CN108542486A - 一种生物可降解形状记忆聚合物环抱接骨器及其4d打印制备方法和驱动方法 - Google Patents

一种生物可降解形状记忆聚合物环抱接骨器及其4d打印制备方法和驱动方法 Download PDF

Info

Publication number
CN108542486A
CN108542486A CN201810381025.9A CN201810381025A CN108542486A CN 108542486 A CN108542486 A CN 108542486A CN 201810381025 A CN201810381025 A CN 201810381025A CN 108542486 A CN108542486 A CN 108542486A
Authority
CN
China
Prior art keywords
bone
shape memory
encircle
bone fracture
fracture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810381025.9A
Other languages
English (en)
Inventor
冷劲松
李策
张风华
刘彦菊
夏宇良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201810381025.9A priority Critical patent/CN108542486A/zh
Publication of CN108542486A publication Critical patent/CN108542486A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/80Cortical plates, i.e. bone plates; Instruments for holding or positioning cortical plates, or for compressing bones attached to cortical plates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/12Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L31/125Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L31/126Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix containing carbon fillers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Abstract

一种生物可降解形状记忆聚合物环抱接骨器及其4D打印制备方法和驱动方法,涉及一种环抱接骨器及制备方法和驱动方法。目的是解决环抱接骨器与人体生物相容性差,生物可降解性差,无法匹配每个病人的骨骼和骨骼处骨折情况的问题。接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口,S形接口相对的圆筒的侧壁上设置有数个长方形通孔;制备方法:制备固体原料,固体原料切粒,获取骨折病人的骨折处的骨骼的三维模型,利用3D打印机进行打印。本发明接骨器具有形状记忆功能,适合于不同病人个体,降解后的残余低,制备出的聚合物环抱接骨器能够可控变形,是一种4D打印器件。本发明适用于制备环抱接骨器。

