CN108557836B - 一种BaB8O11(OH)4纳米阻燃材料及其制备方法 - Google Patents

一种BaB8O11(OH)4纳米阻燃材料及其制备方法 Download PDF

Info

Publication number
CN108557836B
CN108557836B CN201810401616.8A CN201810401616A CN108557836B CN 108557836 B CN108557836 B CN 108557836B CN 201810401616 A CN201810401616 A CN 201810401616A CN 108557836 B CN108557836 B CN 108557836B
Authority
CN
China
Prior art keywords
barium
bab
nano
source
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810401616.8A
Other languages
English (en)
Other versions
CN108557836A (zh
Inventor
刘志宏
苗静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201810401616.8A priority Critical patent/CN108557836B/zh
Publication of CN108557836A publication Critical patent/CN108557836A/zh
Application granted granted Critical
Publication of CN108557836B publication Critical patent/CN108557836B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/08Compounds containing boron and nitrogen, phosphorus, oxygen, sulfur, selenium or tellurium
    • C01B35/10Compounds containing boron and oxygen
    • C01B35/12Borates
    • C01B35/126Borates of alkaline-earth metals, beryllium, aluminium or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/02Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/17Nanostrips, nanoribbons or nanobelts, i.e. solid nanofibres with two significantly differing dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fireproofing Substances (AREA)

Abstract

本发明公开了一种BaB8O11(OH)4纳米阻燃材料及其制备方法,该方法以硝酸钡或醋酸钡为钡源,以八水合五硼酸铵或硼酸为硼源,直接一步水热或溶剂热反应即可制备成纳米片、纳米带、纳米盘结构的BaB8O11(OH)4纳米阻燃材料。本发明方法简单,反应条件温和,原料易得,所制备的BaB8O11(OH)4纳米材料分散性好,形貌均一,对聚丙烯等塑料具有良好的阻燃性,具有广阔的应用前景。

