CN111624243A - 一种用于砷锑电化学检测的核壳结构电极材料 - Google Patents
一种用于砷锑电化学检测的核壳结构电极材料 Download PDFInfo
- Publication number
- CN111624243A CN111624243A CN202010520230.6A CN202010520230A CN111624243A CN 111624243 A CN111624243 A CN 111624243A CN 202010520230 A CN202010520230 A CN 202010520230A CN 111624243 A CN111624243 A CN 111624243A
- Authority
- CN
- China
- Prior art keywords
- solution
- antimony
- arsenic
- core
- cfc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/308—Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/07—Metallic powder characterised by particles having a nanoscale microstructure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/48—Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electrochemistry (AREA)
- Biochemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
本发明用电沉积法合成了具有核壳结构的AuFe@FeOx‑CFC电极材料,当沉积电压为‑1.2V沉积时间为60s时,壳层厚度为1.6nm的电极材料充分发挥核的电催化能力和壳的吸附能力,通过便携式电化学工作站观察到了砷和锑的阳极溶出特征峰。AuFe@FeOx‑CFC电极材料对As(III)和As(V)的检出限分别为0.5ng·L‑1和5ng·L‑1,对Sb(III)和Sb(V)的检出限分别为0.05ng·L‑1和0.03ng·L‑1。通过一系列实验证明本发明采用的样品制备方法及目标污染物分析方法操作简便,可以实现环境基质中砷和锑的快速和痕量检测。
Description
技术领域
本发明属于环境分析领域,具体涉及一种用于砷锑电化学检测的核壳结构电极材料。
技术背景
砷和锑(以下简称砷锑)均为全球性污染物,对人类健康造成了极大的威胁,欧盟和美国环境保护署已经将砷锑列为优先控制污染物,饮用水限值分别为10和6μg·L-1。砷锑的毒性与价态密切相关,三价的毒性是五价毒性的10倍左右。常用的砷锑检测方法有原子荧光法、原子吸收法、等离子体质谱以及高效液相色谱等分析方法,上述方法所用的仪器价格昂贵,并且对样品前处理要求较高。因此,探索简便经济、快速高效的砷锑形态分析方法已成为当今环境分析领域的重要研究方向之一。
1791年意大利物理学家Luigi Galvani发现生物形态下存在的“神经电流物质”,在化学反应和电流间架起了一座桥梁,以此为基础建立起来的电化学(EC)技术在分析化学等领域有着广泛的应用。1820年捷克斯洛伐克化学家Heyrovsky首次发明阳极溶出伏安法(ASV),能够迅速、灵敏的测定化学元素,在1959年因发明和发展极谱法而获得诺贝尔化学奖。作为一种高探测灵敏度、高分辨率、操作简单、廉价经济的技术,ASV被广泛应用于环境介质中污染物形态分析及定量领域。将ASV技术用于砷和锑形态分析从理论上讲是可行的,但是限制其应用的一个主要问题是如何制备高效的电极传感器,从而提高砷和锑检测的灵敏度。
电极传感器的制备是实现优异ASV信号的关键,也是ASV分析领域的研究热点之一。传统的ASV电极是滴汞电极,汞滴的不稳定性和毒性限制了滴汞电极的实际应用。随着纳米技术的飞速发展,Au纳米颗粒作为电极催化剂被广泛应用,金电极对Sb(III)的检出限为0.19μg·L-1,对Sb(V)的检出限为0.32μg·L-1;Au纳米颗粒做为工作电极,用微分脉冲阳极溶出伏安法对Sb(III)的检出限为3.4μg·L-1;金电极在1M HCl介质中,共检测0.02μg·L-1As(III),Cu(II)and Hg(II);硫醇化的Au电极对Cr(VI)的检出限为0.02μg·L-1。虽然Au电极表现出很好的灵敏度,但检测的重现性、稳定性和经济性仍然有待提高。
具有核壳结构的纳米材料展现出优异的催化性能,核壳结构的最大优势是:(1)充分发挥核和壳的协同作用,即核的电催化能力和壳的吸附能力;(2)可获得形貌及粒径基本可控的纳米尺度颗粒;(3)便于优化并得到强ASV信号的实验条件;(4)廉价过渡金属与贵金属掺杂降低经济成本。FePt双金属纳米颗粒作为工作电极,不仅可以降低生产成本,而且对As(III)检测的灵敏度达到0.8μg·L-1;Au-Pd双金属修饰的工作电极对As(III)的检出限为0.25μg·L-1;Au@Fe3O4作为工作电极,对As(III)的检出限可达到0.0022μg·L-1;Au/Fe3O4/GCE复合材料电极对As(III)的检出限为0.00097μg·L-1。双金属电极虽然有较好的电催化效果,但其有限的吸附位点降低了电化学检测的灵敏度,通过优化电沉积条件,制备出符合特定要求的核壳结构电极传感器,不仅具有双金属的电催化效果还具有金属氧化物突出的吸附能力,可有效提高电化学检测的灵敏度和稳定性。迄今为止,国内外尚未见到有关金铁双金属-铁氧化物-导电碳布复合电极材料(AuFe@FeOx-CFC)电极材料应用于砷和锑检测的报道。
发明内容