Description

一种生物可降解形状记忆聚合物环抱接骨器及其4D打印制备 方法和驱动方法
技术领域
本发明涉及一种环抱接骨器及其4D打印制备方法和驱动方法。
背景技术
环抱接骨器广泛应用于骨折手术当中,是一种很好的固定碎骨并协助人体自愈合的医疗器械。传统的环抱接骨器由形状记忆合金制成,但形状记忆合金作为金属材料,存在与人体生物相容性差,生物可降解性差,术后需要二次取出等问题。并且传统的形状记忆合金制品,生产上需要使用模具,制作方法比较复杂;而且无法匹配每个病人的骨骼和骨骼处骨折情况。
发明内容
本发明为了解决现有形状记忆合金材质的环抱接骨器与人体生物相容性差,生物可降解性差,术后需要二次取出,现有环抱接骨器无法匹配每个病人的骨骼和骨骼处骨折情况的问题,提出一种生物可降解形状记忆聚合物环抱接骨器及其4D打印制备方法和驱动方法。
本发明生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口,S形接口相对的圆筒的侧壁上设置有数个长方形通孔;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80~85份的形状记忆聚合物、14~19份的纳米铁和1~5份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为2~4kw,超声时间为3~5h;所述原料与溶剂的质量比为1:(9~11);
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚乳酸、形状记忆聚己内酯、形状记忆聚氨酯或形状记忆聚碳酸酯;
所述的纳米铁为纳米四氧化三铁或纳米γ-三氧化二铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为35~45nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为2~4mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器注入生理盐水或施加低频射频交变磁场至生物可降解形状记忆聚合物环抱接骨器的S形接口闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;
所述低频射频交变磁场的频率为25~35kHz。
本发明原理及有益效果为:
1、本发明生物可降解形状记忆聚合物环抱接骨器应用过程中,加热软化后使环抱接骨器的S形接口张开,然后降温至环抱接骨器形状固定后赋予环抱接骨器临时形状,便于安装,最后在生理盐水或低频射频交变磁场的驱动下环抱接骨器形状回复,牢固环抱并贴合于骨折处;因此本发明制备出的聚合物环抱接骨器能够可控变形,是一种4D打印器件。
2、本发明生物可降解形状记忆聚合物环抱接骨器的侧壁轴向设置的S形接口使得闭合更紧凑,有利于骨折处的生长,环抱接骨器的侧壁上设置的数个长方形通孔使得环抱接骨器使用时能够更准确的确定安放的位置和角度,同时数个长方形通孔可以减轻接骨器的整体重量,降低患者不适感;
3、本发明利用4D打印技术制备环抱接骨器,可以根据不同的人体情况和骨折情况进行个性化的定制,制备方法简单,针对性强,解决了现有技术制备的环抱接骨器无法匹配每个病人的骨骼和骨骼处骨折情况的问题;
4、本发明环抱接骨器能够牢固环抱碎骨,医用性能优秀,与人体生物相容性好,手术中使用操作简便,且由于使用了可生物降解的聚合物材料,能够在骨折愈合后一段时间内自行降解,降解后产物能够随人体正常新陈代谢吸收和排出,不需要二次手术进行取出,减少了病患的痛苦。其中,本发明环抱接骨器降解开始时间为使用后的第4~6个月,使用后14~16个月后能够完成降解,降解后的残余为5%~20%。
附图说明
图1为实施例1中环抱接骨器S形接口闭合状态的结构示意图;
图2为实施例1中环抱接骨器S形接口张开状态的结构示意图。
具体实施方式:
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意合理组合。
具体实施方式一:结合图1和图2说明本实施方式,本实施方式生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有数个长方形通孔1。
本实施方式原理及有益效果为:
1、本实施方式生物可降解形状记忆聚合物环抱接骨器应用过程中,加热软化后使环抱接骨器的S形接口2张开,然后降温至环抱接骨器形状固定后赋予环抱接骨器临时形状,便于安装,最后在生理盐水或低频射频交变磁场的驱动下环抱接骨器形状回复,牢固环抱并贴合于骨折处;
2、本实施方式生物可降解形状记忆聚合物环抱接骨器的侧壁轴向设置的S形接口2使得闭合更紧凑,有利于骨折处的生长,环抱接骨器的侧壁上设置的数个长方形通孔1使得环抱接骨器使用时能够更准确的确定安放的位置和角度,同时数个长方形通孔1可以减轻接骨器的整体重量,降低患者不适感;
3、本实施方式环抱接骨器能够牢固环抱碎骨,医用性能优秀,与人体生物相容性好,手术中使用操作简便,且由于使用了可生物降解的聚合物材料,能够在骨折愈合后一段时间内自行降解,降解后产物能够随人体正常新陈代谢吸收和排出,不需要二次手术进行取出,减少了病患的痛苦。其中,本发明环抱接骨器降解开始时间为使用后的第4~6个月,使用后14~16个月后能够完成降解,降解后的残余为5%~20%;
具体实施方式二:本实施方式生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80~85份的形状记忆聚合物、14~19份的纳米铁和1~5份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述溶剂为二氯甲烷。
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为2~4mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印。
本实施方式有益效果为:
1、本实施方式制备的生物可降解形状记忆聚合物环抱接骨器应用过程中,加热软化后使环抱接骨器的S形接口2张开,然后降温至环抱接骨器形状固定后赋予环抱接骨器临时形状,便于安装,最后在生理盐水或低频射频交变磁场的驱动下环抱接骨器形状回复,牢固环抱并贴合于骨折处;因此本发明制备出的聚合物环抱接骨器能够可控变形,是一种4D打印器件;
2、本实施方式制备的生物可降解形状记忆聚合物环抱接骨器的侧壁轴向设置的S形接口2使得闭合更紧凑,有利于骨折处的生长,环抱接骨器的侧壁上设置的数个长方形通孔1使得环抱接骨器使用时能够更准确的确定安放的位置和角度,同时数个长方形通孔1可以减轻接骨器的整体重量,降低患者不适感;
3、本实施方式利用4D打印技术机制备环抱接骨器,可以根据不同的人体情况和骨折情况进行个性化的定制,制备方法简单,针对性强,解决了现有技术制备的环抱接骨器无法匹配每个病人的骨骼和骨骼处骨折情况的问题;
