CN108548860A - 基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法 - Google Patents

基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法 Download PDF

Info

Publication number
CN108548860A
CN108548860A CN201810133245.XA CN201810133245A CN108548860A CN 108548860 A CN108548860 A CN 108548860A CN 201810133245 A CN201810133245 A CN 201810133245A CN 108548860 A CN108548860 A CN 108548860A
Authority
CN
China
Prior art keywords
reduced graphene
electrode
trithiocyanuric acid
acid
trivalent arsenic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810133245.XA
Other languages
English (en)
Inventor
邱建丁
袁艳红
梁汝萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201810133245.XA priority Critical patent/CN108548860A/zh
Publication of CN108548860A publication Critical patent/CN108548860A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,属于电化学传感技术领域。以三聚硫氰酸和氧化石墨烯为原料,采用一步硼氢化钠还原法制备三聚硫氰酸/还原石墨烯纳米复合材料,将其涂覆在电极表面制成三聚硫氰酸/还原石墨烯修饰电极,三聚硫氰酸中的巯基可通过砷‑硫键对三价砷进行选择性富集,还原石墨烯的大比表面积与优异的导电性能还有助于提高电化学测试的电流密度,通过方波阳极溶出伏安法实现环境水样中三价砷的灵敏性和选择性检测。

Description

基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法
技术领域
本发明涉及一种基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,属于电化学传感技术领域。
背景技术
随着现代化工业水平的不断推进,重金属污染物问题,特别是砷污染,已然成为世界性的环境问题。目前,世界上许多国家地区的水环境中都检测出砷,其浓度范围超过世界卫生组织的饮用水标准限定值(10ppb)。砷在饮用水中主要是以无机砷的形式存在即,三价砷(As(III))和五价砷(As(V)),其中As(III)的毒性最大。因此,对As(III)的检测尤为重要。与原子吸收光谱法、原子荧光法、电感耦合等离子体质谱法、紫外可见分光光度法等方法相比,电化学检测重金属元素具有设备简单、操作方便以及灵敏度高等优点,在食品、卫生、环境等领域有着重要的应用价值。
溶出伏安法对重金属的检测过程包括两个阶段,即富集过程和溶出过程。在电位扫描过程中记录i-E曲线,每种金属离子对应一个溶出电流峰,通过峰高与被测离子浓度的关系对溶液中的重金属离子进行定量分析。这种检测方法具有灵敏度高、仪器简单、操作方便、检测限低、抗干扰等优点。近年来,重金属的电化学检测与吸附材料之间的联系越来越密切。As(III)对巯基具有强亲和力,因此,采用富巯基纳米材料修饰电极将极大提高对As(III)检测的灵敏度与选择性。三聚硫氰酸(TTCA)结构中含有1,3,5-三嗪母核和三个巯基,为工业常用原料,方便、易得且价廉。据结构分析,TTCA可用于对As(III)的选择性预富集,但在重金属的电化学检测领域并未见有相关应用。此外,二维纳米材料被认为是一种可能广泛应用于污染物检测领域的新型非金属材料,具有吸附能力强、比表面积大、导电性能优异等优点,在电化学传感领域有着举足轻重的地位。为了提高重金属离子的电化学检测方法的灵敏度,本发明结合TTCA和石墨烯的特性,制备三聚硫氰酸/还原石墨烯(TTCA/rGO)纳米复合材料,建立基于TTCA/rGO修饰电极的三价砷电化学检测方法,用于对三价砷的灵敏性、准确性和选择性检测。
发明内容
本发明的目的在于提供了基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,它具有检测灵敏、准确、选择性好、简单快速的优点。