为了克服现有技术的缺陷,本申请的发明人进行了反复的深入研究,从而完成本发明。本发明用一步法合成了一种核壳结构的AuFe@FeOx-CFC电极材料。通过便携式电化学工作站观察到了砷和锑的阳极溶出特征峰。通过一系列实验证明本发明采用的电极材料制备方法及目标污染物分析方法操作简便,可以实现环境基质溶液中的砷和锑快速检测。
本发明首先合成了AuFe@FeOx-CFC电极材料,这种电极材料具有电信号增强性能。将制备出的AuFe@FeOx-CFC放入含有目标污染物的溶液中,由于FeOx具有很强的吸附性质,因此溶液中的砷(或者锑)可以吸附在AuFe@FeOx纳米颗粒表面,缩短了砷(或者锑)与AuFe@FeOx-CFC电极材料表面的距离,为砷(或者锑)在电极材料表面沉积和溶出创造了条件。利用便携式电化学工作站可以在60s检测到砷和锑的阳极溶出特征峰。
通过下面的描述来阐明本发明的具体内容:
(1)用电化学沉积法合成核壳结构AuFe@FeOx-CFC:将200μL 50mM的HAuCl4溶液和100μL 1M的FeCl3溶液依次加入到9.7mL 0.1M NaClO4溶液中,持续向溶液中通入N2 15min。以上述溶液为电解液,导电碳布(CFC)为工作电极,Ag/AgCl为参比电极,铂丝为对电极,通过调控沉积电压(-0.7~-1.8V)和时间(10~300s),在CFC上得到具有1.6nm FeOx外壳厚度的AuFe@FeOx核壳结构纳米颗粒;
(2)砷的检测:将步骤(1)得到的AuFe@FeOx-CFC做工作电极,在As(III)溶液中,加入0.01-0.5M H2SO4,用方波阳极溶出伏安法测定As(III)。通过调控沉积电压(-0.5~0.1V)和时间(30~500s),在阳极溶出电压0.28V处可得到很好的As(III)信号,As(III)的浓度范围是0.5ng·L-1-100μg·L-1,检测限为0.5ng·L-1;在As(V)溶液中,加入H2SO4和0.02M半胱氨酸,70℃水浴加热10min,用方波阳极溶出伏安法测定As(V),阳极溶出电压为0.25V,As(V)的浓度范围是5ng·L-1-100μg·L-1,检测限为5ng·L-1;
(3)锑的检测:将步骤(1)得到的AuFe@FeOx-CFC做工作电极,在Sb(III)溶液中,加入0.01-0.5M H2SO4,用微分脉冲阳极溶出伏安法测定Sb(III)。通过调控沉积电压(-0.5~0.1V)和时间(30~500s),在阳极溶出电压0.13V处可得到很好的Sb(III)信号,Sb(III)的浓度范围是0.05ng·L-1-100μg·L-1,检测限为0.05ng·L-1;在Sb(V)溶液中,加入0.2M KI,0.05M抗坏血酸和H2SO4,用微分脉冲阳极溶出伏安法测定Sb(V),阳极溶出电压为-0.06V,Sb(V)的浓度范围是0.005ng·L-1-100μg·L-1,检测限为0.03ng·L-1。
附图说明
下面通过图例说明本发明的主要特征。
附图1为本发明制备的AuFe@FeOx-CFC传感器透射电镜照片,实验结果表明制备出的纳米颗粒大小均匀,平均粒径为16nm,具有明显的核壳结构,壳层平均厚度为1.6nm。
附图2为As(III)的ASV谱图。用方波阳极溶出伏安法测定As(III),阳极溶出电压为0.28V处的电化学信号随着As(III)浓度的增加而升高,对As(III)的分析检出限为0.5ng·L-1。
附图3为As(V)的ASV谱图。用方波阳极溶出伏安法测定As(V),阳极溶出电压为0.25V处的电化学信号随着As(V)浓度的增加而升高,对As(V)的分析检出限为5ng·L-1。
附图4是Sb(III)的ASV谱图。用微分脉冲阳极溶出伏安法测定Sb(III),阳极溶出电压为0.13V处的电化学信号随着Sb(III)浓度的增加而升高,对Sb(III)的分析检出限为0.05ng·L-1。
附图5是Sb(V)的ASV谱图。用微分脉冲阳极溶出伏安法测定Sb(V),阳极溶出电压为-0.06V处的电化学信号随着Sb(V)浓度的增加而升高,对Sb(V)的分析检出限为0.03ng·L-1。
附图6是AuFe@FeOx-CFC对砷检测的稳定性。重复使用十次后,AuFe@FeOx-CFC电极材料对砷的检测信号没有明显变化,RSD为1.1%,实验结果表明制备得到的AuFe@FeOx-CFC电极材料可重复用于对As的检测,且检测信号稳定。
附图7是AuFe@FeOx-CFC对锑检测的稳定性。重复使用十次后,AuFe@FeOx-CFC电极材料对锑的检测信号没有明显变化,RSD为2.6%,实验结果表明制备得到的AuFe@FeOx-CFC电极材料可重复用于对Sb的检测,且检测信号稳定。
附图8是AuFe@FeOx-CFC检测环境样品中的砷。在山西采集十个地下水样品,同时用AFS和EC检测水体中砷的含量,检测结果表明AuFe@FeOx-CFC电化学分析方法与AFS结果能较好的吻合,能够应用于实际样品砷的检测。
附图9是AuFe@FeOx-CFC检测环境样品中的锑。在湖南采集十个地表水样品,同时用AFS和EC检测水体中锑的含量,检测结果表明AuFe@FeOx-CFC电化学分析方法与AFS结果能较好的吻合,能够应用于实际样品锑的检测。
发明实施例
下面进一步通过实施例来阐述本发明。
实施例1AuFe@FeOx-CFC传感器的制备:将HAuCl4溶液和FeCl3溶液以不同的浓度比(1:3,1:5,1:10,3:1,5:1,10:1)依次加入到0.05-0.5M NaClO4溶液中,持续向溶液中通入N215min。以上述溶液为电解液,导电碳布(CFC)载体为工作电极,Ag/AgCl为参比电极,铂丝为对电极,用计时电流法在不同的沉积电压-0.7V和沉积时间30s下,在CFC上得到具有0.5nmFeOx外壳厚度的AuFe@FeOx核壳结构纳米颗粒。