4、本实施方式制备的环抱接骨器能够牢固环抱碎骨,医用性能优秀,与人体生物相容性好,手术中使用操作简便,且由于使用了可生物降解的聚合物材料,能够在骨折愈合后一段时间内自行降解,降解后产物能够随人体正常新陈代谢吸收和排出,不需要二次手术进行取出,减少了病患的痛苦。其中,本发明环抱接骨器降解开始时间为使用后的第4~6个月,使用后14~16个月后能够完成降解,降解后的残余为5%~20%。
具体实施方式三:本实施方式与具体实施方式二不同的是:步骤一所述的超声分散处理时,超声功率为2~4kw,超声时间为3~5h。其他步骤和参数与具体实施方式二相同。
具体实施方式四:本实施方式与具体实施方式二或三不同的是:步骤一所述原料与溶剂的质量比为1:(9~11)。其他步骤和参数与具体实施方式二或三之一相同。
具体实施方式五:本实施方式与具体实施方式二至四之一不同的是:步骤一所述的形状记忆聚合物为形状记忆聚乳酸、形状记忆聚己内酯、形状记忆聚氨酯或形状记忆聚碳酸酯。其他步骤和参数与具体实施方式二至四之一相同。
具体实施方式六:本实施方式与具体实施方式二至五之一不同的是:步骤一所述的纳米铁为纳米四氧化三铁或纳米γ-三氧化二铁。其他步骤和参数与具体实施方式二至五之一相同。
具体实施方式七:本实施方式与具体实施方式二至六之一不同的是:步骤一所述的颗粒增强材料为碳酸钙颗粒,粒径为35~45nm。其他步骤和参数与具体实施方式二至六之一相同。
具体实施方式八:本实施方式与具体实施方式二至七之一不同的是:步骤三所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型。其他步骤和参数与具体实施方式二至七之一相同。
具体实施方式九:本实施方式生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器注入生理盐水或施加低频射频交变磁场至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成。
具体实施方式十:本实施方式与具体实施方式九不同的是:所述低频射频交变磁场的频率为25~35kHz。其他步骤和参数与具体实施方式九相同。
采用以下实施例验证本发明的有益效果:
实施例1:
本实施例生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有3个长方形通孔1;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80份的形状记忆聚合物、15份的纳米铁和5份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为3kw,超声时间为4h;所述原料与溶剂的质量比为1:10;
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚乳酸;
所述的纳米铁为纳米四氧化三铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为40nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为3mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器施加低频射频交变磁场至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;所述低频射频交变磁场的频率为30kHz。
图1为实施例1中环抱接骨器S形接口闭合状态的结构示意图;图2为实施例1中环抱接骨器S形接口张开状态的结构示意图;
本实施例中所制备的环抱接骨器在病人骨折愈合后,第五个月开始降解,至第十五个月,降解后的残余为15%。
实施例2:
本实施例生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有3个长方形通孔1;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80份的形状记忆聚合物、18份的纳米铁和2份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为3kw,超声时间为4h;所述原料与溶剂的质量比为1:10;
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚己内酯;
所述的纳米铁为纳米γ-三氧化二铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为40nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为3mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器注入生理盐水至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;
本实施例中所制备的环抱接骨器在病人骨折愈合后,第五个月开始降解,至第十五个月,降解后的残余为5%。
实施例3:
本实施例生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有3个长方形通孔1;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80份的形状记忆聚合物、15份的纳米铁和5份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为3kw,超声时间为4h;所述原料与溶剂的质量比为1:10;
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚氨酯;
所述的纳米铁为纳米γ-三氧化二铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为40nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为3mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器施加低频射频交变磁场至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;所述低频射频交变磁场的频率为30kHz。
本实施例中所制备的环抱接骨器在病人骨折愈合后,第6个月开始降解,至第十五个月,降解后的残余为20%。
实施例4:
本实施例生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有3个长方形通孔1;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取90份的形状记忆聚合物、5份的纳米铁和5份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为3kw,超声时间为4h;所述原料与溶剂的质量比为1:10;
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚碳酸酯;