本发明是这样实现的,基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,其特征在于,将三聚硫氰酸/还原石墨烯纳米复合材料涂覆于金电极表面,制成的三聚硫氰酸/还原石墨烯修饰金电极作为工作电极,银/氯化银作为参比电极,铂丝作为对电极,将工作电极、参比电极和对电极一起置于含有三价砷的醋酸-醋酸钠缓冲溶液中,工作电极表面修饰的三聚硫氰酸/还原石墨烯中含有大量的巯基,通过砷-硫键将溶液中的三价砷选择性预富集到电极表面;通过电化学工作站在工作电极上施加一定电压,预富集在工作电极表面的三价砷被还原为零价,再采用方波阳极溶出伏安法进行扫描测试,使得电极表面的零价砷迅速氧化为三价砷,从而产生阳极溶出伏安峰,工作电极表面修饰的还原石墨烯具有大的比表面积和优异的导电性能,可提高电极表面反应的电子传递速率进而增强阳极溶出伏安峰信号;随着样品中三价砷浓度的增加,结合到工作电极表面的三价砷增多,产生的阳极溶出伏安峰电流随之增强,阳极溶出伏安峰电流与三价砷浓度呈线性关系,可用于对三价砷的灵敏检测,检测限低至0.054ppb,并实现了环境水样中三价砷的准确性和选择性检测。
作为优选,所述的醋酸-醋酸钠缓冲溶液的浓度为0.1M,pH为5;在工作电极上施加一定电压的大小为-0.5V,时间为120秒;所述的方波阳极溶出伏安法的扫描电位范围为-0.36V~+0.4V。
作为优选方案,上述的三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极按下述步骤制备:
(1)三聚硫氰酸/还原石墨烯纳米复合材料的制备;
(2)电极预处理:金电极先依次用粒径为1.0、0.3、0.05μm的氧化铝糊在麂皮上抛光至电极表面呈镜面,将电极分别在体积比为1:1的HNO3:H2O、乙醇和超纯水中分别超声1分钟,再将电极置于0.5M的硫酸中在-0.3V~+1.5V电位范围内进行循环伏安扫描,直到获得稳定的循环伏安峰,随后将电极用超纯水清洗,氮气吹干;
(3)制备三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极:将2μL 100μg/mL步骤(1)制备的三聚硫氰酸/还原石墨烯纳米复合材料滴涂在经步骤(2)处理干净的金电极表面,在室温下自然晾干,制成三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极。
进一步优选,三聚硫氰酸/还原石墨烯纳米复合材料的制备方法为:将0.4g氧化石墨烯加入到50mL二甲基甲酰胺中并超声分散,再加入10g三聚硫氰酸并在室温下磁力搅拌2小时,然后缓慢加入过量硼氢化钠充分还原上述混合物至黑色,搅拌2小时后,过滤,超纯水清洗,真空干燥后得到三聚硫氰酸/还原石墨烯纳米复合材料。
由上可知,本发明还提供了三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极的制备方法。
由上可知,本发明还提供了三聚硫氰酸/还原石墨烯纳米复合材料的制备方法。
本发明的技术效果是:本发明结合三聚硫氰酸和石墨烯的特性,制备三聚硫氰酸/还原石墨烯纳米复合材料,利用三聚硫氰酸中含有的大量巯基,通过砷-硫键实现三价砷在电极表面的选择性预富集,同时利用还原石墨烯的大比表面积和优异的导电性能,提高电极表面反应的电子传递速率进而增强电化学测量信号,据此,建立基于三聚硫氰酸/还原石墨烯纳米复合材料的三价砷电化学检测方法,实现了对三价砷的灵敏性、准确性和选择性检测,具有良好的应用前景。
附图说明
图1是TTCA/rGO的制备及对As(III)的电化学检测原理图。
图2是(A)GO和(B)TTCA/rGO的SEM图。
图3是傅里叶变换红外光谱图:(a)GO,(b)TTCA,(c)TTCA/rGO,(d)TTCA/rGO吸附As(III)。
图4是(A)EIS图和(B)CV图:(a)裸金电极,(b)GO/AuE,(c)TTCA/rGO/AuE。
图5是SWASV响应:(a)TTCA/rGO/AuE在0ppbAs(III)溶液中,(b)裸金电极、(c)GO/AuE和(d)TTCA/rGO/AuE在5ppbAs(III)溶液中。
图6是(A)TTCA/rGO/AuE对不同浓度As(III)的SWASV响应;(B)SWASV电流与As(III)浓度的线性关系曲线。
图7是TTCA/rGO/AuE对As(III)检测的选择性图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步阐述,本发明并不限于此;
实施例1
三聚硫氰酸/还原石墨烯纳米复合材料的制备
将0.4g氧化石墨烯(GO)加入到50mL二甲基甲酰胺中并超声分散,再加入10g三聚硫氰酸(TTCA)并在室温下磁力搅拌2小时,然后缓慢加入过量硼氢化钠充分还原上述混合物至黑色,搅拌2小时后,过滤,超纯水清洗,真空干燥后得到三聚硫氰酸/还原石墨烯(TTCA/rGO)纳米复合材料。TTCA/rGO的制备过程如图1所示。
