为45°,与热部件相互作用后的速度水平分量与气膜孔流道外法线于部件表面投影方向(如图1)相同,进行定点沉积。最后得到气膜孔边缘具有圆滑过渡边界的涂层,在气膜孔流道外法线在部件表面投影的反方向±90°范围内涂层具有圆润过渡特性,涂层在气膜孔流道外法线于部件表面投影方向的圆滑过渡边界半径(如图3)为涂层厚度的2.2倍。
实施例5
将带有气膜孔的高温合金叶片进行表面去油、喷砂处理,之后放置在真空腔室内,利用多级真空泵系统控制腔室压力为1000Pa,在叶片内部持续通入氩气,控制气膜孔内部压力较外部高600Pa,气膜孔流出的气体流速为590m/s;利用不含涂层材料的等离子束流对叶片进行预热至700℃,以氦气/氩气/氢气比例为6:3.5:1作为等离子气体加热百分之七氧化钇稳定的氧化锆涂层材料粉末,形成由气相/纳米粒子流(气相材料粒子体积占92%,纳米级材料粒子体积占8%)与高能等离子气体组成的混合高速流;混合高速流施加到叶片表面的角度为90°,与热部件相互作用后的速度水平分量与气膜孔流道外法线于部件表面投影方向成0°,进行扫描沉积。最后得到气膜孔边缘具有圆滑过渡边界的涂层,在气膜孔流道外法线在部件表面投影的反方向±90°范围内涂层具有圆润过渡特性,涂层在气膜孔流道外法线于部件表面投影方向的圆滑过渡边界半径为涂层厚度的2.5倍。
实施例6
将带有气膜孔的高温合金叶片进行表面去油、喷砂处理,之后放置在真空腔室内,利用多级真空泵系统控制腔室压力为10Pa,在叶片内部持续通入氩气,控制气膜孔内部压力较外部高100Pa,气膜孔流出的气体流速为110m/s;利用不含涂层材料的等离子束流对叶片进行预热至900℃,以氦气作为等离子气体加热百分之七氧化钇稳定的氧化锆涂层材料粉末,形成由气相/纳米粒子流(气相材料粒子体积占80%,纳米级材料粒子体积占20%)与高能等离子气体组成的混合高速流;混合高速流施加到叶片表面的角度为60°,与热部件相互作用后的速度水平分量与气膜孔流道外法线于部件表面投影方向成0°,进行扫描沉积。最后得到气膜孔边缘具有圆滑过渡边界的涂层,在气膜孔流道外法线在部件表面投影的反方向±90°范围内涂层具有圆润过渡特性,涂层在气膜孔流道外法线于部件表面投影方向的圆滑过渡边界半径为涂层厚度的1.4倍。
本发明一种圆滑过渡边界气膜孔的涂层热部件及其制备方法,热部件表面气膜孔周围涂层在气膜孔流道外法线于部件表面投影方向一定范围具有沿气膜孔流道外边缘至涂层厚度稳定区域的圆滑过渡边界。此圆滑过渡边界涂层利用含气相/纳米粒子的高速流沿气膜孔流道外法线于部件表面投影方向一定角度施加于内部具有流道、表面具有气膜孔的热部件表面进行沉积,同时,热部件内部通入气体并由气膜孔流出,控制气膜孔内外部压差,在气膜孔周围形成微粒子浓度梯度区,基于材料量的差别得到气膜孔周围具有圆滑过渡边界的涂层热部件。本发明解决了在已有气膜冷却孔的热部件上直接制备具有圆滑过渡边界的热障涂层所面临的难题。

Claims (10)