实施例2AuFe@FeOx-CFC传感器的制备:将HAuCl4溶液和FeCl3溶液以不同的浓度比(1:3,1:5,1:10,3:1,5:1,10:1)依次加入到0.05-0.5M NaClO4溶液中,持续向溶液中通入N215min。以上述溶液为电解液,导电碳布(CFC)载体为工作电极,Ag/AgCl为参比电极,铂丝为对电极,用计时电流法在不同的沉积电压-1.2V和沉积时间60s下,在CFC上得到具有1.6nmFeOx外壳厚度的AuFe@FeOx核壳结构纳米颗粒。
实施例3AuFe@FeOx-CFC传感器的制备:将HAuCl4溶液和FeCl3溶液以不同的浓度比(1:3,1:5,1:10,3:1,5:1,10:1)依次加入到0.05-0.5M NaClO4溶液中,持续向溶液中通入N215min。以上述溶液为电解液,导电碳布(CFC)载体为工作电极,Ag/AgCl为参比电极,铂丝为对电极,用计时电流法在不同的沉积电压-1.8V和沉积时间120s下,在CFC上得到具有3.5nmFeOx外壳厚度的AuFe@FeOx核壳结构纳米颗粒。
实施例4三价砷的检测:将AuFe@FeOx-CFC电极材料插入含有As(III)的水体中,加入H2SO4,用方波阳极溶出伏安法测定As(III)。通过调控沉积电压(-0.5~0.1V)和时间(30~500s),AuFe@FeOx-CFC对As(III)的检测限为0.5ng·L-1,继续延长沉积时间可进一步提高检测灵敏度。
实施例5五价砷的检测:在含As(V)水体中,加入H2SO4和半胱氨酸,70℃水浴加热10min,将AuFe@FeOx-CFC电极材料插入水体中,用方波阳极溶出伏安法测定As(V)。通过调控沉积电压(-0.5~0.1V)和时间(30~500s),AuFe@FeOx-CFC对As(V)的检测限为5ng·L-1,继续延长沉积时间可进一步提高检测灵敏度。
实施例6三价锑的检测:将AuFe@FeOx-CFC电极材料插入含有Sb(III)的水体中,加入H2SO4,用微分脉冲阳极溶出伏安法测定Sb(III)。通过调控沉积电压(-0.5~0.1V)和时间(30~500s),AuFe@FeOx-CFC对Sb(III)的检测限为0.05ng·L-1,继续延长沉积时间可进一步提高检测灵敏度。
实施例7五价锑的检测:在含Sb(V)水体中,加入KI,抗坏血酸和H2SO4,将AuFe@FeOx-CFC电极材料插入水体中,用微分脉冲阳极溶出伏安法测定Sb(V)。通过调控沉积电压(-0.5~0.1V)和时间(30~500s),AuFe@FeOx-CFC对As(V)的检测限为0.03ng·L-1,继续延长沉积时间可进一步提高检测灵敏度。
Claims (5)
1.一种用于砷锑电化学检测的核壳结构电极材料,其由下述步骤组成:
(1)用电化学沉积法合成核壳结构金铁双金属-铁氧化物-导电碳布复合电极材料(AuFe@FeOx-CFC):将HAuCl4溶液和FeCl3溶液按比例依次加入NaClO4溶液中,持续向溶液中通入N2 15min,以上述溶液为电解液,导电碳布(CFC)为工作电极,在三电极体系中用计时电流法在一定时间和电压下,在CFC载体上得到核壳结构AuFe@FeOx纳米颗粒;
(2)砷的检测:将步骤(1)得到的AuFe@FeOx-CFC做工作电极,在As(III)溶液中,加入H2SO4,用方波阳极溶出伏安法在一定时间和电压下测定As(III);在As(V)溶液中,加入H2SO4和半胱氨酸,70℃水浴加热10min,用方波阳极溶出伏安法在一定时间和电压下测定As(V);
(3)锑的检测:将步骤(1)得到的AuFe@FeOx-CFC做工作电极,在Sb(III)溶液中,加入H2SO4,用微分脉冲阳极溶出伏安法在一定时间和电压下测定Sb(III);在Sb(V)溶液中,加入KI,抗坏血酸和H2SO4,用微分脉冲阳极溶出伏安法在一定时间和电压下测定Sb(V)。
2.如权利要求1所述的一种用于砷锑电化学检测的核壳结构电极材料,步骤(1)中,HAuCl4溶液浓度为0.1-5mM,FeCl3溶液浓度为1-50mM,NaClO4溶液浓度为0.05-0.5M。
3.如权利要求1所述的一种用于砷锑电化学检测的核壳结构电极材料,步骤(1)中,计时电流法的沉积电压为-0.7~-1.8V,沉积时间为10~300s。
4.如权利要求1所述的一种用于砷锑电化学检测的核壳结构电极材料,步骤(2)中,As(III)的浓度范围是0.5ng·L-1-100μg·L-1,检测限为0.5ng·L-1;As(V)的浓度范围是5ng·L-1-100μg·L-1,检测限为5ng·L-1。
5.如权利要求1所述的一种用于砷锑电化学检测的核壳结构电极材料,步骤(3)中,Sb(III)的浓度范围是0.05ng·L-1-100μg·L-1,检测限为0.05ng·L-1;Sb(V)的浓度范围是0.005ng·L-1-100μg·L-1,检测限为0.03ng·L-1。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010520230.6A CN111624243A (zh) | 2020-06-09 | 2020-06-09 | 一种用于砷锑电化学检测的核壳结构电极材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010520230.6A CN111624243A (zh) | 2020-06-09 | 2020-06-09 | 一种用于砷锑电化学检测的核壳结构电极材料 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111624243A true CN111624243A (zh) | 2020-09-04 |
Family