Description

一种BaB8O11(OH)4纳米阻燃材料及其制备方法
技术领域
本发明属于阻燃材料技术领域,具体涉及一种BaB8O11(OH)4纳米阻燃材料及其制备方法。
背景技术
硼酸盐是一种有效且价廉的无机阻燃剂,具有热稳定性好、无毒、抑烟、燃烧产物毒性小等优点,广泛应用于各种纤维、树脂、橡胶制品、电器绝缘材料、电线、电缆、木材及防锈漆等方面的阻燃。然而,通常制备的硼酸盐粒径较大,在聚合物中不易分散,还降低了高分子聚合物的机械性能,限制了其应用。由于纳米材料的形貌和尺寸对其阻燃性能有很大影响,对于等量的阻燃剂,其粒径愈小比表面积愈大,超细化、纳米化以后,增强了界面的相互作用,可以更均匀的分散于基质中,阻燃效果就愈好。如果将硼酸盐阻燃剂制备成纳米级,则有可能既可增大阻燃剂与基质材料的接触面和提高相容性,又可降低阻燃剂的用量。
发明人在研发过程中发现不少有关水合硼酸锌、水合硼酸钙、水合硼酸镁纳米结构的制备报道,如Lihong Bao等人提出采用水热法制备硼酸钙2CaO·B2O3·H2O 纳米带,本课题组也曾报道了4ZnO·B2O3·H2O纳米材料,椭球状、蚕蛹状 4CaO·5B2O3·7H2O纳米结构的制备,相转化法制备片状CaO·3B2O3·4H2O纳米材料,等。但未有人提出过关于组成为BaB8O11(OH)4的硼酸钡纳米材料制备的相关报道。
发明内容
本发明所要解决的技术问题在于提供一种粒径小、分散性好、阻燃性能优良的BaB8O11(OH)4纳米阻燃材料,以及该阻燃材料的制备方法。
解决上述技术问题所采用的BaB8O11(OH)4纳米阻燃材料由下述方法制备得到:按照钡元素与硼元素的摩尔比为1:2~20,将钡源和硼源加入溶剂中,混合均匀,所得混合物在密闭条件下120~220℃下反应8~36小时,将反应产物依次用60~80℃蒸馏水、乙醇洗涤后干燥,得到BaB8O11(OH)4纳米阻燃材料;
上述的钡源为硝酸钡或醋酸钡,硼源为八水合五硼酸铵或硼酸,溶剂为去离子水或乙二醇。
上述的钡源为硝酸钡、硼源为八水合五硼酸铵、溶剂为去离子水时,得到的BaB8O11(OH)4纳米阻燃材料为纳米片形貌,优选在密闭条件下170~190℃下反应10~12小时,进一步优选钡元素与硼元素的摩尔比为1:10~17。
上述的钡源为醋酸钡、硼源为硼酸、溶剂为去离子水时,在密闭条件下160~200℃下反应12~18小时,得到的BaB8O11(OH)4纳米阻燃材料为纳米带形貌,优选钡元素与硼元素的摩尔比为1:5~12。
上述的钡源为醋酸钡、硼源为硼酸、溶剂为乙二醇时,在密闭条件下160~200℃下反应12~18小时,得到的BaB8O11(OH)4纳米阻燃材料为纳米盘形貌,优选钡元素与硼元素的摩尔比为1:2~8。
本发明方法简单,原料易得,反应条件温和,所制备的BaB8O11(OH)4纳米阻燃材料分散性好、粒径小,且具有较好的阻燃效果和抑烟作用。
附图说明
图1是实施例1~3制备的BaB8O11(OH)4纳米片的XRD图。
图2是实施例1制备的BaB8O11(OH)4纳米片的SEM图。
图3是实施例2制备的BaB8O11(OH)4纳米片的SEM图。
图4是实施例3制备的BaB8O11(OH)4纳米带的SEM图。
图5是实施例4制备的BaB8O11(OH)4纳米带的SEM图。
图6是实施例5制备的BaB8O11(OH)4纳米盘的SEM图。
图7是实施例6制备的BaB8O11(OH)4纳米盘的SEM图。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将2.61g(0.01mol)Ba(NO3)2、5.44g(0.01mol)(NH4)2B10O6·8H2O、60mL去离子水加入100mL高压反应釜中,室温搅拌混合均匀后,放置在160℃烘箱中密闭反应24小时,反应完成后自然冷却至室温,将反应产物依次用60~80℃蒸馏水、乙醇各洗涤2~3次后,60℃干燥12小时,得到BaB8O11(OH)4纳米片。
发明人采用X-射线衍射仪、扫描电子显微镜对所得样品进行表征,结果见图1~2。由图1的XRD表征结果可见,所得材料的衍射数据与BaB8O11(OH)4的JCPDS 标准卡片(FileNo.97-042-1417)的衍射数据相一致。由图2可见,BaB8O11(OH)4纳米片长约500nm、宽150~200nm、厚度约50nm左右。
实施例2
将2.61g(0.01mol)Ba(NO3)2、8.16g(0.015mol)(NH4)2B10O6·8H2O、60mL 去离子水加入100mL高压反应釜中,室温搅拌混合均匀后,在180℃下密闭反应 18小时,反应完成后自然冷却至室温,将反应产物依次用60~80℃蒸馏水、乙醇各洗涤2~3次后,60℃干燥12小时,得到BaB8O11(OH)4纳米片(见图3)。
实施例3
将2.55g(0.01mol)Ba(Ac)2、3.70g(0.058mol)H3BO3、10mL去离子水加入 50mL高压反应釜中,室温搅拌混合均匀后,在180℃下密闭反应12小时,反应完成后自然冷却至室温,将反应产物依次用60~80℃蒸馏水、乙醇各洗涤2~3次后,60℃干燥12小时,得到BaB8O11(OH)4纳米带。由图1的XRD表征结果可见,所得材料的衍射数据与BaB8O11(OH)4的JCPDS标准卡片(File No.97-042-1417)的衍射数据相一致。由图4可见,BaB8O11(OH)4纳米带厚度约50nm左右。
实施例4
将2.55g(0.01mol)Ba(Ac)2、6.18g(0.10mol)H3BO3、20mL去离子水加入 50mL高压反应釜中,室温搅拌混合均匀后,在160℃下密闭反应18小时,反应完成后自然冷却至室温,将反应产物依次用60~80℃蒸馏水、乙醇各洗涤2~3次后,60℃干燥12小时,得到BaB8O11(OH)4纳米带(见图5)。
实施例5
将2.55g(0.01mol)Ba(Ac)2、1.24g(0.02mol)H3BO3、5mL乙二醇加入50mL 高压反应釜中,室温搅拌混合均匀后,在180℃下密闭反应12小时,反应完成后自然冷却至室温,将反应产物依次用60~80℃蒸馏水、乙醇各洗涤2~3次后,60℃干燥12小时,得到BaB8O11(OH)4纳米盘。由图1的XRD表征结果可见,所得材料的衍射数据与BaB8O11(OH)4的JCPDS标准卡片(File No.97-042-1417)的衍射数据相一致。由图6可见,BaB8O11(OH)4纳米盘的直径为100~200nm、厚度约20nm 左右。
实施例6
将2.55g(0.01mol)Ba(Ac)2、4.96g(0.08mol)H3BO3、10mL乙二醇加入50 mL高压反应釜中,室温搅拌混合均匀后,在200℃下密闭反应12小时,反应完成后自然冷却至室温,将反应产物依次用60~80℃蒸馏水、乙醇各洗涤2~3次后, 60℃干燥12小时,得到BaB8O11(OH)4纳米盘(见图7)。