所述的纳米铁为纳米四氧化三铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为40nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为3mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器施加低频射频交变磁场至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;
所述低频射频交变磁场的频率为30kHz。
本实施例中所制备的环抱接骨器在病人骨折愈合后,第四个月开始降解,至第十四个月,降解后的残余为10%。
实施例5:
本实施例生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有3个长方形通孔1;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80份的形状记忆聚合物、18份的纳米铁和2份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为3kw,超声时间为4h;所述原料与溶剂的质量比为1:10;
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚乳酸;
所述的纳米铁为纳米γ-三氧化二铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为40nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为3mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器注入生理盐水至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;
本实施例中所制备的环抱接骨器在病人骨折愈合后,第五个月开始降解,至第十五个月,降解后的残余为5%。
实施例6:
本实施例生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有3个长方形通孔1;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80份的形状记忆聚合物、10份的纳米铁和5份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为3kw,超声时间为4h;所述原料与溶剂的质量比为1:10;
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚己内酯;
所述的纳米铁为纳米四氧化三铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为40nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为3mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器施加低频射频交变磁场至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;所述低频射频交变磁场的频率为30kHz。
图1为实施例1中环抱接骨器S形接口闭合状态的结构示意图;图2为实施例1中环抱接骨器S形接口张开状态的结构示意图;
本实施例中所制备的环抱接骨器在病人骨折愈合后,第五个月开始降解,至第十五个月,降解后的残余为15%。
实施例7:
本实施例生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有3个长方形通孔1;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80份的形状记忆聚合物、18份的纳米铁和2份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为3kw,超声时间为4h;所述原料与溶剂的质量比为1:10;
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚氨酯;
所述的纳米铁为纳米四氧化三铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为40nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为3mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器施加低频射频交变磁场至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;
所述低频射频交变磁场的频率为30kHz。
图1为实施例1中环抱接骨器S形接口闭合状态的结构示意图;图2为实施例1中环抱接骨器S形接口张开状态的结构示意图;
本实施例中所制备的环抱接骨器在病人骨折愈合后,第五个月开始降解,至第十五个月,降解后的残余为15%。
实施例8:
本实施例生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口2,S形接口2相对的圆筒的侧壁上设置有3个长方形通孔1;
上述生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取85份的形状记忆聚合物、14份的纳米铁和1份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述的超声分散处理时,超声功率为3kw,超声时间为4h;所述原料与溶剂的质量比为1:10;
所述溶剂为二氯甲烷;
所述的形状记忆聚合物为形状记忆聚碳酸酯;
所述的纳米铁为纳米γ-三氧化二铁;
所述的颗粒增强材料为碳酸钙颗粒,粒径为40nm;颗粒增强材料用于增强环抱接骨器的硬度,使环抱接骨器更为耐用;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成直径为1.75mm的4D打印线;所述的固体原料颗粒的粒径为3mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印;
所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型;
上述生物可降解形状记忆聚合物环抱接骨器的驱动方法按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口2张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器注入37℃的生理盐水至生物可降解形状记忆聚合物环抱接骨器的S形接口2闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成;
本实施例中所制备的环抱接骨器在病人骨折愈合后,第四个月开始降解,至第十四个月,降解后的残余为5%。