ID=72271297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010520230.6A Pending CN111624243A (zh) | 2020-06-09 | 2020-06-09 | 一种用于砷锑电化学检测的核壳结构电极材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111624243A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113862735A (zh) * | 2021-09-24 | 2021-12-31 | 鲍宁 | 一种镀膜液、镀膜电极及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102507713A (zh) * | 2011-11-08 | 2012-06-20 | 中国地质调查局水文地质环境地质调查中心 | 一种用于矿山地下水中砷、锑和铅连测的电化学溶出伏安方法 |
CN103278551A (zh) * | 2013-04-26 | 2013-09-04 | 浙江大学 | 一种基于活性炭两电极体系的重金属电化学传感器及其检测方法 |
CN108548860A (zh) * | 2018-02-09 | 2018-09-18 | 南昌大学 | 基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法 |
-
2020
- 2020-06-09 CN CN202010520230.6A patent/CN111624243A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102507713A (zh) * | 2011-11-08 | 2012-06-20 | 中国地质调查局水文地质环境地质调查中心 | 一种用于矿山地下水中砷、锑和铅连测的电化学溶出伏安方法 |
CN103278551A (zh) * | 2013-04-26 | 2013-09-04 | 浙江大学 | 一种基于活性炭两电极体系的重金属电化学传感器及其检测方法 |
CN108548860A (zh) * | 2018-02-09 | 2018-09-18 | 南昌大学 | 基于三聚硫氰酸/还原石墨烯的三价砷电化学检测方法 |
Non-Patent Citations (1)
Title |
---|
YU, YAQIN ET AL.: "Core–shell AuFe@FeOx-CFC as electrochemical sensor for trace antimony analysis", 《SENSORS AND ACTUATORS B: CHEMICAL》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113862735A (zh) * | 2021-09-24 | 2021-12-31 | 鲍宁 | 一种镀膜液、镀膜电极及其制备方法和应用 |
CN113862735B (zh) * | 2021-09-24 | 2023-08-08 | 鲍宁 | 一种镀膜液、镀膜电极及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bagheri et al. | Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate | |
Chamjangali et al. | A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly (pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants | |
Hu et al. | Graphene oxide-assisted synthesis of bismuth nanosheets for catalytic stripping voltammetric determination of iron in coastal waters | |
Moarefdoust et al. | An electrochemical sensor based on hierarchical nickel oxide nanostructures doped with indium ions for voltammetric simultaneous determination of sunset yellow and tartrazine colorants in soft drink powders | |
Xiao et al. | An Fe-MOF/MXene-based ultra-sensitive electrochemical sensor for arsenic (III) measurement | |
Foster et al. | Pencil it in: pencil drawn electrochemical sensing platforms | |
CN111239214B (zh) | 三电极型Pb(II)和Cu(II)电化学传感器、制备方法及其应用 | |
Shamsipur et al. | A novel electrochemical cyanide sensor using gold nanoparticles decorated carbon ceramic electrode | |
Jin et al. | Selective detection of dopamine based on Cu2O@ Pt core-shell nanoparticles modified electrode in the presence of ascorbic acid and uric acid | |