1.圆滑过渡边界气膜孔的涂层热部件,其特征在于,涂层热部件的表面气膜孔周围涂层在气膜孔流道外边缘特定方向具有沿气膜孔流道外边缘至涂层厚度稳定区域的圆滑过渡边界,所述特定方向为气膜孔流道外法线在涂层热部件表面投影方向±90°范围,涂层圆滑过渡边界半径为涂层厚度的0.5~3.5倍。
2.根据权利要求1所述的一种圆滑过渡边界气膜孔的涂层热部件,其特征在于:圆滑过渡边界为沉积涂层时直接制备得到;在气膜孔流道外法线在涂层热部件表面投影的反方向±90°范围内涂层具有圆润过渡特性。
3.根据权利要求1所述的一种圆滑过渡边界气膜孔的涂层热部件,其特征在于:气膜孔内流出气体在特定方向范围内具有贴壁性。
4.圆滑过渡边界气膜孔的涂层热部件的制备方法,其特征在于,包括以下步骤:
(1)利用高能等离子气体加热蒸发涂层材料粉末形成气相/纳米粒子流,粒子流与高能等离子气体构成混合高速流;
(2)混合高速流与热部件相互作用后的速度水平分量以平行热部件表面某一特定方向角度施加于内部具有流道、表面具有气膜孔的热部件表面,进行扫描和/或定点沉积,所述特定方向角度范围为沿气膜孔流道外法线在热部件表面投影方向±60°;
(3)沉积过程中,热部件内部通入气体,由气膜孔流出,控制气膜孔内部压力使其较外部高1~1000Pa,控制气膜孔流出的气体流速使其与高速流相互作用,在气膜孔周围形成微粒子浓度梯度区,基于材料量的差别得到气膜孔周围具有圆滑过渡边界的涂层热部件。
5.根据权利要求4所述的制备方法,其特征在于:高能等离子气体采用如下气体中的一种:
单一气体氦气;
单一气体氩气;
氦气和氩气的混合气体;
氦气、氩气和氢气的混合气体,混合气体中氦气、氩气和氢气的体积百分比分别为A、B、C,其中,0<A<100%;0<B<100%;0<C≤30%;
氩气和氢气的混合气体,混合气体中氦气和氢气的体积百分比分别为D、E,其中,70%≤D<100%;0<E≤30%。
6.根据权利要求4所述的制备方法,其特征在于,涂层材料粉末为氧化锆、氧化钇稳定的氧化锆、锆酸镧、NiCrAlY中的一种或两种。
7.根据权利要求4所述的制备方法,其特征在于:气相/纳米粒子流中的涂层材料粒子为气相材料粒子和/或纳米级材料粒子;气相/纳米粒子流中的涂层材料粒子为气相材料粒子和纳米级材料粒子时,气相材料粒子体积百分比为G,纳米级材料粒子的体积百分比为H,50%≤G<100%;0<H≤50%。
8.根据权利要求4所述的制备方法,其特征在于:热部件在沉积涂层前预热至600~1250℃。
9.根据权利要求4所述的制备方法,其特征在于:混合高速流施加到具有气膜孔的热部件表面的角度为0~90°。
10.根据权利要求4所述的制备方法,其特征在于:涂层制备在10-5000Pa的低工作腔室压力下进行。
CN201810457168.3A 2018-05-14 2018-05-14 圆滑过渡边界气膜孔的涂层热部件及其制备方法 Pending CN108559958A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810457168.3A CN108559958A (zh) 2018-05-14 2018-05-14 圆滑过渡边界气膜孔的涂层热部件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810457168.3A CN108559958A (zh) 2018-05-14 2018-05-14 圆滑过渡边界气膜孔的涂层热部件及其制备方法

Publications (1)

Publication Number Publication Date
CN108559958A true CN108559958A (zh) 2018-09-21

Family

ID=63538796

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810457168.3A Pending CN108559958A (zh) 2018-05-14 2018-05-14 圆滑过渡边界气膜孔的涂层热部件及其制备方法

Country Status (1)