Claims (10)

1.一种生物可降解形状记忆聚合物环抱接骨器,其特征在于:该生物可降解形状记忆聚合物环抱接骨器为圆筒形,圆筒的侧壁轴向设置有S形接口(2),S形接口(2)相对的圆筒的侧壁上设置有数个长方形通孔(1)。
2.如权利要求1所述的生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法,其特征在于:生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法按以下步骤进行:
一、按重量份数称取80~85份的形状记忆聚合物、14~19份的纳米铁和1~5份的颗粒增强材料做为原料,将原料溶解于溶剂中,超声分散处理,待将原料中溶剂挥发完全后,得到固体原料;
所述溶剂为二氯甲烷;
二、将固体原料切粒得到固体原料颗粒,然后通过双螺杆挤出机将固体原料颗粒制备成4D打印线;所述的固体原料颗粒的粒径为2~4mm;
三、获取骨折病人的骨折处的骨骼的三维模型,将骨骼的三维模型输入到3D打印机的打印系统中,生成运动轨迹代码,然后利用3D打印机进行生物可降解形状记忆聚合物环抱接骨器的打印。
3.根据权利要求2所述的生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法,其特征在于:步骤一所述的超声分散处理时,超声功率为2~4kw,超声时间为3~5h。
4.根据权利要求2或3所述的生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法,其特征在于:步骤一所述原料与溶剂的质量比为1:(9~11)。
5.根据权利要求4所述的生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法,其特征在于:步骤一所述的形状记忆聚合物为形状记忆聚乳酸、形状记忆聚己内酯、形状记忆聚氨酯或形状记忆聚碳酸酯。
6.根据权利要求2、3或5所述的生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法,其特征在于:步骤一所述的纳米铁为纳米四氧化三铁或纳米γ-三氧化二铁。
7.根据权利要求6所述的生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法,其特征在于:步骤一所述的颗粒增强材料为碳酸钙颗粒,粒径为35~45nm。
8.根据权利要求7所述的生物可降解形状记忆聚合物环抱接骨器的4D打印制备方法,其特征在于:步骤三所述获取骨折病人的骨折处的骨骼的三维模型的方法为:采用CT扫描骨折处的骨骼,获得扫面图像数据,将扫面图像数据导入Mimics软件,建立骨折病人的骨折处的骨骼的三维模型。
9.如权利要求1所述的生物可降解形状记忆聚合物环抱接骨器在环抱固定骨折病人的骨折处的驱动方法,其特征在于,该驱动方法具体按以下步骤进行:
将生物可降解形状记忆聚合物环抱接骨器加热软化至S形接口(2)张开,然后降温至生物可降解形状记忆聚合物环抱接骨器形状固定;向生物可降解形状记忆聚合物环抱接骨器注入生理盐水或施加低频射频交变磁场至生物可降解形状记忆聚合物环抱接骨器的S形接口(2)闭合及生物可降解形状记忆聚合物环抱接骨器形状回复;即完成。
10.根据权利要求9所述生物可降解形状记忆聚合物环抱接骨器在环抱固定骨折病人的骨折处的驱动方法,其特征在于,所述低频射频交变磁场的频率为25~35kHz。
CN201810381025.9A 2018-04-25 2018-04-25 一种生物可降解形状记忆聚合物环抱接骨器及其4d打印制备方法和驱动方法 Pending CN108542486A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810381025.9A CN108542486A (zh) 2018-04-25 2018-04-25 一种生物可降解形状记忆聚合物环抱接骨器及其4d打印制备方法和驱动方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810381025.9A CN108542486A (zh) 2018-04-25 2018-04-25 一种生物可降解形状记忆聚合物环抱接骨器及其4d打印制备方法和驱动方法

Publications (1)

Publication Number Publication Date
CN108542486A true CN108542486A (zh) 2018-09-18

Family

ID=63512603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810381025.9A Pending CN108542486A (zh) 2018-04-25 2018-04-25 一种生物可降解形状记忆聚合物环抱接骨器及其4d打印制备方法和驱动方法

Country Status (1)