Afkhami et al. | Highly sensitive and selective determination of thiocyanate using gold nanoparticles surface decorated multi-walled carbon nanotubes modified carbon paste electrode | |
Majidi et al. | Hydrogen bubble dynamic template fabrication of nanoporous Cu film supported by graphene nanaosheets: A highly sensitive sensor for detection of nitrite | |
Noskova et al. | Electrodeposition and stripping voltammetry of arsenic (III) and arsenic (V) on a carbon black–polyethylene composite electrode in the presence of iron ions | |
Wei et al. | Voltammetric determination of copper in seawater at a glassy carbon disk electrode modified with Au@ MnO 2 core-shell microspheres | |
Chen et al. | Application of chitosan-N-doped graphene oxide ion-imprinted sensor in Cd (II) ions detection | |
Wu et al. | Insights into the Fe oxidation state of sphere-like Fe2O3 nanoparticles for simultaneous Pb2+ and Cu2+ detection | |
CN108802122B (zh) | 一种壳聚糖-石墨烯/金纳米粒子@碳纳米管离子印迹传感器的制备方法 | |
Li et al. | Ultrahigh sensitivity electroanalysis of trace As (III) in water and human serum via gold nanoparticles uniformly anchored to Co3O4 porous microsheets | |
Zhuang et al. | In-situ synthesis of ZnO onto nanoporous gold microelectrode for the electrochemical sensing of arsenic (III) in near-neutral conditions | |
Shamsipur et al. | Synthesis, characterization and using a new terpyridine moiety-based ion-imprinted polymer nanoparticle: sub-nanomolar detection of Pb (II) in biological and water samples | |
Moghadam et al. | Electrochemical sensor for the determination of thiourea using a glassy carbon electrode modified with a self-assembled monolayer of an oxadiazole derivative and with silver nanoparticles | |
Chen et al. | Stripping voltammetric determination of cerium in food using an electropolymerized poly-catechol and ion-imprinted membrane modified electrode | |
Wang et al. | A reduced graphene oxide supported Au-Bi bimetallic nanoparticles as an enhanced sensing platform for simultaneous voltammetric determination of Pb (II) and Cd (II) | |
Nehru et al. | Yolk-shell structured molybdenum disulfide nanospheres as highly enhanced electrocatalyst for electrochemical sensing of hazardous 4-nitrophenol in water | |
Liu et al. | Highly efficient detection of Pb (II) ion in water by polypyrrole and metal-organic frame modify glassy carbon electrode | |
Jin et al. | Cathodic Stripping Voltammetry for Determination of Trace Manganese with Graphite/Styrene‐Acrylonitrile Copolymer Composite Electrodes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200904 |