采用扫描电镜(SEM)和傅里叶变换红外光谱对TTCA/rGO纳米复合材料进行表征,由图2可见,GO呈薄片褶皱状(图2A),在GO表面修饰TTCA后,得到的TTCA/rGO纳米复合材料的表面明显变得粗糙(图2B),表明大量TTCA负载到了石墨烯表面。图3是对GO、TTCA、TTCA/rGO和吸附As(III)后的TTCA/rGO的红外光谱表征,GO的红外光谱中出现了3431cm-1(O-H),1636cm-1(C=C)和1053cm-1(C-O-C),表明GO合成成功(图3a);在GO表面负载TTCA后,出现了2552cm-1(S-H)和746cm-1(C-S),与TTCA的红外光谱一致(图3b),表明TTCA成功负载到石墨烯表面,此外,GO在1053cm-1(C-O-C)处的特征峰消失,表明GO被还原,进一步表明制成了TTCA/rGO纳米复合材料(图3c);为了进一步证实As(III)与TTCA/rGO的相互作用,我们对吸附As(III)后的TTCA/rGO进行了红外表征,由图3d可见,2552cm-1(S-H)的吸收峰几乎消失,这是由于巯基与As(III)之间的作用极大地消耗了TTCA/rGO纳米复合材料中的巯基,进而表明TTCA/rGO中的巯基可用于对As(III)的富集。
实施例2
TTCA/rGO纳米复合材料修饰电极的制备
金电极先依次用粒径为1.0、0.3、0.05μm的氧化铝糊在麂皮上抛光至电极表面呈镜面,将电极分别在体积比为1:1的HNO3:H2O、乙醇和超纯水中分别超声1分钟,再将电极置于0.5M的硫酸中在-0.3V~+1.5V电位范围内进行循环伏安扫描,直到获得稳定的循环伏安峰,随后将电极用超纯水清洗,氮气吹干;将2μL 100μg/mL的TTCA/rGO滴涂在金电极(AuE)表面,在室温下晾干,制成TTCA/rGO纳米复合材料修饰金电极(TTCA/rGO/AuE)。
采用电化学交流阻抗法(EIS)和循环伏安法(CV)对TTCA/rGO修饰电极进行表征(图4)。由图4A可见,裸金电极的电子传递阻力(Ret)很小(曲线a),表明电极已经处理干净;当GO修饰在AuE表面后,GO/AuE的Ret增大(曲线b),这是因为负电性的GO通过静电排斥作用阻碍溶液中负电性的[Fe(CN)6]3-/4-接近电极表面发生电子传递;但是,TTCA/rGO/AuE的Ret显著减小(曲线c),这是由于在TTCA/rGO的制备过程中,GO被硼氢化钠还原为rGO而改善了TTCA/rGO的电子传递能力。CV表征结果(图4B)与EIS结果相一致。
为了进一步验证TTCA/rGO纳米复合材料对As(III)检测的可行性,我们设计了一系列对照试验,由图5可见,当样品中不存在As(III)时,TTCA/rGO/AuE没有As(III)的溶出伏安峰电流(曲线a);当样品中存在5ppb As(III)时,裸金电极(曲线b)和GO/AuE(曲线c)没有As(III)的溶出伏安峰电流,但是,TTCA/rGO/AuE则在+0.047V处出现了明显的As(III)的溶出伏安峰,这是由于TTCA/rGO纳米复合材料的优良导电性能和巯基对As(III)的预富集性能。综上所述,本发明制备的TTCA/rGO纳米复合材料修饰电极可用于对As(III)的富集和灵敏性电化学检测。
实施例3
TTCA/rGO纳米复合材料修饰电极测定As(III)
在选择的最优pH为5.0和沉积电压为-0.5V的条件下,对不同浓度的As(III)进行检测。采用三电极系统进行电化学测试:TTCA/rGO/AuE为工作电极,银/氯化银电极为参比电极,铂丝为对电极。以含不同浓度As(III)的醋酸-醋酸钠缓冲溶液(0.1M、pH 5)为测试溶液,通过电化学工作站在工作电极上施加-0.5V的电压120秒,预富集在工作电极表面的三价砷被还原为零价,再采用方波阳极溶出伏安法(SWASV)在-0.36V~+0.4V电位范围内进行扫描,使得电极表面的零价砷迅速氧化为三价砷,As(III)在+0.047V处出现溶出伏安峰,随着As(III)浓度的增加,溶出峰电流值逐渐增大(图6A),根据峰电流强度和As(III)浓度绘制工作曲线(图6B),峰电流强度与As(III)浓度在0.2-10ppb范围内具有良好的线性关系,线性相关系数R2为0.99,检测限低至0.054ppb。
实施例4
选择性是评价检测方法性能优劣的重要指标,我们开展了一系列对照实验。向10ppbAs(III)中分别加入100ppb的下述干扰离子As(V),Cu2+,Hg2+,Cd2+,Pb2+,Ca2+,Zn2+,Mg2 +,K+,Na+和1mM Cl-,SO4 2-,CO3 2-,NO3 -,PO4 3-,由图7可见,10ppb As(III)与不同干扰离子共存时的溶出峰电流几乎与10ppb As(III)的溶出峰电流一致。以上结果表明,本发明方法对As(III)检测具有良好的选择性。
为了进一步考察本发明方法的实用性,我们采用标准加入法对多个来源的水样包括自来水、赣江水和润溪湖水中的As(III)进行了测试,所有的样品均平行测定三次,得到的回收率为98.0%-105.5%,与ICP-MS测试结果相一致,表明本发明方法对环境水样中As(III)的检测具有很好的实用性。