Country Link
CN (1) CN108542486A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382171A (zh) * 2018-11-30 2019-02-26 厦门金邦达实业有限责任公司 一种分体式内锥体装置以及碗式中速磨煤机
CN112704555A (zh) * 2021-01-26 2021-04-27 山东建筑大学 一种可降解多孔尺骨中端骨折接骨器的制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010044651A1 (en) * 1998-02-17 2001-11-22 Steinke Thomas A. Expandable stent with sliding and locking radial elements
US20020004660A1 (en) * 2000-02-24 2002-01-10 Stryker Instruments Bioabsorbable plates. fasteners, tools and method of using same
CN2564122Y (zh) * 2002-09-17 2003-08-06 张德胜 四肢管状骨干骨折记忆合金紧箍器
CN1887364A (zh) * 2006-07-20 2007-01-03 中国科学院长春应用化学研究所 一种具有形状记忆的可生物降解的医用体外固定材料
CN102940522A (zh) * 2012-11-07 2013-02-27 江苏百得医疗器械有限公司 环抱式接骨板
CN103269650A (zh) * 2010-09-30 2013-08-28 斯伯威丁股份公司 颈椎前路板
CN103315787A (zh) * 2013-06-06 2013-09-25 常熟市亨利医疗器械有限公司 可吸收缝合钉
CN204581478U (zh) * 2015-04-09 2015-08-26 广州军区广州总医院 一种解剖型胸肋骨环抱式接骨装置
CN105399966A (zh) * 2015-12-29 2016-03-16 哈尔滨工业大学 一种形状记忆聚合物的制备及其在4d打印上的应用
CN105838049A (zh) * 2015-01-15 2016-08-10 上海交通大学 可生物降解聚乳酸基形状记忆复合材料及其制备方法
CN105907059A (zh) * 2016-04-29 2016-08-31 哈尔滨工业大学 基于形状记忆复合材料的封堵器及其制备和应用方法
CN105944144A (zh) * 2016-04-29 2016-09-21 哈尔滨工业大学 基于形状记忆复合材料的骨组织修复结构及其制备和应用方法
CN105983143A (zh) * 2015-02-28 2016-10-05 上海微创医疗器械(集团)有限公司 一种环抱式骨折内固定器件及制备方法
CN107510501A (zh) * 2017-10-20 2017-12-26 济南大学 接骨板
CN107693101A (zh) * 2017-09-28 2018-02-16 山东威高骨科材料股份有限公司 骨骼固定器
CN107803983A (zh) * 2017-11-02 2018-03-16 哈尔滨工业大学 用于熔融沉积打印的形状记忆聚合物复合4d打印线的制备方法及应用方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010044651A1 (en) * 1998-02-17 2001-11-22 Steinke Thomas A. Expandable stent with sliding and locking radial elements
US20020004660A1 (en) * 2000-02-24 2002-01-10 Stryker Instruments Bioabsorbable plates. fasteners, tools and method of using same
CN2564122Y (zh) * 2002-09-17 2003-08-06 张德胜 四肢管状骨干骨折记忆合金紧箍器
CN1887364A (zh) * 2006-07-20 2007-01-03 中国科学院长春应用化学研究所 一种具有形状记忆的可生物降解的医用体外固定材料
CN103269650A (zh) * 2010-09-30 2013-08-28 斯伯威丁股份公司 颈椎前路板
CN102940522A (zh) * 2012-11-07 2013-02-27 江苏百得医疗器械有限公司 环抱式接骨板
CN103315787A (zh) * 2013-06-06 2013-09-25 常熟市亨利医疗器械有限公司 可吸收缝合钉
CN105838049A (zh) * 2015-01-15 2016-08-10 上海交通大学 可生物降解聚乳酸基形状记忆复合材料及其制备方法
CN105983143A (zh) * 2015-02-28 2016-10-05 上海微创医疗器械(集团)有限公司 一种环抱式骨折内固定器件及制备方法
CN204581478U (zh) * 2015-04-09 2015-08-26 广州军区广州总医院 一种解剖型胸肋骨环抱式接骨装置
CN105399966A (zh) * 2015-12-29 2016-03-16 哈尔滨工业大学 一种形状记忆聚合物的制备及其在4d打印上的应用
CN105907059A (zh) * 2016-04-29 2016-08-31 哈尔滨工业大学 基于形状记忆复合材料的封堵器及其制备和应用方法
CN105944144A (zh) * 2016-04-29 2016-09-21 哈尔滨工业大学 基于形状记忆复合材料的骨组织修复结构及其制备和应用方法
CN107693101A (zh) * 2017-09-28 2018-02-16 山东威高骨科材料股份有限公司 骨骼固定器
CN107510501A (zh) * 2017-10-20 2017-12-26 济南大学 接骨板
CN107803983A (zh) * 2017-11-02 2018-03-16 哈尔滨工业大学 用于熔融沉积打印的形状记忆聚合物复合4d打印线的制备方法及应用方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
俞雄军: "基于聚ε-己内酯的可生物降解形状记忆纳米复合材料的研究", 《中国优秀硕士学位论文全文数据库医药卫生科技辑》 *
冷劲松、杜善义: "《形状记忆聚合物与多功能复合材料》", 31 January 2012 *
刘士懂等: "形状记忆合金治疗四肢骨折 ", 《中国骨伤》 *
朱军等: "形状记忆材料聚己内酯复合材料性能研究", 《塑料工业》 *
杨春锋: "抓握式镍钛记忆合金肋骨接骨板对多发肋骨骨折患者的治疗效果", 《中国医药导报》 *
王斌强: "镍钛环抱式接骨器内固定修复多发性肋骨骨折:与克氏针应用安全性比较", 《中国组织工程研究》 *
莫云聪: "镍钛环抱式接骨器内固定修复多发性肋骨骨折疗效和安全性观察 ", 《齐齐哈尔医学院学报》 *
郑志超: "聚乳酸基形状记忆聚合物的性能研究及其4D打印", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
郑晗: "基于聚氨酯的多重形状记忆聚合物的制备与挤出研究", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109382171A (zh) * 2018-11-30 2019-02-26 厦门金邦达实业有限责任公司 一种分体式内锥体装置以及碗式中速磨煤机
CN112704555A (zh) * 2021-01-26 2021-04-27 山东建筑大学 一种可降解多孔尺骨中端骨折接骨器的制备方法