Claims (1)

1.一种BaB8O11(OH)4纳米阻燃材料的制备方法,其特征在于:将钡源和硼源加入溶剂中,混合均匀,所得混合物在密闭条件下反应,将反应产物依次用60~80℃蒸馏水、乙醇洗涤后干燥,得到BaB8O11(OH)4纳米阻燃材料;
所述的钡源为硝酸钡、硼源为八水合五硼酸铵、溶剂为去离子水,钡元素与硼元素的摩尔比为1:10~17,在密闭条件下150~180℃下反应12~24小时时,得到的BaB8O11(OH)4纳米阻燃材料为纳米片形貌;
所述的钡源为醋酸钡、硼源为硼酸、溶剂为去离子水,钡元素与硼元素的摩尔比为1:5~12,在密闭条件下160~200℃下反应12~18小时时,得到的BaB8O11(OH)4纳米阻燃材料为纳米带形貌;
所述的钡源为醋酸钡、硼源为硼酸、溶剂为乙二醇,钡元素与硼元素的摩尔比为1:2~8,在密闭条件下160~200℃下反应12~18小时时,得到的BaB8O11(OH)4纳米阻燃材料为纳米盘形貌。
CN201810401616.8A 2018-04-28 2018-04-28 一种BaB8O11(OH)4纳米阻燃材料及其制备方法 Expired - Fee Related CN108557836B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810401616.8A CN108557836B (zh) 2018-04-28 2018-04-28 一种BaB8O11(OH)4纳米阻燃材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810401616.8A CN108557836B (zh) 2018-04-28 2018-04-28 一种BaB8O11(OH)4纳米阻燃材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108557836A CN108557836A (zh) 2018-09-21
CN108557836B true CN108557836B (zh) 2021-10-22

Family

ID=63537190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810401616.8A Expired - Fee Related CN108557836B (zh) 2018-04-28 2018-04-28 一种BaB8O11(OH)4纳米阻燃材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108557836B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243998A (ja) * 1991-01-28 1992-09-01 Sumitomo Metal Mining Co Ltd β−メタホウ酸バリウム単結晶の製造方法
CN1669923A (zh) * 2004-03-16 2005-09-21 中国科学院福建物质结构研究所 一种低温相偏硼酸钡纳米粉体的制备方法
CN101781571A (zh) * 2009-12-18 2010-07-21 苏州科技学院 一种复合膨胀型阻燃剂