Country Link
CN (1) CN108559958A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536873A (zh) * 2019-01-05 2019-03-29 西安交通大学 抗砂尘高温粘附的自层剥涂层及其制备方法
CN115519480A (zh) * 2022-09-29 2022-12-27 中国航发动力股份有限公司 一种发动机零件冷却气膜孔扩孔的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054202A (ja) * 1996-05-17 1998-02-24 General Electric Co <Ge> 保護皮膜を有する流体冷却製品並びにその製造方法
WO1999023273A1 (de) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Beschichtungsverfahren und vorrichtung
EP1076107A1 (en) * 1999-08-09 2001-02-14 ABB Alstom Power (Schweiz) AG Process of plugging cooling holes of a gas turbine component
US20030026952A1 (en) * 2001-07-11 2003-02-06 Reinhard Fried Process and device for coating a temperature-stable component with a thermal protection layer
CN102443752A (zh) * 2010-10-07 2012-05-09 苏舍美特科公司 保持冷却空气孔畅通的热喷涂工艺
CN105886991A (zh) * 2016-04-15 2016-08-24 华能国际电力股份有限公司 一种热喷涂过程中表面微孔的封堵方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1054202A (ja) * 1996-05-17 1998-02-24 General Electric Co <Ge> 保護皮膜を有する流体冷却製品並びにその製造方法
WO1999023273A1 (de) * 1997-11-03 1999-05-14 Siemens Aktiengesellschaft Beschichtungsverfahren und vorrichtung
EP1076107A1 (en) * 1999-08-09 2001-02-14 ABB Alstom Power (Schweiz) AG Process of plugging cooling holes of a gas turbine component
US20030026952A1 (en) * 2001-07-11 2003-02-06 Reinhard Fried Process and device for coating a temperature-stable component with a thermal protection layer
CN102443752A (zh) * 2010-10-07 2012-05-09 苏舍美特科公司 保持冷却空气孔畅通的热喷涂工艺
CN105886991A (zh) * 2016-04-15 2016-08-24 华能国际电力股份有限公司 一种热喷涂过程中表面微孔的封堵方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536873A (zh) * 2019-01-05 2019-03-29 西安交通大学 抗砂尘高温粘附的自层剥涂层及其制备方法
CN115519480A (zh) * 2022-09-29 2022-12-27 中国航发动力股份有限公司 一种发动机零件冷却气膜孔扩孔的方法

Similar Documents

Publication Publication Date Title
US9347126B2 (en) Process of fabricating thermal barrier coatings
US20200024718A1 (en) Cmas resistant thermal barrier coatings
JP2009046765A (ja) 機能性層の製造方法
Aghasibeig et al. A review on suspension thermal spray patented technology evolution
CA2482085A1 (en) A plasma spraying method
US20040134430A1 (en) Method and apparatus for efficient application of substrate coating
US20120100299A1 (en) Thermal spray coating process for compressor shafts
CN106884132A (zh) 一种高温热障涂层材料
CN101723667A (zh) 带有网状裂纹结构的多元稀土氧化物掺杂氧化锆热障涂层及其制备方法
US11851770B2 (en) Thermal barrier coatings for components in high-temperature mechanical systems
JP2006348942A (ja) アルミナドーパントを含有するセラミック製アブレイダブル材料
CN108559958A (zh) 圆滑过渡边界气膜孔的涂层热部件及其制备方法
CN112725716B (zh) 一种热喷涂用的核壳结构陶瓷复合粉体及其制备方法
JP5897370B2 (ja) 酸化物分散強化皮膜の形成方法
JP2008088556A (ja) 柱状構造を有するコーティングの製造方法
CN104846322A (zh) SrZrO3纳米陶瓷热障涂层及其制备方法
CN107626929A (zh) 一种制备合金粉末的方法
CN109852918A (zh) 兼具相稳定的自增强多模式纳米结构热障涂层及制备方法
US7799716B2 (en) Partially-alloyed zirconia powder
CN108249921A (zh) 一种陶瓷热障涂层及原位反应快速制备涂层的方法
US20160068941A1 (en) Method for preparing coatings or powders by mixed-mode plasma spraying
CN102439193B (zh) 用于衬底覆层的方法以及具有覆层的衬底
CN114107874A (zh) 一种隔热活塞及制备方法
CN109161889A (zh) 一种抗烧结双模复合结构热障涂层及其制备工艺
JPS60190580A (ja) 遮熱コ−テイング用粉末および遮熱コ−テイング層を有する金属部材

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180921