Similar Documents

Publication Publication Date Title
Lui et al. 4D printing and stimuli-responsive materials in biomedical aspects
Wen et al. Emerging flexible sensors based on nanomaterials: recent status and applications
CN104269092B (zh) 手术辅助骨骼模型制备方法
Gao et al. High-strength hydrogel-based bioinks
CN108542486A (zh) 一种生物可降解形状记忆聚合物环抱接骨器及其4d打印制备方法和驱动方法
Han et al. Three-dimensional printing of hydroxyapatite composites for biomedical application
CN2891990Y (zh) 用于在椎体中形成空腔的扩张器
CN110128679B (zh) 一种用于电刺激骨软骨一体再生的导电双层水凝胶的制备方法
CN103721298A (zh) 具有压电效应的可吸收骨科器械材料及其制备方法
WO2019152183A1 (en) Fast-swelling, highly-swellable, robust hydrogel balloons
CN109010923A (zh) 一种3d打印用磷酸盐增强聚乳酸材料的制备方法
Ali et al. Biodegradable piezoelectric polymers: recent advancements in materials and applications
Meng et al. In-situ re-melting and re-solidification treatment of selective laser sintered polycaprolactone lattice scaffolds for improved filament quality and mechanical properties
CN104490492A (zh) 人工关节置换手术中的临时间隔器的制作方法
Rokaya et al. Shape memory polymeric materials for biomedical applications: an update
CN1814306A (zh) 消化道排空检测缓释片及其制备工艺
CN106399803A (zh) 一种耐腐蚀生物医用镁合金的制备方法
CN105295012B (zh) 原位插层法制备层片状羟基磷灰石/聚乳酸纳米复合材料
Yousefi Talouki et al. Polyglycerol sebacate (PGS)-based composite and nanocomposites: properties and applications
CN108159500A (zh) 一种3d打印人工骨修复材料及其制备方法
CN106751318B (zh) 一种高强度的淀粉/粘土复合材料及其制备方法
Wu et al. Piezoelectric materials for neuroregeneration: A review
CN101716095B (zh) 一种骨科内固定板及其制备方法
CN108378915A (zh) 一种寰枢椎前路固定板及制备方法
Shahbaz et al. Polymer nanocomposites for biomedical applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180918