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002020695A1 (de) * 2000-09-08 2002-03-14 Nanosolutions Gmbh Dotierte nanopartikel
CN1183035C (zh) * 2000-12-07 2005-01-05 中国科学院福建物质结构研究所 低温相偏硼酸钡纳米粉的制备方法
KR100813601B1 (ko) * 2006-09-28 2008-03-17 삼성전기주식회사 저온 소결용 나노글라스 분말의 제조방법
CN101186307B (zh) * 2007-11-28 2011-03-02 华南理工大学 水热反应制备偏硼酸钡纳米线的方法
CN101913619B (zh) * 2010-09-29 2012-09-05 河北大学 一种偏硼酸钡纳米粉体的制备方法
CN103738996B (zh) * 2013-12-13 2015-07-01 绵阳市远达新材料有限公司 一种纳米碳酸钡的制备方法
CN104017336A (zh) * 2014-06-20 2014-09-03 曲铭海 一种纳米硼酸钡溶胶的制备方法及其在聚酯阻燃中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04243998A (ja) * 1991-01-28 1992-09-01 Sumitomo Metal Mining Co Ltd β−メタホウ酸バリウム単結晶の製造方法
CN1669923A (zh) * 2004-03-16 2005-09-21 中国科学院福建物质结构研究所 一种低温相偏硼酸钡纳米粉体的制备方法
CN101781571A (zh) * 2009-12-18 2010-07-21 苏州科技学院 一种复合膨胀型阻燃剂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Role of reaction time in tuning the morphology and third order nonlinear optical properties of barium borate";T.C.Sabari Girisun et al;《Optics and Laser Technology》;20161013;第89卷;第54-58页 *

Also Published As

Publication number Publication date
CN108557836A (zh) 2018-09-21

Similar Documents

Publication Publication Date Title
Tanaka et al. Tailoring of nanocomposite dielectrics: from fundamentals to devices and applications
TWI481563B (zh) Magnesium oxide particles, a method for producing the same, a heat-dissipating filler, a resin composition, a heat-dissipating grease, and a heat-dissipating paint composition
CN108102144A (zh) 一种石墨烯基导热复合材料及其制备方法
CN101048450A (zh) 阻燃复合体
US11058039B2 (en) Composites for high frequency electromagnetic interference (EMI) applications
Rajagopalan et al. Effect of size and morphology on UV-blocking property of nanoZnO in epoxy coating
Tang et al. Preparation of zinc oxide nanoparticle via uniform precipitation method and its surface modification by methacryloxypropyltrimethoxysilane
US20200017661A1 (en) Surface-modified nanodiamond, surface-modified nanodiamond dispersion liquid, and resin dispersion
Drakakis et al. Zinc oxide-graphene based composite layers for electromagnetic interference shielding in the GHz frequency range
Barman et al. Stabilization and dispersion of ZnO nanoparticles in PVA matrix
EP3187483B1 (en) Novel magnesium hydroxide-based solid solution, and resin composition and precursor for highly active magnesium oxide which include same
CN108557836B (zh) 一种BaB8O11(OH)4纳米阻燃材料及其制备方法
Sheng et al. Enhanced thermal conductivity and stability of boron nitride/phenyl silicone rubber composites via surface modification and grain alignment
TWI593629B (zh) 氫氧化鎂粒子,及含該氫氧化鎂粒子之樹脂組成物
Iqbal et al. Investigations on ZnO/polymer nanocomposite thin film for polymer based devices
Hou et al. Bi2Se3 nanosheets: Advanced nanofillers for reinforcing and flame retarding polyethylene nanocomposites
Pan et al. Influences of porous reduction graphene oxide/molybdenum disulfide as filler on dielectric properties, thermal stability, and mechanical properties of natural rubber
Ahmed et al. Thermo-mechanical and opto-electrical study of Cr-doped-ZnO-based polyvinyl chloride nanocomposites
Ungureanu et al. Structural characterisation and luminescence properties of paramagnetic Mn doped SnO2 nanopowders obtained via simple buthanol assisted sol-gel synthesis
Liu et al. Biosynthesis of zinc oxide nanoparticles using biological polysaccharides for application in ceramics
KR102085040B1 (ko) 미립자 복합 금속 수산화물, 그 소성물, 그 제조 방법 및 그 수지 조성물
Ma et al. In situ preparation and formation mechanism of 2MgO· B 2 O 3· 1.5 H 2 O–Mg (OH) 2 nanocomposite and its synergistic flame retardancy
CN108559134B (zh) BaB8O11(OH)4纳米片/SiO2复合阻燃剂及其制备方法
Lun et al. Fabrication and conductive performance of antimony-doped tin oxide-coated halloysite nanotubes
CN110294862B (zh) 一种纳米杂化锡基抑烟剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211022

CF01 Termination of patent right due to non-payment of annual fee