Claims (10)

1.基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,其特征在于,将三聚硫氰酸/还原石墨烯纳米复合材料涂覆于金电极表面,制成的三聚硫氰酸/还原石墨烯修饰金电极作为工作电极,将工作电极、参比电极和对电极一起置于含有三价砷的醋酸-醋酸钠缓冲溶液中,工作电极表面修饰的三聚硫氰酸/还原石墨烯中含有大量的巯基,通过砷-硫键将溶液中的三价砷选择性预富集到电极表面;通过电化学工作站在工作电极上施加一定电压,预富集在工作电极表面的三价砷被还原为零价,再采用方波阳极溶出伏安法进行扫描测试,使得电极表面的零价砷迅速氧化为三价砷,从而产生阳极溶出伏安峰;阳极溶出伏安峰电流与三价砷浓度呈线性关系,用于对三价砷的灵敏检测。
2.如权利要求1所述基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,其特征在于,三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极按下述步骤制备:
(1)三聚硫氰酸/还原石墨烯纳米复合材料的制备;
(2)电极预处理:金电极抛光至电极表面呈镜面,将电极分别在硝酸溶液、乙醇和超纯水中超声,再将电极置于硫酸溶液中在-0.3V~+1.5V电位范围内进行循环伏安扫描,直到获得稳定的循环伏安峰,随后将电极用超纯水清洗,氮气吹干;
(3)制备三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极:将步骤(1)制备的三聚硫氰酸/还原石墨烯纳米复合材料滴涂在经步骤(2)处理干净的金电极表面,在室温下晾干,制成三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极。
3.如权利要求1所述基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,其特征在于,所述的醋酸-醋酸钠缓冲溶液的浓度为0.1M,pH为5。
4.如权利要求1所述基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,其特征在于,在工作电极上施加一定电压的大小为-0.5V,时间为120秒。
5.如权利要求1所述基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法,其特征在于,所述的方波阳极溶出伏安法的扫描电位范围为-0.36V~+0.4V。
6.三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极的制备方法,其特征是:步骤如下
(1)三聚硫氰酸/还原石墨烯纳米复合材料的制备;
(2)电极预处理:金电极抛光至电极表面呈镜面,将电极分别在硝酸溶液、乙醇和超纯水中超声,再将电极置于硫酸溶液中进行循环伏安扫描,直到获得稳定的循环伏安峰,随后将电极用超纯水清洗,氮气吹干;
(3)制备三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极:将步骤(1)制备的三聚硫氰酸/还原石墨烯纳米复合材料滴涂在经步骤(2)处理干净的金电极表面,在室温下晾干,制成三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极。
7.如权利要求6所述的三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极的制备方法,其特征是:步骤(3)中,三聚硫氰酸/还原石墨烯纳米复合材料的浓度为2μL 100μg/mL。
8.如权利要求6所述的三聚硫氰酸/还原石墨烯纳米复合材料修饰金电极的制备方法,其特征是:将电极置于硫酸溶液中在-0.3V~+1.5V电位范围内进行循环伏安扫描。
9.三聚硫氰酸/还原石墨烯纳米复合材料的制备方法,其特征是:将氧化石墨烯加入到二甲基甲酰胺中并超声分散,再加入三聚硫氰酸并在室温下磁力搅拌,然后缓慢加入过量硼氢化钠充分还原上述混合物至黑色,搅拌,过滤,超纯水清洗,真空干燥后得到三聚硫氰酸/还原石墨烯纳米复合材料。
10.如权利要求9所述的三聚硫氰酸/还原石墨烯纳米复合材料的制备方法,其特征是:氧化石墨烯和三聚硫氰酸的质量比为4:100。
CN201810133245.XA 2018-02-09 2018-02-09 基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法 Pending CN108548860A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810133245.XA CN108548860A (zh) 2018-02-09 2018-02-09 基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810133245.XA CN108548860A (zh) 2018-02-09 2018-02-09 基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法

Publications (1)

Publication Number Publication Date
CN108548860A true CN108548860A (zh) 2018-09-18

Family

ID=63515896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810133245.XA Pending CN108548860A (zh) 2018-02-09 2018-02-09 基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法

Country Status (1)

Country Link
CN (1) CN108548860A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065042A1 (fr) * 2018-09-28 2020-04-02 Klearia Procédé de nettoyage et/ou de régénération d'un capteur microfluidique en verre pour l'analyse de métaux
CN111624243A (zh) * 2020-06-09 2020-09-04 中国科学院生态环境研究中心 一种用于砷锑电化学检测的核壳结构电极材料
CN112611791A (zh) * 2020-11-10 2021-04-06 中南林业科技大学 一种Au修饰电极及其制备和在As(III)检测中的应用
RU2758975C1 (ru) * 2021-01-11 2021-11-03 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Безопасный вольтамперометрический способ определения ионов мышьяка с помощью золотого электрода

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590320A (zh) * 2012-02-03 2012-07-18 中国科学院长春应用化学研究所 巯基乙胺修饰电极用于检测痕量三价无机砷的电化学方法
CN103675066A (zh) * 2013-12-18 2014-03-26 天津工业大学 一种巯基化石墨烯修饰电极的制备及其痕量重金属检测方法
CN107121481A (zh) * 2016-12-08 2017-09-01 百色学院 一种复合材料修饰的工作电极检测微量砷及痕量砷和重金属的电化学方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102590320A (zh) * 2012-02-03 2012-07-18 中国科学院长春应用化学研究所 巯基乙胺修饰电极用于检测痕量三价无机砷的电化学方法
CN103675066A (zh) * 2013-12-18 2014-03-26 天津工业大学 一种巯基化石墨烯修饰电极的制备及其痕量重金属检测方法
CN107121481A (zh) * 2016-12-08 2017-09-01 百色学院 一种复合材料修饰的工作电极检测微量砷及痕量砷和重金属的电化学方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANTONELLA PROFUMO ET AL: "Multiwalled Carbon Nanotube Chemically Modified Gold Electrode for Inorganic As Speciation and Bi(III) Determination", 《ANAL. CHEM.》 *
SHUAIBO ZENG ET AL.: "Graphene-supported highly crosslinked organosulfur nanoparticles as cathode materials for high-rate, long-life lithium-sulfur battery", 《CARBON》 *
黄沛成 等: "巯基棉富集-阳极溶出伏安法测定水中痕量砷和硒", 《北京化工学院学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065042A1 (fr) * 2018-09-28 2020-04-02 Klearia Procédé de nettoyage et/ou de régénération d'un capteur microfluidique en verre pour l'analyse de métaux
FR3086554A1 (fr) * 2018-09-28 2020-04-03 Klearia Procede de nettoyage et/ou de regeneration d'un capteur microfluidique en verre pour l'analyse de metaux
CN111624243A (zh) * 2020-06-09 2020-09-04 中国科学院生态环境研究中心 一种用于砷锑电化学检测的核壳结构电极材料
CN112611791A (zh) * 2020-11-10 2021-04-06 中南林业科技大学 一种Au修饰电极及其制备和在As(III)检测中的应用
RU2758975C1 (ru) * 2021-01-11 2021-11-03 федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет" Безопасный вольтамперометрический способ определения ионов мышьяка с помощью золотого электрода

Similar Documents

Publication Publication Date Title
CN108548860A (zh) 基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法
Yantasee et al. Voltammetric detection of lead (II) and mercury (II) using a carbon paste electrode modified with thiol self-assembled monolayer on mesoporous silica (SAMMS)
Achterberg et al. Stripping voltammetry for the determination of trace metal speciation and in-situ measurements of trace metal distributions in marine waters
Florence Electrochemical approaches to trace element speciation in waters. A review
Zhou et al. Electrochemical detection of As (III) through mesoporous MnFe2O4 nanocrystal clusters by square wave stripping voltammetry
CN102033088A (zh) 一种金纳米粒子/碳纳米管复合材料的制备方法及其用途
CN108380187A (zh) 一种功能性聚电解质/氧化石墨烯多层膜及其制备方法和应用
Zhang et al. High sensitive on-site cadmium sensor based on AuNPs amalgam modified screen-printed carbon electrodes
CN104020204A (zh) 一种用于检测铅的电化学传感器及其制备方法和应用
Hu et al. An electrochemical sensor based on ion imprinted PPy/rGO composite for Cd (II) determination in water
CN110441365A (zh) 一种铁基尖晶石用于重金属离子电化学传感器的检测方法
Jimana et al. Voltammetric analysis of As (III) at a cobalt nanoparticles/reduced graphene oxide modified exfoliated graphite electrode
Liu et al. Novel cysteic acid/reduced graphene oxide composite film modified electrode for the selective detection of trace silver ions in natural waters
Wang et al. Application of pyrite and chalcopyrite as sensor electrode for amperometric detection and measurement of hydrogen peroxide
Fernández‐Bobes et al. Anodic stripping of heavy metals using a hanging mercury drop electrode in a flow system
Bartlett et al. A study of the preconcentration and stripping voltammetry of Pb (II) at carbon electrodes
CN117740895A (zh) 用于Cd2+检测的Cu掺杂石墨-氮化碳传感器、制备方法及应用
Palisoc et al. Silver/bismuth/Nafion modified pencil graphite electrode for trace heavy metal determination
Liu et al. Determination of cadmium (II) using glassy carbon electrodes modified with cupferron, ß-naphthol, and multiwalled carbon nanotubes
Roberto de Oliveira et al. Anodic stripping voltammetric determination of lead (II) and cadmium (II) by using a carbon nanotubes paste electrode modified with ion exchange synthetic resin
Xia et al. A novel voltammetric method for the direct determination of copper in complex environmental samples
CN109254067B (zh) 一种基于罗丹明b/还原氧化石墨烯修饰的玻碳电极及其制备和应用
Li et al. Electrochemical determination of trace copper (II) based on L-cysteine functionalized gold nanoparticle/CdS nanosphere hybrid
CN115096969A (zh) 基于复合材料修饰电极的镉(ii)离子检测方法及应用
CN104849341B (zh) 一种煤矸石或粉煤灰中汞元素含量的测量方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180918

RJ01 Rejection of invention patent application after publication